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1. Introduction and preliminaries

Let K be a field. A Schur algebra over K is a central simple K-algebra which is generated over K by a finite group of units.
The Schur group of K is the subgroup S(K) of the Brauer group of K formed by classes containing a Schur algebra. By the
Brauer-Witt theorem (see e.g. [8]), each class in S(K) can be represented by a cyclotomic algebra, i.e. a crossed product of
the form (L/K, ) in which L/K is a cyclotomic extension and the factor set « takes values in the group of roots of unity
W(L) of L.

In the case when K is an abelian number field, i.e. K is contained in a finite cyclotomic extension of @, Benard-Schacher
theory [2] gives a partial characterization of the elements of S(K). According to this theory, if n is the Schur index of a Schur
algebra over K, then W (K) contains an element of order n. This is known as the Benard-Schacher theorem. Furthermore, if
% (in lowest terms) is the local invariant of A at a prime R of K that lies over a rational prime r, then each of the fractions
% with 1 < ¢ < n and c coprime to n will occur equally often among the local invariants corresponding to the primes of
K lying above r. In particular, these local invariants all have the same denominator n for all the primes of K lying above r,
which we call the r-local index m, (A) of A. Only finitely many of the m, (A) are greater than 1, and the Schur index of A is the
least common multiple of the m, (A) as r runs over all rational primes.

The goal of this article is to characterize the maximum r-local index of a Schur algebra over an abelian number field K
in terms of global information determined by K. The existence of this maximum is a consequence of the Benard-Schacher
Theorem. Since S(K) is a torsion abelian group, it is enough to compute the maximum of the r-local indices of Schur algebras
over K with index a power of p for every prime p dividing the order of W (K). We will refer to this number as p®, In [3],
Janusz gave a formula for pf*"”) when either p is odd or K contains a primitive 4-th root of unity. The remaining cases were
considered by Pendergrass in [5]. However, some of the calculations involving factor sets in [5] are not correct, and as a
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consequence the formulas for 2#2() for odd primes r that appear there are inaccurate. This article was motivated in part
by the need to find a correct formula for p" in this remaining case, and also because of the need to apply the formula
in an upcoming work of the authors in [4], where the gap between the Schur subgroup of an abelian number field and its
subgroup generated by classes containing cyclic cyclotomic algebras is studied. Since the local index at co will be 2 when K
is real and will be 1 otherwise, the only remaining case is that of r = 2. In this case, p must be equal to 2 and we must have
¢4 & K. The characterization of fields K for which S(K>) is of order 2 is given in [5, Corollary 3.3].

The main result of the paper (Theorem 13) characterizes p?"” in terms of the position of K relative to an overlying
cyclotomic extension F that is determined by K and p. The formulas for p?( are stated in terms of elements of certain
Galois groups in this setting. The main difference between our approach and that of Janusz and Pendergrass is that the field
F that we use is slightly larger, which allows us to present some of the somewhat artificial-looking calculations in [3] in a
more conceptual fashion. Another highlight of our approach is the treatment of calculations involving factor sets. In Section 2
we generalize a result from [1] which describes the factor sets for a given action of an abelian group G on another abelian
group W in terms of some data. In particular, we give necessary and sufficient conditions that the data must satisfy in order
to be induced by a factor set. Because of the applications we have in mind, extra attention is paid to the case when W is a
cyclic p-group.

2. Factor set calculations

In this section W and G are two abelian groups and 7" : G — Aut(W) is a group homomorphism. A group epimorphism
7 : G — G with kernel W is said to induce 7 if, given u, € G such that w (u;) = g, one has ugwug‘] = T(g)(w) for
eachw € W.If g — ug is a crossed section of i (i.e. w(u;) = g foreachg € G)thenthe mapa : G x G — W defined
by ugup = og pug is a factor set (or 2-cocycle) o € Z%(G, W). We always assume that the crossed sections are normalized,
ie.u; = 1and hence g 1 = a1, = 1. Since a different choice of crossed section for 7 would be a map g > wgu, where
w : G — W,  determines a unique cohomology class in H?(G, W), namely the one represented by «.

Given a list g1, ..., g, of generating elements of G, a group epimorphism 7 : G — G inducing 7", and a crossed section
g — ug of r, we associate the elements B and y; of W, for i, j < n, by the equalities:

Uglg; = Pijlig Ug;, and
0 0 (1)

G — gl L.l
Uy = Yillg Ugi 1>

where the integers g; and tj(i) for1 <i<nand0 <j < iare determined by

0] () .
gi = orderofg modulo (g1, ....g1), g'=g' ---g~, and 0<¢” <g )
If o is the factor set associated to & and the crossed section g — ug, then we say that « induces the data (8, ;). The
following proposition gives necessary and sufficient conditions for a list (8;;, ;) of elements of W to be induced by a factor

set.
The order of an element g of a group is denoted by |g]|.

Proposition 1. Let W and G = (g1, ..., g») be abelian groups and let T : G — Aut(W) be an action of G on W. For every
1<i,j<n,letqand tj(') be the integers determined by (2). Forevery w € Wand 1 <i <n, let

Yi=7@E). N =wlhiwrw)- - %""(w), and N; =N
Forevery 1 <1i,j < n, let B and y; be elements of W. Then the following conditions are equivalent:

(1) Thereis a factor set o € Z*(G, W) inducing the data (Bij» vi)-
(2) The following equalities hold for every 1 <i,j, k < n:

(C1) Bii = BiBji = 1.

(C2) BiiBixBri = Yi(Bi)) Ti(Bix) T (Bri)-

® KOG RORENG! MO0}

(C3) Ni(Bp)vi = L;(yN,' (B Yy" (N2 (Bo)) -+~ 14" 12 -+ Vi (N (Bia—1y))-
Proof. (1) implies (2). Assume that there is a factor set « € Z?(G, W) inducing the data (Bij, vi). Then there is a surjective
homomorphism 7 : G — G and a crossed section g ug of 7 such that the g; and y; satisfy (1). Condition (C1) is clear.

