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Derived invariance of Clifford classes
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Abstract. We show that G-graded Rickard equivalences defined over small fields preserve
Clifford classes associated to characters. These equivalences are compatible with operation on
Clifford classes defined in terms of central simple crossed products.

1 Introduction

Clifford classes have been introduced by Turull in [12] as a tool in the investigation of
Schur indices of irreducible complex characters of finite groups together with their
Clifford theory. These classes arise from an equivalence relation between central sim-
ple G-acted algebras over a field F, where G is a finite group.

We have shown in [6] that the G-graded Morita equivalence between the corre-
sponding skew group algebras gives rise to the same classes. In addition, the Morita
equivalence relation can be defined between two central simple G-graded crossed
products, an observation that has other advantages as well.

We recall our approach to Clifford classes in Section 2, and then we show how
other notions and constructions from [13] extend from G-algebras to crossed prod-
ucts. In Section 3 we discuss the interior subgroup of Cliff(G, F), formed by classes
of crossed products for which the 1-component is a central simple F-algebra, its
action on CIiff (G, F), and its parametrization in terms of H?(G, F*) and Br(F). Sec-
tion 4 deals with inflation, restriction (truncation) and induction of crossed products
and of Clifford classes. In Section 5 we show that G-graded Rickard equivalences
defined over small fields induce character correspondences that preserve Clifford
classes and are compatible with the above-mentioned operations. We show that
such Rickard equivalences defined over the p-adic number field @, exist in the case
of blocks with cyclic defect groups (Section 6), by adapting Rouquier’s proof [10] of
Broué’s abelian defect group conjecture for these blocks. This also give another ex-
planation for the validity of Turull’s conjecture [14, Theorem 2.2] for cyclic blocks.

Our general references are [8] for standard results on central simple algebras, [3] for
block theory and [11] for Rickard equivalences. As this paper is a sequel of [6], we
keep its conventions, and we refer the reader to it for unexplained facts concerning
crossed products and Clifford classes.
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2 Characters and Clifford classes

We fix a finite group G, a field F of characteristic zero, and let F be an algebraic clo-
sure of F. Let R = (—BgeGRg be a finite-dimensional strongly G-graded F-algebra.
Write 4 = R;.
2.1. There is a natural action of the group G on the set of ideals of 4 and on the cen-
ter Z(A) of A. We say that R is a simple G-graded F-algebra if R; has no non-trivial
proper G-invariant ideals. If in addition Z(4)% = F, then we say that R is central
simple.

The skew group algebra R:= A4 G is called a rrivial central simple G-graded
F-algebra if A = Endp(N), where N is a (left) FG-module.

If R and S are strongly G-graded F-algebras, then we consider the diagonal
subalgebra

AR®rS) =P R, ®r S,

geG

of R®r S

2.2. Let R and S be strongly G-graded algebras. We say that there is a G-graded
Morita equivalence between R and S if there are G-graded bimodules gMs and
sNg and isomorphisms M ®g N ~ Rand N ®z M ~ S of G-graded bimodules.

If V and V' are R-modules, then there is a natural action of G on Homg, (V, V'),
and the graded Morita equivalence induces an isomorphism

Hompg, (V, V') ~ Homg, (N ®z V,N ®x V')
of FG-modules.

Theorem 2.3. Let R and S be central simple G-graded F-algebras. Let1 = e; +--- + ¢,
and 1 = f1 + -+ + f, be decompositions into primitive central idempotents of A and B,
respectively.

The following statements are equivalent.

(i) There is a G-graded Morita equivalence between R and S.

(i) m = n and there is an isomorphism between the G-sets {e, ... ,e,} and {fi,..., fn}
such that e\ corresponds to fi, and moreover, there is an H-graded Morita equiv-
alence between R’ := e1Rey and S’ := f1Sf1, where H is the stabilizer in G of e;.

(iii) There exist FG-modules V and V' such that writing T := Endp(V)* G and
T' := Endp (V') * G, we have an isomorphism

AR®pT) ~AS®pT)

of G-graded algebras.
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Definition 2.4. Let R and S be central simple G-graded F-algebras. If the equivalent
conditions of Theorem 2.3 hold, then we say that R and S are equivalent.

We denote by Cliff (G, F) the set of equivalence classes of central simple G-graded
F-algebras, and by [R] the class of R in Cliff(G, F).

The relationship between this definition and Turull’s original definition is discussed
in detail in [6].

