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REMARKS ON GENERALIZED BRAUER PAIRS

Constantin Cosmin Todea

Abstract. Let k be an algebraically closed field of characteristic p, G a finite
group, N a normal subgroup of G and ¢ a G-stable block of KN. In this case
there exists generalized Brauer pairs called (¢, G)-Brauer pairs and denoted by
(Q,eq), where @ is a p-subgroup of G and eq a block of kCn(Q). If G = N
the generalized Brauer pairs becomes the usual c-Brauer pairs. If (P, ep) is a
maximal (¢, G)-Brauer pair we prove that ep is a nilpotent block. There is also
true a form of Brauer’s third main theorem.
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1. PRELIMINARIES

Throughout this paper we consider k an algebraically closed field of char-
acteristic p, G a finite group, N a normal subgroup of G and ¢ a G-stable
block of kN, that is ¢ is a primitive idempotent of Z(kN) fixed by conjugation
action of G.

Using the approach from [2], in [3, Section 3] R. Kessar and R. Stancu give
the definition of a generalized (¢, G)-Brauer pair, generalized Brauer category,
Brauer homomorphism etc. In the next lines we explicitly, restate definition
of generalized (¢, G)- Brauer pairs and a few interesting properties. We also
include the approach of pointed groups, which is not used in [3].

In section 2 we prove that for a maximal (¢, G)-Brauer pair denoted (P, ep)
it is true that ep is a nilpotent block of kCx(P).We will make some intuitive
connection between maximal (¢, G)-Brauer pairs and defect pointed groups.

In section 3 similar to [6, Section 40] we define a normal relation denoted <
between (¢, G)-Brauer pairs which has as transitive closure the order relation
from [2, Section 1] which we denote <. This allow us to imitate the proof of
Brauer’s third main theorem [6, Theorem 40.17].

We will use basic definitions, results and notations regarding block theory
from [6].

For any @ a p-subgroup of G the canonical projection from kN to kCn(Q)
induces a surjective homomorphism of algebras from (kN)? onto kCn(Q),
the Brauer homomorphism denoted by Brg (see [1]). Explicitly Brg () =xif

z € Cn(Q) and Brg(x) =0if z ¢ Cn(Q). Since A = kN is a p-permutation
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G-algebra, ¢ is a primitive idempotent of A C AN = Z(kN) and cAc =
cA = Ac remains a p-permutation algebra, we can adopt the approach of [2]
for generalized Brauer pairs.

DEFINITION 1. A (¢, G)-Brauer pair is a pair (Q,eg) where @ is a p-
subgroup of G such that Brg(c) # 0 and Brg(c)eQ # 0. When G = N a
(¢, G)-Brauer pair is also known as a c-Brauer pair.

There is an order relation on the set of generalized Brauer pairs:

DEFINITION 2. Let (R,eg) and (Q,eq) be two (¢, G)-Brauer pair.We say
that (@, eq) is contained in (R, er) and we write (Q,eq) < (R,er), if Q@ < R
and for any primitive idempotent i € (kN)® such that Brd (i)eg # 0 we have
that Brg(i)eQ # 0.

This order relation is compatible with the conjugation of G. By [2, Theorem
1.8] we have the next remark.

REMARK 1. If (R,eR) is a given (¢, G)-Brauer pair then for any Q < R
there is a unique (¢, G)-Brauer pair such that (Q,eq) < (R, er).

REMARK 2. By [2, Theorem 1.14] we have that G acts transitively on max-
imal (¢, G)-Brauer pairs, equivalently all maximal (¢, G)-Brauer pairs are G-
conjugate. If (P, ep) is a maximal (¢, G)-Brauer pair then P is called a (¢, G)-
defect group.

If N = G then P is a defect group of ¢ in the usual sense.

2. POINTED GROUPS AND GENERALIZED BRAUER PAIRS

We consider A = kN as p-permutation G-algebra which is not interior, with
Ac = kNc a primitive G-algebra. Ny, and Gy, are pointed groups on A. We
remind that P, is a defect pointed group of Gy, if P, is a maximal local
pointed group on A included in Gy.. By [6, Theorem 18.5] this is equivalent

with P being a maximal p-subgroup of G such that Br¥ (c) # 0.

PROPOSITION 1. Let P, be a defect pointed group of Gy on A. Then there
is a unique (¢, G)-Brauer pair (P,ep) such that Br® (i)ep # 0 for any i € .
Moreover (P, e,) is a maximal (¢, G)-Brauer pair, thus P is a (¢, G)-defect
group.