Conjugating by ug, in UgUg, = Bijug; Ug; yields
BiY; (Bi) Bijtigtig, = BitYi(Bi)ig g, = Bilg Bikllg, = Ug, g lig, Uy '
= ugk:&'jug,-ugjug;1 = ﬂ((ﬂij)ﬁikugiﬂjkugj = Tlc(,gij)ﬁik’ri(ﬁjk)ugiugj'
Therefore, we have B Y;(Bi) Bij = Yi(Bij) BiTi(Bjk) and so (C2) follows from (C1).
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0 o
To prove (C3), we use the obvious relation (wug)" = Nj (w)ug,. Conjugating by ug; in ug = y,u;,1 . u; results in

11—

[gi) ['(i)l qai q q q 1 [?) i

1— — i i — | — igpg— ! —
Ni(Bivitlg, - - - gy = N (Byug = (Bijug)™ = ugligitl, ™ = Ug;Yjllg, "'ugmugj

0] 0] ¢ t® t®
T’(Vi)(ﬂljugl)tl o (Bii—jlg_,) T(Vz)N (ﬁu)u — N (Ba—nug
(0 (0 g <:) i RO ()
T}(VI)N (ﬂl})T (N (,BZJ)) T T R (Nl 1 (ﬂ(z 1)j )ug1 : ugll
Cancelling on both sides produces (C3). This finishes the proof of (1) implies (2 ).
Before proving (2) implies (1), we show thatif 7 : G — Gisagroup homomorphism with kernel W inducing 7', g > ug is

a crossed section of 7w and B;; and y; are given by (1), then Gisisomorphic to the groupa given by the following presentation:

the set of generators of Gis {w, g; : w € W,i =1, ..., n}, and the relations are
— o~ o~ ~ o~ o~ o~ t(l) At(,)
Wiwy = W Wa, Tiw)=gwg '. g&=4p8&g and g =g g, (3)

foreach 1 < i,j < nand w, wy, w, € W. Since the relations obtained by replacing w by w and g; by ug, in Eq. (3) for
eachx € Wandeach1 <i < n, hold in G, there is a surjective group homomorphism ¢ : G — G, which associates w
w1th w, for every w € W, and g; w1th | Ug;, foreveryi =1,...,n. Moreover ¢ restricts to an isomorphism W — W and
|g,(W g1, ..., 8-1)| = qi. Hence [G W| = q1 qn =[G : W] and so |G| |G|. We conclude that ¢ is an isomorphism.
(2) implies (1). Assume that the 8;’s and y;’s satlsfy conditions (C1), (C2) and (C3). We will recursively construct groups
Go, G1, ..., Gy. Start with G = W. Assume that Gr_1 = (W, Ug,, ..., Ug_,) has been constructed with ug,, ..., g, ,
satlsfymg the last three relations of (3), for 1 < i,j < k, and that these relations, together with the relations in W, form a
complete list of relations for Gy_;. To define G we first construct a semidirect product Hy = Gy_1 X, (xk), where c; acts on

Gy—1 by
a(w) = T(w), (wew), ck(ug) = Bikl;.

In order to check that this defines an automorphism of G,_; we need to check that c; respects the defining relations of G,_;
This follows from the commutativity of G and conditions (C1), (C2) and (C3) by straightforward calculations which we leave
to the reader.

Notice that the defining relations of Hy are the defining relations of G,_; and the relations x,w = 7Yi(w)x, and
«® )
Xklg; = PBiklgXk. Using (C3) one deduces ugixgku‘i1 = uglykLggl . ugk | g‘, for each i < k — 1. This shows that
o i

Ve = X" ykugl ugk | belongs to the center of Hy. Let Gy = Hy/(yx) and ug, = X (yx). Now it is easy to see that the
defining relatlons of Gy are the relations of W and the last three relations in (3), for 0 <i,j < k.
It is clear now that the assignment w + 1 and ug + g for eachi = 1,...,n defines a group homomorphism

7 : G = G, - G with kernel W and inducing 7. If « is the factor set associated to = and the crossed section g Ug,
then (B, i) is the list of data induced by . O

Note that the group generated by the values of the factor set o coincides with the group generated by the data (B, y;).
This observation will be used in the next section.
In the case G = (g1) x - -- x (g,) we obtain the following corollary that one should compare with Theorem 1.3 of [1].

Corollary 2. If G = (g1) X -+ x {(ga) thenalist D = (Bj;, ¥i)1<ij<n Of elements of W is the list of data associated to a factor set
inZ%(G, W) if and only if the elements of D satisfy (C1), (C2) and Ni(By)y: = Yj(y1), forevery 1 <i,j <n.

In the remainder of this section we assume that W = (¢) is a cyclic p-group, for p a prime integer. Let p® and p®*® denote
the orders of W¢ = {x € W : T'(g)(x) = x for each g € G} and W, respectively. We assume that 0 < a, b. We also set

C=Ker(Y) and D={g€G: Y@ =¢orT Q) =¢")
Note that D is subgroup of G containing C, G/D is cyclic, and [D : C] < 2. Furthermore, the assumption a > 0 implies
thatif C # D then p® = 2.
Lemma 3. There exists a p € D and a subgroup B of C such that D = (p) x Band C = (p?) x B.

Proof. The lemma is obvious if C = D (just take p = 1). So assume that C # D and temporarily take p to be any element of
D\ C.Since [D : C] = 2, one may assume without loss of generality that | p| is a power of 2. Write C = C, x Cy, where C, and

C, denote the 2-primary and 2’-primary parts of C, and choose a decomposition C, = {c;) X - - - X {¢;;) of C;. By reordering the
¢/s if needed, one may assume that p? = ¢;" - - c,f"c,fi‘{” .. c2n with ay, . .., a, odd. Then replacmg p by pe e

one may assume that p? = c?l ~~c,f",with ai,...,apodd. LetH = (p,cl,..., ). Then |p|/2 = |p?| = exp(H N C),
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the exponent of H N C, and so p is an element of maximal order in H. This implies that H = (p) x H; for some H; < H.
Moreover, if h € Hy \ C then 1 # pl?/2 = HlPl/2 ¢ (p) N Hy, a contradiction. This shows that H; < C. Thus
G = (HNG) X (Ck1) X -+ X (a) = (%) X Hy X (Ckp1) X -+ X (ca). Then p and B = Hy X (Cp1) X -+ X (Ca) X Cy
satisfy the required conditions. O

By Lemma 3, there is a decomposition D = B x (p) with C = B x (p?), which will be fixed for the remainder of this
section. Moreover, if C = D then we assume p = 1. Since G/D is cyclic, G/C = (pC) x (o C) for some o € G.Itis easy to see
that o can be selected so that if D = Gtheno = 1,and ¢ (¢) = ¢€ for some integer c satisfying

a if G/C is cyclicand G # D,
vp(c?” —1) =a+b, and wvy(c—1) =ja+b ifG/Ciscyclicand G=D,and (4)
d > 2 for some integer d, if G/C is not cyclic,
where g, = |oC| and the map v, : Q — Z is the classical p-adic valuation. In particular, if G/C is non-cyclic (equivalently

C#D#G)thenp®=2,b>2p¢)=¢ 'ando(c? ") = 2.
For every positive integer t we set

2 (o1 ¢ =1
Vit)=1+c+c"+--+c =7
Now we choose a decomposition B = (c;) X - - x {(c,) and adapt the notation of Proposition 1 for a group epimorphism

f: G — Gwithkernel W inducing 7" and elements uc,, ..., Ug,, Uy, U, € Gwithf(u,) = ¢, f(u,) = p and f(u,) = o, by
setting

/31] = [qua uC,‘]5 ﬂip = /3;(] = [upa uC,‘]a ﬂi(r = ﬂ;j1 = [uo'» uC,‘]v and ﬂap - [ﬂpa ﬂﬂ]
We also set

g=lal. g,=Ipl, and o% =ci"---crp*, where0 <t <gand0 <t, <|p*. (5)

With a slightly different notation than in Proposition 1, we have, foreach1 <i <n, tj(i) =0foreach0 <j < i, tl-(” ) =0,
t,-(”) = t;, and t/(f’) = 2t,. Furthermore, q, = 1if C = D and q, is even if C # D. Continuing with the adaptation of the
notation of Proposition 1 we set

vi=ul,  y,=uf, and y, =ulu " ~~uc’nt“ui[p.

We refer to the list {8y, Bis, Bip, Bop» Vi> Vp> Vo : 0 < i < j < n}, which we abbreviate as (8, y), as the data associated

to the group epimorphism f : G — G and choice of crossed section uc,, ..., Uc,, Us, Uy, Or as the data induced by the

corresponding factor set in Z2(G, W).
Furthermore, for every w € W, 1 <i <nandt > 0one has

wh, ifp=1;
Nf(w) = w', N (w) = w'® and Nj(w) = {1, ifp # Tandtiseven;
w, ifp # 1andtisodd.

In particular, for every w € W one has
Ni(w) = w%,  Ny(w) =w'%) and N,(w)=1.

Rewriting Proposition 1 for this case we obtain the following.

Corollary 4. Let W be a finite cyclic p-group and let G be an abelian group acting on W with G = {(cq,...,Cn, 0, p),
B={(c;) X ---x {ca),D =B x {p) and C = B x {p?) as above. Let g;, d,, 4o and the t;’s be given by (5). Let By, Vp, Vo € W
and forevery 1 <i,j < nlet By, Bis, Bip and y; be elements of W. Then the following conditions are equivalent:

(1) The given collection (B, y) = {Bij, Vi> Bios Vo Yo» Bop) is the list of data induced by some factor set in Z2(G, W).
(2) The following equalities hold for every 1 <1i,j < n:

( ) /311 - /31]/3]1 =1

(C2) (a) By e WC.
(b) If p # 1then B, = B,
(C3) (a) B
(b)
(c)
(d) vy,
(

—1
Vi

/3 v gl g

/3 . tn_

pr_lthen,B,p_ﬁUp_yp_l

If p # 1then Blly? =1, BYI7)y2 ,3 -+ B and y, € WC.

C
d
e

)
()
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Proof. By completing the data with B,; = B, B, = ﬂi;l and B,, = By, = 1 we have that (C1) is a rewriting of condition
(C1) from Proposition 1.

(C2)is the rewriting of condition (C2) from Proposition 1 because this condition vanishes when 1 < i, j, k < nand when
two of the elements i, j, k are equal. Furthermore, permuting i, j, k in (C2) yields equivalent conditions. So we only have to
consider three cases: substitutingi = i,j = j,andk = o;i =1i,j = j,and k = p;andi = i,j = p, and k = o. In the first
two cases one obtains o (8;) = p(B;) = By, or equivalently B; € WC. For p = 1 the last case vanishes, and for p # 1(C2)
yields B2 = B °.

Rewriting (C3) from Proposition 1 we obtain: (a) fori = i,j = j; (b)fori = iandj = o; (c)fori = o and j = i; and (d)
fori=oandj=o.

We consider separately the cases p = 1 and p # 1 for the remaining cases for rewriting (C3). Assume first that p = 1.
When i is replaced by p and j replaced by i (respectively, by o) we obtain 8;, = 1 (respectively B;, = 1). On the other hand
the requirement of only using normalized crossed sections implies y, = 1 in this case. When j = p the conditions obtained
are trivial.

Now assume that p # 1. Fori = iand j = p one obtains ﬂi‘ijy,-z = 1.Fori = p and j = i one obtains a trivial condition

because N, (x) = 1.Fori = o and j = p, we obtain By} = ,3?/) -+ B Fori = p andj = o one has o (y,) = y,, and
fori = p andj = p one obtains p(y,) = y,. The last two equalities are equivalent to y, € weé. O

Corollary 5. With the notation of Corollary 4, assume that G/C is non-cyclic and q, and t; are even for some k < n. Let (8, y)
be the list of data induced by a factor set in Z2(G, W). Then the list obtained by replacing By, by — B, and keeping the remaining
data fixed is also induced by a factor set in Z>(G, W).

Proof. It is enough to show that By, appears in all the conditions of Corollary 4 with an even exponent. Indeed, it only
appears in (C2.b) with exponent 2; in (C3.b) with exponent qy; in (C3.c) with exponent —V (q,,); and in (C3.d) and (C3.f) with
exponent t;. By the assumption it only remains to show that V(q, ) is even. Indeed, v, (V(q,)) = va(c% — 1) —vy(c — 1) =
14 b —vy(c — 1) > 1because c # 1 mod 2'*?. O

The data (8, y) induced by a factor set are not cohomologically invariant because they depend on the selection of 7 and
of the u,’s, u, and u,. However, at least the §; are cohomologically invariant. For every o € H?(G, W) we associate a matrix
Boe = (Bij)1<ij<n of elements of W as follows: First select a group epimorphism 7z : G — G realizing o and Uy ooy U, € G
such that w (u.,) = ¢;, and then set g = [ucj, uc,]. The definition of 8, does not depend on the choice of = and the u,’s

because if wy, w, € W and uq, u, € G then [wquq, wols] = [ug, Us].