Proof. For i € vy we have that i € (kN¢) is a primitive idempotent with
Bry (i) # 0. Br¥ (i) is a primitive idempotent in kCy (P) since BrY is surjec-
tive. It follows that there is a block ep € Z(kCx(P)) such that Br (i)ep # 0.
This block is unique since otherwise by contradiction it follows that Br¥ (i) is
a primitive idempotent in kCn(P), which is in the primitive decompositions
in kCn(P) of two blocks.
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Since P, is a defect pointed group we have that Br¥ (¢) # 0 thus Brj (c)ep #
0. By contradiction if Br¥ (c)ep = 0 then

Bry¥(i)ep = Bri (ic)ep = Bri (i)Br (c)ep = 0,
false. The last part of the proof is obviously. O

For proving the main result of this section we need the following lemma
which gives a particular result in group theory.

LEMMA 1. Let N be a normal subgroup of a finite group G and P a p-
subgroup of G such that PN N # 1. Then Z(P)N N # 1.

Proof. The p-group P acts on the set PN N by conjugation. We denote by
O(n;), €{l,...,k} the orbits of this P set, where n; are chosen representa-
tives. By [5, Theorem 2.97, Proposition 2.98] we have:

k k
| PAN =) 10(m) |=) [P: Py
=1 =1
If n, € Z(P) N N then his orbit O(n;) = {n;} and P,, = P.It follows that:

| PAN |=| Z(P)NN |+ ) [P: P,],
i
where the orbit of n; have more than one element. Since PN N is a nontrivial
p-group and p divides Z[P : P,,] it follows that p divides | Z(P)N N |, which

(2
concludes the proof. O

REMARK 3. By [4, Propsition 5.3] applied to our case P, is a defect pointed
group of Gy on A if and only if P = PN/N is a Sylow p-subgroup of G = G/N
and there is Q5 a defect pointed group of Ny, on the N-algebra kN such that
Qs < P,. In this case Q = PN N, thus PN N # 1.

REMARK 4. Using Lemma 1 and Remark 3 it is not difficult to prove that if
P, is a defect pointed group of G,y and (P, ep) is the maximal (¢, G)-Brauer
pair then Z(P) N N # 1 is included in any defect group of the block ep in
ECN(P).

Let B = kNc the primitive G-algebra, which is the localization of Gy in
A and P, a defect of B. We remind that S(y) = BY /m., is a simple k-algebra
called the multiplicity algebra, where m, = J(B?) is the unique maximal
ideal of BY such that v ¢ m,. Then S(y) ~ Endi(V (7)) , where V() is the
simple BP-module called the multiplicity module.

By [6, Lemma 14.5] we can view, slightly differently the multiplicity algebra
S(v) as a simple quotient of kCn(P) and thus S(vy) isomorphic with the k-
endomorphism algebra of a simple kCn(P)-module. Explicitly this module is
V(y) = kCn(P)Br (i) /J (kCn(P))Br® (7).
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In the next lines we denote by N = Ng(P,)/P and C = Cn(P)/Z(P)NN.
Remark that C = Cn(P)/P N Cyn(P) ~ PCy(P)/P which is a subgroup of
N.

LEMMA 2. In the above conditions it is true that the multiplicity module
V(v) is simple and projective as kC'-module.

Proof. V() is a simple kCn (P)-module and Z(P)NN a normal p-subgroup
of Cn(P). By [6, Corollary 21.2] Z(P) N N acts trivially on every simple
kCx(P)-module, thus V (v) is simple as kC-module.

The multiplicity algebra S(v) has a N-algebra structure, which is not nec-
essarily interior on restriction to the subgroup PCq(P)/P but is interior on
restriction to the subgroup C. By [6, Example 10.9] the multiplicity module

V(v) of P, is endowed with a ky N-module structure which extends the struc-
ture of V() as kC-module. Since B is a primitive G-algebra by [6, Theorem
19.2] we have that V(v) is projective as kyN-module. By [6, Corollary 17.8]

this is equivalent with the fact that the N-algebra S(v) = End(V (v)) is pro-
jective algebra relative to {l} Further this is equivalent to the surjectivity of

the relative transfer map ¢ : S(y) — S(y)". B
Since V(7) is simple on restriction to kC it follows that S(7)¢ = k by

Schur’s lemma, and a fortiori S (”y)ﬁ = k. Therefore the relative trace map tlﬁ
factorizes as:

~+
qQl
~+~
12|

S(v) : k < k.

N/C acts trivially on k thus by definition of relative trace map tg is multi-
plication by [N : C], which is either 0 or an isomorphism.
We conclude that t{v is surjective if and only if tlc is surjective and [N :

C]1; # 0. By [6, Corollary 17.4] it follows that V () is projective on restriction
to kC. g

We conclude with the main result of this section:

PROPOSITION 2. Let P, be a defect pointed group of Gy, and (P, ep)
the unique maximal (¢, G)-Brauer pair with the property that BrY (i)ep # 0.
Then it follows that Z(P) N N is a defect group of ep. In particularly ep is a
nilpotent block of kCn(P).