Proposition 6. Let 8 = (B;)1<ij<n be a matrix of elements of W€ and for every 1 < i,j < nlet ay = 0and a; =
min(a, vp(q:), vp(q)), if i # J.
Then there is an oo € H*(G, W) such that 8 = B, if and only if the following conditions hold for every 1 <i,j < n:

Bibi =B =1. (6)

Proof. Assume first that 8 = S, for some « € Z%(G, W). Then (6) is a consequence of conditions (C1), (C2.a) and (C3.a) of
Corollary 4.

Conversely, assume that f satisfies (6). The idea of the proof is that one can enlarge 8 to a list of data (8, y) that satisfies
conditions (C1)—(C3) of Corollary 4. Hence the desired conclusion follows from the corollary.

Condition (C1) follows automatically from (6). If i,j < n then g; € W follows from the fact that a > a;; and so (6)
implies that ,ij’-a = 1. Hence (C2.a) holds. Also (C3.a) holds automatically from (6) because p% divides q;. Hence, we have to
select the Bis’s, Biy’s, ¥i'S, Bop» Yo, and y,, for (C2.b) and (C3.b)—(C3.f) to hold.

Assume first that D = G. In this case we just take B, = Bi, = Bsp = ¥i = Vo = ¥, = 1foreveryi. Then (C2.b), (C3.b),
(C3.d) and (C3.f) hold trivially by our selection. Moreover, in this casec = 1andsot; = Oforeachi =1, ..., n, hence (C3.c)
also holds.

In the remainder of the proof we assume that D # G. First we show how one can assign values to B,; and y;, fori < n
for (C3.b)-(C3.d) to hold. Let d = v,(c — 1) and e = v,(V(q,)) = a+ b — d. (see (4)). Note thatd = aif C = D and
a=1<2<d<DbifC # D(because we are assuming that D # G). Let X1, X5, Y1 and Y, be integers such thatc — 1 = pX;,

a b—a;; .
V(@) = p°Xa,and X1Y1 = XY, = 1 mod p***. By (6), B " =1landsoB; € w?"" " Therefore there are integers by;, for

a+b—aj; .
1 <1i,j < nsuch thatb; = b; + b; = 0 and B = ;biﬂ’+ Y. Foreveryi < n set

n n

— i pd—a qi .

Xxi=Y, E tibip® ™, Boi = P yi=Y1Y, E l}'bﬁpfalij, and y; = ¢
= =
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Then V(q,)p®~ "% = p°Xa¥a )iy tibip® % = Y1, tb;ip®**~% mod p®*’ and therefore

n
a+b—ajj
tibip

n
V(qs) = _ ]
1301‘ - é-j - 1_[ ,Bﬁ s
i=1

that is (C3.c) holds. Moreover q;p®~ % = p?Y, ), tjbﬁl% = piX1yi = (c — 1)y; and therefore B = y~', that is (C3.b)
holds.
We now compute

n n+1
Z tixi = Yo Z titjbi].pa*ﬂij =Y, Z tizbiipaiaﬁ +Y Z t,t](b,} + bﬁ)paiaif =0. (7)
i=1 1<i,j<n i=1 1<i<j<n
Then setting y, = 1, one has
—pl=e i X
i=1

n n

c—1 ti —tixpd—?

v I8 =] " =¢
i=1 i=1

and (C3.d) holds. This finishes the assignments of 8;, and y; fori < n and of y,.

If C = D then a quick end is obtained assigning 8, = B,, =y, = 1.

So it only remains to assign values to Bi,, B+, and y, under the assumption that C # D. Set i, = ¢~"1%. In this case
p® = 2 and therefore 2p?—%; = pix; = (c — 1)Y;x; and q;Y;x; = 2y;. Thus /31,20/31,;—1 — é-Zpd*ﬂxié-(]*C)Yl"i = 1, hence (C2.b)
holds, and ﬂi‘iiyiz = ¢ 9%+ = 1 hence the first relation of (C3.f) follows.

Finally, using (7) one has

Ig%...ﬁ)ﬁ;}:(ﬂg...ﬂ%)—yl =1=y7
and the last two relations of (C3.f) hold when 8, =y, = 1. O

Let B = (B;) be an n x n matrix of elements of W satisfying (6). Then the map ¥ : B x B — W¢ given by
XiYj
!1/(((:)1(1 .. ’any Ci,l .. ~C%”)) = l_[ /3” J

1<i,j=<n
is a skew pairing of B over W¢ in the sense of [3]; that is, it satisfies the following conditions for every x, y, z € B:
YY) YE)=¥vxp¥y.x=1 F2) ¥YRXyz)=¥xN¥K,2).

Conversely, every skew pairing of B over W¢ is given by a matrix 8 = (Bij = ¥ (i, ¢j))1<ij<n satisfying (6). In particular,
every class in H?(G, W) induces a skew pairing ¥ = ¥, of B over W¢ given by ¥ (x, y) = cx,“yoeyf)}, for all x,y € B, for any
cocycle a representing the given cohomology class.

In terms of skew pairings, Proposition 6 takes the following form.

Corollary 7. If W is a skew pairing of B over W then there is an o € H*(G, W) such that ¥ = .

Corollary 7 was obtained in [3, Proposition 2.5] for p* # 2. The remaining cases were considered in [5, Corollary 1.3],
where it is stated that for every skew pairing ¥ of C over W there is a factor set o € Z?(G, W) such that ¥ (x, y) = Oy y Oty )}
for all x,y € C. However, this is false if p> # 1 and B has nontrivial elements of order 2. Indeed, if ¥ is the skew pairing
of B over W¢ given by the factor set « then ¥ (x, p?) = 1 for each x € C. To see this we introduce a new set of generators
of G, namely G = (cy, ..., Cp, Cay1, P, 0) With ¢,41 = p2. Then condition (C3) of Proposition 1, fori = p and j = i reads
Bwm+ni = 1 which is equivalent to ¥ (¢, p?) = 1forall 1 < i < n. Using this it is easy to give a counterexample to
[5, Corollary 1.3].

Before finishing this section we mention two lemmas that will be needed in next section. The first is elementary and so
the proof has been omitted.

Lemma 8. Let S be the set of skew pairings of B with valuesin WC.If B= B x B” and by, b, € B and b; € B” then

max{¥ (by - b3, by) : ¥ € S} = max{¥ (b1, by) : ¥ € S} - max{¥ (b3, by) : ¥ € S}.
Lemma9. Let B = B x (g) be an abelian group and let h € B.If k = gcd{p?, |g|} and t = |hB¥| then t is the maximum possible
value of W (h, g) as ¥ runs over all skew pairings of B over ({pa).

Proof. Since k divides p?, the hypothesis t = |hB¥| implies that there is a group homomorphism x : B — (Zpa) such that
x (B¥) = 1and yx (h) has order t. Let ¥ : B x B — ({y) be given by ¥ (xg', yg') = x(¥y™) = x®)'x ()7, forx,y € B.
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Ifg' = g’ theni =i mod |g| and hencei = i mod k. Therefore, X B* = x' B¥, which implies that x (x)' = x (x)". This shows
that ¥ is well defined. Now it is easy to see that ¥ is a skew pairing and ¥ (h, g) = x (h) has order t.

Conversely, if ¥ is any skew pairing of B over (), then ¥ (x, g)"u =1land ¥ (x,g)¥ = w(1,g) = 1forallx € B. This
implies that ¥ (x, g) = ¥ (x, g)* = 1forall x € B, and so ¥ (B, g) = 1. Therefore ¥ (h, g)! = w(h',g) e ¥(B*, g) = 1,50
the order of ¥ (h, g) dividest. O

3. Local index computations

In this section K denotes an abelian number field, p a prime, and r an odd prime. Our goal is to find a global formula for
B(r) = Bp(r), the maximum nonnegative integer for which pP® is the r-local index of a Schur algebra over K.

We are going to abuse the notation and denote by K, the completion of K at a (any) prime of K dividing r. If E /K is a finite
Galois extension, one may assume that the prime of E dividing r, used to compute E,, divides the prime of K over r, used to
compute K;. We use the classical notation:

e(E/K, 1) = e(E;/K;) = ramification index of E, /K.
f(E/K, 1) = f(E/K;) = residue degree of E, /K.
m;(A) = Index of K; ®x A, for a Schur algebra A over K.

By Benard-Schacher Theory and because E/K is a finite Galois extension, e(E/K, r), f(E/K, r) and m,(A) do not depend on
the selection of the prime of K dividing r (see [7,2]). By the Benard-Schacher Theorem and because |S(K; )| divides r — 1 [8],
if either ¢, & K orr # 1 mod p then B(r) = 0. So to avoid trivialities we assume that {, € K and r = 1 mod p.

Suppose K € F = Q(¢,) for some positive integer n and let n = r¥™n’. Then Gal(F/Q) contains a canonical Frobenius
automorphism at r which is defined by ¥, ({,orm) = eorm and ¥, (&) = &y, We can then define the canonical Frobenius

automorphism at r in Gal(F /K) as ¢, = w{(K/Q’T). On the other hand, the inertia subgroup at r in Gal(F /K) is by definition
the subgroup of Gal(F /K) that acts as Gal(F, /K, (¢y)) in the completion at r.
We use the following notations.

Notation 10. First we define some positive integers:
m = minimum even positive integer with K C Q(&p),
a = minimum positive integer with {y € K,
s = vp(m) and

s, if pisoddor ¢4 € K,
b= {s+v(KNQ) : QD + 2, if Gal(K(&p2+s)/K) is not cyclic, and
s+ 1, otherwise.
We also define

L=Q(m), ¢ = Gpato, W= (), F=1L(2),
G = Gal(F/K), C =Gal(F/K(¢)), and D=Gal(F/K(¢ +¢™h).

Since g, € K, the automorphism T : G — Aut(W) induced by the Galois action satisfies the conditions of Section 2 and
the notation is consistent. As in that section we fix elements p and o in G and a subgroup B = (c;) x --- x {c,) of C such that
D =B x {p),C = B x {p?) and G/C = (pC) x (o C). Furthermore, 6 ({) = ¢ for some integer c chosen according to (4).
Notice that by the choice of b, G # B.

We also fix an odd prime r and set

e=-eK()/K, 1), f=fK/Q,r) and v(r) = max{0,a+ vy(e) — vp(rf — 1D}

Let ¢ € G be the canonical Frobenius automorphism at r in G, and write
¢=p oy, withneB, 0<j <]|p| and 0<j < |oC|.

Let q be an odd prime not dividing m. Let G; = Gal(F(¢,)/K), C; = Gal(F(¢q)/K(¢)) and let cy denote a generator of
Gal(F(¢q)/F). Finally we fix

0 = 6, a generator of the inertia group of r in G4 and

bg = cp = c°np’ o = nyp’ o7, the canonical Frobenius automorphism at r in G,.

Observe that we are considering G as a subgroup of G, by identifying G with Gal(F(¢q) /K (&,)). Again the Galois action
induces a homomorphism 73 : G; — Aut(W) and Wb = (Zpa). So this action satisfies the conditions of Section 2 and we
adapt the notation by settting

By = (co) x B, Cq = Gal(F(gg)/K(¢)) = Ker(Yy) and Dy = Gal(F(&q)/K(¢ + ™).

Notice that C; = (co) x C = By x {p?) and Dy = D x (co). Hence G/C =~ G,/C,.
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If ¥ is a skew pairing of B over W¢ then ¥ has a unique extension to a skew pairing ¥ of C over W which satisfies
W (B, p?) = ¥(p?, B) = 1. So we are going to apply skew pairings of B to pairs of elements in C under the assumption that
we are using this extension.

Since p # r, 6 € (4. Moreover, if r = q then 6 is a generator of Gal(F (¢,)/F) and otherwise 8 € C. Notice also thatif G/C

is non-cyclic then p® = 2 and K N Q(&zs) = Q(&pa + ;2;1), where d = v,(c — 1),andsob = s + d.
It follows from results of Janusz [3, Proposition 3.2] and Pendergrass [6, Theorem 1] that pf™ always occurs as the r-local

index of a cyclotomic algebra of the form (L(,)/L, o) where q is either 4 or a prime not dividing m and « takes values in
W (L(&,))p, with the possibility of ¢ = 4 occurring only in the case when p* = 2. By inflating the factor set « to F (&) (which

will be equal to F when p* = 2), we have that p?™) = m, (A), where
A = (F(¢g)/K, o) (we also write « for the inflation),
g is an odd prime not dividing m, and (8)
o takes values in ({p4) if p* = 2 and in ({,s) otherwise.