Proof. From Lemma 2 we know that V(v) is simple and projective as kC-
module, thus by [6, Theorem 39.1] V() belongs to a block € of kC with defect
0. By [6, Proposition 39.2] € lifts to a block e of kCn(P) with defect group
Z(P)N N since Z(P)N N is a central p-subgroup of Cn(P). Moreover there
is a unique simple kCn(P)e module up to isomorphism which is V'(y). Since
ep belongs to V(v) it follows that ep = e and the defect group is Z(P) N N.
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Since ep has Z(P) N N as defect group which is central in kCn(P) by [6,
Corllary 49.11] it follows that ep is a nilpotent block. U

If G = N we obtain the well known result that Z(P) is the defect group of
ep as a block of kCg(P) and ep is a nilpotent block.

3. BRAUER’S THIRD MAIN THEOREM

If @ and P are two p-subgroups such that @ is normal in P then kCn(Q)
is a P-algebra by conjugation on which @ acts trivially and we view as a
P/Q-algebra. Moreover is a p-permutation algebra. Thus there is the Brauer
homomorphism, which we denote by Brg /0 and which appear in [2, Proposi-
tion 1.5]
Bryq « (kCn(Q))/9 — kCy(P).

Brg/Q is in fact restriction of the Brauer homomorphism Br® for kN to

(kCn(Q))".

By [2, Proposition 1.5, Theorem 1.8] we have the next remark:

REMARK 5. If (P, e) is a (¢, G)-Brauer pair and @ is normal in P there is a
unique (¢, G)-Brauer pair (Q, f) < (P,e) such that Brg/Q(f)e = e. We define
a new relation by saying that (@, f) is normal in (P, e) if and only if @ <P and
f is the unique block of kCn(Q) invariant under P such that Br o(fle=e.
We write this (@, f) < (P, e).

REMARK 6. Similar to [6, Corollary 40.10] we have that the order relation
< on (¢, G)-Brauer pairs is the transitive closure of the relation <.

Now we can imitate the proof of [6, Theorem 40.17] which is known in the
literature ”Brauer’s third main theorem”.

THEOREM 1. Let ¢ be the principal block of kN, where N is normal in G
and Q any p-subgroup of G. Then we have that:

a) The principal block c is G-stable.

b) Brg(c) is a primitive idempotent in Z(kCn(Q)) and is the principal
block of kCn(Q).

c) (Q,e) is a (¢, G)-Brauer pair if and only if e is the principal block of
kCn(Q).

d) The (c,G)-defect groups of ¢ are the Sylow p-subgroups of G.

Proof. a) Let SX = Z x where X is a subset of G. For all g € G we

zeX
know that 9c is a primitive idempotent in Z(kN). Using [6, Lemma

40.16] we prove that g is the principal block, which concludes a). We
have that:

geg 'SN =gc ' Y gTtn=ygc Y mgt £0,
neN niEN
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since N normal in G and ¢ is the principal block.

b) For any R a p-subgroup of G we denote by ep the principal block of
ECn(R). Firs note that by definition of Brg we have that Brg(SN) =
SCn(Q). It follows that:

Brg(c)SCN(Q) = Brg(cSN) = Brg(SN) =SCN(Q),

so that eg appears in a decomposition of Brg (¢) in ZkCn(Q). Par-
ticularly in the case that P is a Sylow p-subgroup of G ep appears
in a decomposition of Brg (c) thus (P, ep) is a maximal (¢, G)-Brauer
pair. If (P, f) is any (¢, G)-Brauer pair (which is maximal since P is
Sylow), by Remark 2 there is ¢ € Ng(P) such that f =9 ep. Since
ICN(P) = Cn(P) we have that:

9epSCN(P) =9 S(epCn(P)) =9 SCy(P) = SCx(P).

So Ydep is the principal block. It follows that f = ep, the principal
block is the only block which appears in the decomposition of Br¥ (c).
Thus BrR(c) = ep for all Sylow p-subgroups of G, which prove b) in
the Sylow case.

We prove b) by descending induction and using Remarks 5 and
6 it suffices to prove that if (R, f) < (Q,eq) then f = er. Now
Brg/R(f)eQ = eq by definition of < and since Brg/R(SC’N(R)) =
SCN(Q) we have:

Brgy r(fSCN(R))eq = Bry p(/)SCn(Q)eq = Bryy 1(f)eqSCn(Q)

=egSCON(Q) = SCN(Q) # 0.
By contradiction it follows that fSCx(R) # 0, thus f is the principal
block
c¢) This follows by b).
d) If P is a Sylow p-subgroup then by b) Br¥(c) # 0, thus P is maximal
with this property. This gives that P is a (¢, G)-defect group.
O

If G = N we obtain in the above theorem statements a) and b) from [6,
Theorem 40.17] and [6, Corollary 40.18].
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