So it suffices to find a formula for the maximum r-local index of a Schur algebra over K of this form.
Write A = @ge(}q F(Zg)ug, with ug*]xug = g(x) and uglp = g plg, for each x € F({y) and g, h € G,. After a

diagonal change of basis one may assume that if g = c;’c}' -+ - c"p%0% with0 < 's; < ¢; = |¢[,0 <'s, < |p| and
0 <5 <o = |oC| thenug = ugu;, U U
It is well known (see [8] and |3, Theorem 1]) that
o ror(e) ;
0,0 vre) (f _1
my () = [£], wheres=5a=( ) O (9)
(X¢q,9

This can be slightly simplified as follows. If r|e then () has an element 0¥ of order r. Since 6 fixes every root of unity of
order coprime with r, necessarily r* divides m and the fixed field of 6% in L is Q(&myr)- Then K € Q(&myr), contradicting the
minimality of m. Thus r 1 e and so

f_ f_
Ole, F 019. -1 -1
=y = T uglyy ¢, where y, = ug. (10)
Uopy.0 Uepg.0

With our choice of the {u; : g € G4}, we have

[ug. g, ] = [tg, Uy, W1 ] = W (0, ng)ug, 11,11,

where ¥ = Y, is the skew pairing associated to «. Therefore,
P rf—l
& =5W(0,ny) with & =& = [ug, u,u ]y, © .

Let (8, y) be the data associated to the factor set « (relative to the set of generators cy, ..., ¢y, p, 0).

Lemma 11. Let A = (F(¢y)/K, ) be a cyclotomic algebra satisfying the conditions of (8) and use the above notation. Let

0 =ccy - cnpZitl, with0 < s; < gifor 0 <i<n,and0 < spy1 < |p?.

v(r)
(1) If G/Ciscyclicthen &)~ = 1.
1—c v(r) v(r) ciilye;
(2) Assume that G/C is non cyclic and let ju; = B,7 B, Then i = +1and &~ =[], pl s

Proof. For the sake of regularity we write ¢,,; = p2. Since e = |#|, we have that g; divides es; for each i. Furthermore, vp(e)

is the maximum of the v, ( ) fori=1,...,n Then

gi
ged(g;,si)

_ f _ qi .
vp(e) — vp(r 1) = max [vp (—gcd(q,-, )T = 1)) ,i=1,..., n} .

Hence
U(T') = max{O, Up(e) +a— vp(rf _ 1)}

(rf —
si(r 1
min {x > 0 : p® divides p* - S =1

,foreachi:l,...,n}. (11)

qi

. . . S
Now we compute y; in terms of the previous expression of 6. Set v = uc’;ﬂ andy = uigui} ---ugn. Then
. S,
up =yv=yvy, withy =w(", cc'....c).
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Thus y¢ = lI/(cszT], 30 cil ..., ") = 1. Using that [y, y ] = 1, one easily proves by induction on m that

)" =y Eymm,
Hence

ESn41

(yv)e — y(g)ye — y(z)y uesn+1 _ V(;)yeypth] ’

and y(g) = +1. (If p or e is odd then necessarily y(g) = 1.) Now an easy induction argument shows

esO es1 esn  Sntl

Vo =myo v v v, forsome pu = £1.
v(r)r =1 rf 1 ” (nr -1 rf 1
Note that v(r) + vp(rf — 1) —vy(e) > a > 1,by (11). Then P = yp = 1, because both p and y,, are +1,
and they are 1 if p is odd (see (C3. e) and (C3.f)). Thus
f_1s;
U(r) rf 1 n pv(r) (r _1)31
Ve =|ln ° (12)
i=0

(1) Assume that G/C is cyclic. We have that p = 1 and v,(c — 1) = a. Note that the g’s and y’s are pP-th roots of unity
by (8).
-1

Let Y be an integer satisfying Y T = 1 mod p®. Since ¢q = ofnq with ny € G, we have ¥ = ¢ mod p®*® and so

o
pa
Using that p® d1v1des p'® S‘(rq;” (see (11))and Y (‘l;l) = 1 mod p” we obtain

Y

v
= cha] d-1 — y(j) mod p°. Then ﬂ =80

c—

i -1 V(g f —
pu(r)%(rqi_ P e (i)
Vi o= P
Combining this with (C3.b) we have

(o =
v(r) Sitd =1 p"(r)s,-(rffﬂ
i Papv( P T sV @, c—1\Y i
Wi 1Py, fo= U u YT (T P
" p’Ms;if -1
SV AV (I pa
= [uci» uU] v op :Big

= ([te,. us1Bic)”" "V = 1, (13)
because Bi; = [Uy, ug] = [ug, u,]17"'. Using (12) and (13) we have

v(r) Si (rffl)

v(r) q -1

gu(r) _ [UQ, uJa ]P — l_[[”? , u]g

u(r) P

and the lemma is proved in this case.
(2). Assume now that G/C is non-cyclic. Then p* = 2 and ifd = v,(c — 1) thend > 2 and b = s + d. The data for « lie in

(Cos+1) S (Eop) S (y1+s+d) = W(F),. (C2.b) implies u; = 1 and using (C3.b) and (C3.f) one has yf“ /3 /3 ~4 LetX and

St =Y9%l =1mod 2" andsetZ = erz_l

Recall that 2¢ = 2 divides 2"® w by (11). Therefore,

Y be integers satisfying X <+

v si =1 22O —1)

- vz
v i _ (yicﬂ)y 24; <,3 :81p ) . (14)

Letj” = j' mod 2 withj” € {0, 1}. Then T'(¢") = T'(p’) and N}, (w) = w'". Therefore,

(g 0] = [t 1 [tg 1 Ju 7 = ]_[(ﬁ_s')’ BV

= ]_[(ﬂ_s’)’ Tt ]_[(ﬂ_s’)’ By w (15)
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Using (12), (14) and (15) we obtain

200 (z-x%(—l)’”)

v(r) 7
2“”) 2“(” 21} -1 —1 2"z n ;
= [, 18] 1_[:31/1 [18: | -
i=0

We claim that Z +j” = 0 mod 2¢~'. On the one hand Y = 1 mod 2¢~'. On the other hand, ¢, = o’ o/n,, with
ng € Cq andsor’ = (—=1Y'¢ mod 2"+ Hence ¥ = (-1 = (—1Y" mod 2¢ and therefore Z + j' = erT’l +j =

(Gt a ”’ 1+ j” mod 2¢-1. Considering the two possible values of j € {0, 1} we have &2 =1 1>J 1 47 = 0 and the claim follows.

From d = vy(c—1onehasc = 1+ 2" mod 2¢ and hence Y = 1+ 2d " mod 2 and ¥ = (-1)'d =
(—1Y (1 +j2%) mod 2'*5+¢. Then

Z+j Y@ -D+2 v a+2h - n 42 Y W 1 ) 4

2d—1 2d = 2d 2d—1

1+ zdfl)(_j// + (_l)j”jzdfl) +j" B -’ _j//zd—1 + (_1)j”j2d—1 + (_l)j”jZZ(d—U +j"
2d-1 - 2d—1

= '+ (1 j=j+] =j+j mod2.

Using this, the equality ﬁ% = 1iBir and the fact that u; = +1 we obtain

c—1 7 c—1Z+" z+j” z+" z+"
_ Xa ) X5ty Xt Xt i X SdT
_ﬂip _131',0 —,LL ﬂla lui IBiO' .

Combining this with (16) we have

v(r) 1 zv(r)(,' i) 1

2 +j')si

R | iy § (€
i=0

i=0

—@+")
Bi

2 (r)|:Z Xc] 1( ]y” X(Z+j ):|

2z4x -1 +ax @) ]

n n v(r)
20 (j4')s; 52 |: d
ol ] CRRad § (C :

i=0 i=0

To finish the proof it is enough to show that the exponent of each B, in the previous expression is a multiple of 2'*%. Indeed,
29 = X(c — 1) mod 25+ and so

297+ X(d = D=1 +2X@Z +j") = ZX(c = 1) = X(d = D(=1)" +2X(Z +])
=
=X< (c+1)+(c1—1)( 1y +21”>

1 . a1 1!
= X((' - 1)y% —d=1Y + (=1 +2)

= X0 —1-d(=1)Y" +1) = 0 mod 2"+
as required. This finishes the proof of the lemma in Case 2. O

We need the following Proposition from [3].

Proposition 12. For every odd prime q # r not dividing m let d(q) = min{a, v,(q — 1)}. Then

(1) Ieg'C/C*"?| < 16)C/CP"), and

(2) the equality holds if ¢ = 1 mod p“ and r is not congruent with a p-th power modulo q. There are infinitely many primes q
satisfying these conditions.

Proof. See Proposition 4.1 and Lemma 4.2 of [3]. O

We are ready to prove the main result of the paper.

Theorem 13. Let K be an abelian number field, p a prime and r an odd prime. If either {, & K or r = 1 mod p then B,(r) = 0.
Assume otherwise that ¢, € K andr = 1 mod p, and use Notation 10 including the decomposition ¢ = n,of/af withn € B.

(1) Assume that r does not divide m.
(a) If G/C is non-cyclic and j # j’ mod 2 then B,(r) = 1.

(b) Otherwise B,(r) = max{v(r), v,(|nB""" )}, where d(r) = min{a, v,(r — 1)}.
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(2) Assume that r divides m and let qo be an odd prime not dividing m such that o = 1 mod p® and r is not a p-th power
modulo qo. Let 6 = 8y, be a generator of the inertia group of G, atr.

(a) If G/C is non-cyclic, j # j’ mod 2 and 6 is not a square in D then B,(r) = 1.

(b) Otherwise B,(r) = max{v(r), h, vp(|9pra 1)}, where h = maxy {v,(|¥ (0, n)|)} as ¥ runs over all skew pairings of B

over ({pa).
Proof. For simplicity we write 8(r) = B,(r). We already explained why if either {, & K orr % 1 mod p then §,(r) = 0. So
in the remainder of the proof we assume that £, € K andr = 1 mod p, and so K, p, and r satisfy the condition mentioned at
the beginning of the section. It was also pointed out earlier in this section that p? is the r-local index of a crossed product
algebra A of the form A = (F(¢,)/K, @) with g and & taking values in (¢,s) or in (¢4). Moreover, since p*” is the r-local index
of the cyclic Schur algebra (K (¢;)/K, co, &pe) [3], we always have v(r) < B(r).

In Case 1 one may assume that ¢ = r, because (F(&;)/K, o) has r-local index 1 for every q # r. Since Gal(F(¢;)/F)
is the inertia group at r in G,, in this case one may assume that & = 6, = c¢p. On the contrary, in Case 2, ¢ # r, and
0 =c' - cnpnt1 for somesy, ..., Spr1-

In cases (1.a) and (2.a), G/C is non-cyclic and hence p* = 2. Then B(r) < 1, by the Benard-Schacher theorem, and hence
if v(r) = 1then B(r) = 1. So assume that v(r) = 0. Furthermore, in case (2.a), s; is odd for some i < n, because § ¢ D?.
Now we can use Corollary 5 to produce a cyclotomic algebra A" = (F({y)/K, ) so that &, = —&,. Indeed, there is such
an algebra such that all the data associated to « are equal to the data for A, except for Sy, in case (1.a), and By, case (2.a).
Using Lemma 11 and the assumptions v(r) = 0 andj # j' mod 2, one has &, = —&p and ¥, = ¥,. Thus §, = —&y, as
claimed. This shows that 8(r) = 1in cases (1.a) and (2.a).

In case (1.b), & = £ (co, n). By Lemma 11, & has order dividing p*™ in this case and, by Lemma 9, max{|¥ (6, n)| :
v eS)= |and(r) |, where S is the set of skew pairings of B, with values in (p®). Using this and v(r) < S(r) one deduces that
B(r) = max{v(r), vy(InB""|)}.

The formula for case (2.b) is obtained in a similar way using the equality £ = &W¥ (8, n)¥ (0, cf)") and Lemmas 8 and 9.

O

4. Examples

As we indicated in the introduction, the authors’ main motivation for Theorem 13 is the study the gap between the Schur
group of an abelian number field K and its subgroup generated by classes containing cyclic cyclotomic algebras over K, a
problem which reduces to studying the gaps between the integers v,(r) and B, (r) for all finite primes p and odd primes r.
(For details, see [4].) What Theorem 13 really allows one to do is to compute S,(r) in terms of the number of p-th power
roots of unity in K and the embedding of Gal(F/K) in Gal(F/Q). In this section, we will provide some examples of abelian
number fields K to illustrate the computations involved in the various cases of Theorem 13. We use the notation of the
previous sections in all of these examples.

Example 14. Let K = Q({n), with m minimal. Let p be a prime for which ¢, € K, and let r be an odd prime which is
= 1 mod p. Let a be the maximal integer for which ¢y« € K, and let s = v,(m). If we are not in the case when b = s, then
p=2,5s =0, and K({y2a+s) = K(¢4), so we will be in the case where b = s+ 1 = 1.Since K = L, we have that F = K ({pa+s),
so C is trivial. Also, G = Gal(K (¢ye+0)/K) will be cyclic for either case of b. Therefore, either case (1b) or (2b) of Theorem 13
applies, and it is immediate from C = B = 1 that 8,(r) = v,(r) for each choice of pand r.

Example 15. Let p and r be odd primes with v, (r — 1) = 2. Let K be the extension of Q(¢,) with index p in L = Q(¢,r), and
consider B,(r). We havea = s = b = 1,and F = Q(¢,2,). We have that G = (#) x C is elementary abelian of order p?,
so we are in case (2b) of Theorem 13. Since Gal(F /Q) has an element v such that ¥/” generates C, letting qo and 6 be as in
Theorem 13(2), we find that v, (| G|) = 1.1t follows thatp’ = p, so vp(r) = 0and vp(|9fCPa |) = 1.Since ¢ generates C, we
have that ¢ = nand soh = 1 by Lemma 9. So ,(r) = 1in this case.

Example 16. Let q be a prime greater than 5, and let K = Q(¢q, ﬁ). Let p = 2, and let r be any prime for which
r2 =1 mod gand r = 5 mod 2°. In computing B,(r), one sees thata = 1and L = Q(&gq), so s = 3. Since Gal(K(&,5)/K)
is not cyclic, wesetb = 5 + 1, ([Q(v2) : Q]) = 6,50 F = Q(Z64q)- Since Q(¢y) C K, we have C = Gal(F/K(e4)) = 1.
For our generators of Gal(F /K), we may choose p, o such that p(&;) = &g, p(f64) = 4“611, 0(Lq) = &g and 0 (Les) = {34. By
our choice of r, we have that ¥, ¢ G, but 5 = 9% mod 64 implies that ¥/ = o>. This means that we are in case (1a) of
Theorem 13 with v,(r) = 0 andj # j’ mod 2, s0 5,(r) = 1.

Example 17. Letr be a prime for whichr = 5 mod 64. Let K’ be the unique subfield of index 2 in Q(¢;), and letK = K’(ﬁ).
Consider B, (r) for the field K. As in the previous example, we have L = Q(¢s;), F = Q(Zs4r) and we choose p,o € G
satisfying p({sq) = ;6_41 and o ({gq) = ;?4. Using Proposition 12, choose an odd prime ¢, for which r in not a square modulo
qo- If ¥, is the Frobenius automorphism in Gal(F (£4,)/Q), then ¥ & Gg,, and ¢, = ¥ sends g4 to ;gj = gé’: . Therefore,
¢ = 0304, Where 1g, € Cy, fixes Lear. Since ¢ & K, 0 = 6,, generates a direct factor of Gy, and so it cannot be a square in
D. It follows that the conditions of case (2a) of Theorem 13 hold, and so we can conclude 8,(r) = 1.
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Example 18. Let p be an odd prime and let q and r be primes for which v,(q — 1) = v,(r — 1) = 2, v4(r? — 1) = 0, and
Vg (r"2 —1) = 1.The existence of such primes q and r for each odd prime p is a consequence of Dirichlet’s Theorem on primes
in arithmetic progression. Indeed, given p and g primes with v,(q — 1) = 2, there is an integer k, coprime to g such that the
order of k modulo g2 is p?. Choose a prime r for which r = k + g mod ¢? and r = 1+ p? mod p>. Then p, q and r satisfy the
given conditions.

Let K be the compositum of K’ and K”, the unique subextensions of index p in Q(&p2g) /Q(&p2) and Q(&p2,)/Q(&p2)
respectively. Then m = p?rq,a = 2 and L = Q(&n) = K (&) ®k K(&;). Therefore, F = Q(§pagr), and G = Gal(F /K (gqr)) X
Gal(F /K (§pq)) x Gal(F /K (&pe,)). We may choose o so that (o) = Gal(F/K(g,r)) = G/C has order p?. The inertia subgroup
of r in G is Gal(F /K (¢y44)), which is generated by an element ¢ of order p.

Since K = K’ ®a(,) K" and K" /Q(,2) is totally ramified at r, we have that K} is the maximal unramified extension of

K/ Q. It follows from vq(rp2 —1) = Tand vg(r? — 1) = 0 that [Q/ (&) : Q] = p?, and so K] : Q] =p=fK/Q,T).
Therefore v, (IW (K:)|) = vp,(IW(Qr))+f (1) = vp(r—1)+1 = 3,and so we have v(r) = max{0, a+v,(|6]) —v,(IW(K;)])}
= 0.Since |C| = p and 6 has order p, we also see that 6/ CP” is trivial, so v, (|0/"C?*|) = 0.

Let 1, be the Frobenius automorphism of r in Gal(F/Q). Then v/} = oPn, where € B generates Gal(F /K (gya,))- Since
()N (n) = 1,itfollows from Lemma 9 that h = v,(|6|) = 1. So case (2b) of Theorem 13 applies to show that 8,(r) = h = 1.

Acknowledgements

Research supported by the National Science and Engineering Research Council of Canada, UEFISCSU project ID 532,
contract no. 29/28.09.2007, D.G.1. of Spain and Fundacién Séneca of Murcia.

References

[1] S.A. Amitsur, D. Saltman, Generic abelian crossed products and p-algebras, ]. Algebra 51 (1978) 76-87.

[2] M. Benard, M. Schacher, The Schur subgroup II, J. Algebra 22 (1972) 378-385.

[3] GJ.Janusz, The Schur group of an algebraic number field, Ann. of Math. (2) 103 (1976) 253-281.

[4] A.Herman, G. Olteanu, A. del Rio, The gap between the Schur group and the subgroup generated by cyclic cyclotomic algebras, preprint.
[5] J.W. Pendergrass, The 2-part of the Schur group, J. Algebra 41 (1976) 422-438.

[6] J.W. Pendergrass, The Schur subgroup of the Brauer group, Pacific J. Math. 69 (1977) 477-499.

[7] J.-P. Serre, Local Fields, Springer, 1979.

[8] T. Yamada, The Schur Subgroup of the Brauer Group, in: Lecture Notes in Mathematics, vol. 397, Springer-Verlag, 1974.



	The Schur group of an abelian number field
	Introduction and preliminaries
	Factor set calculations
	Local index computations
	Examples
	Acknowledgements
	References