Assume that the strongly G-graded F-algebra R is semisimple. Write FR :=
F ®r R. Next we recall how to associate Clifford classes to irreducible characters
of FR.

Proposition 2.5. Let V' be a simple R-module, and let y be the character of a simple
submodule of the F R-module F ®p V. Let

E:=Endg(R®, V).
Then E is a central simple G-graded F(y ,)-algebra, where

Fra) = F({x(a)|a € 4}) = F({x(a) |a e AN Z(R)}).

Definition 2.6. With the notation of the previous proposition, the Clifford class [[y]] of
x is the Clifford class [E] in Cliff (G, K), where K := F(y,).

The next result ([6, Theorem 3.4]) is a generalization of [12, Theorem 3.5], and ex-
amines what happens when the Clifford classes of two characters are equal.

Theorem 2.7. Let R and S be strongly G-graded F-algebras, and write A = Ry and
B=S5,.

Let y be an irreducible character of FR and let  be an irreducible character of FS.
We assume that F = F(y4) = F(n,), so the classes [[y]] and [[n]] belong to Cliff (G, F).

Assume that [[x]] = [[#]]. Then for any subgroup H of G, there is an isometry be-
tween Char(F Ryly ) and Char(FSy|yg). This correspondence commutes with induc-
tion, restriction and G-conjugation of characters, with multiplication with characters of
FH and with Gal(F /F)-conjugation of characters.

Corresponding pairs of characters have the same fields of character values, the same
Schur indices, and determine the same Clifford classes (and in particular the same ele-
ments in the respective Brauer groups).

3 Inertia groups and the interior subgroup

Note that Cliff (G, F)) does not have a natural group structure. However, it contains a
subgroup with respect to the operation given by taking the diagonal subalgebra, and
this subgroup acts on CIliff (G, F).
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3.1. Let G be a finite group and F a field of characteristic zero. Let R be a central
simple G-graded F-algebra with R; = A. Let 1 = ¢ + - - - + ¢, be the decomposition
into primitive central idempotents of 4, and let K = e;Z(4).

The subgroup I := Cg(K) is called an inertia group of R. The set of inertia groups
of R is a conjugacy class of subgroups of G, and this set is invariant under graded
Morita equivalence. Moreover, K/F is a Galois extension with Galois group isomor-
phic to Cg(e1)/I.

Definition 3.2. The interior subgroup of Cliff (G, F) is defined by
ICIiff (G, F) = {[R] e Cliff (G, F) | Z(R,) = F}.

This generalizes the notion introduced in [13, Section 3] in the case of central sim-
ple G-acted algebras. From the definition and by [6, Lemma 2.9] it is not difficult to
deduce the following result.

Proposition 3.3. (a) Let [R] € Cliff (G, F). Then [R] € ICIiff (G, F) if and only if G is the
inertia group of R.
(b) Let [R],[S] € Cliff(G, F). If either [R] € ICIiff (G, F) or [S] € ICliff (G, F), then
the product
[R][S] == [A(R® S)]

is well defined. In particular, ICLff (G, F) is a group acting on the set Cliff (G, F), and
moreover, this action is compatible with field extensions of F.

3.4. Factorization. Let [R] € Cliff (G, F), write R, := A4, and let S = R be a strongly
G-graded subalgebra of R such that B:= S| is a central simple F-algebra. Then
C := C4(B) becomes a G-acted algebra as follows. For each g € G, there is an inver-
tible element s, € U(S) NS,; then define Y¢c = s,cs,! for any g € G and ¢ € C. This
clearly does not depend on the choice of s,. We may form the skew group algebra
T:=CxG.

By using [8, Theorem 12.7] and the argument of [13, Theorem 4.1], it is easy to
prove that [T] € Cliff (G, F), and that the map

AS®T)— R, bs;,®@cg—b-Icsy,

where g€ G, be B, s, € U(S)N S, and c € C, is an isomorphism of G-graded alge-
bras, that is, [R] = [S][T] in Cliff(G, F).

Proposition 3.5. Let [R] € ICIiff (G, F). Then R determines a class
cohi(R) € H*(G,F*),
and the map
ICIiff (G, F) — H*(G,F*) x Br(F), [R]~ (cohi(R),[R)])

is an isomorphism of groups.
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Proof. For each g € G, let r, € U(R) N R,. By the Skolem—Noether theorem, there
is u, € U(R;) such that r_,,ar;1 = u_,,aug‘l for all e R; and g € G. It follows that
Cy = ug"rg € Cr(R1),NU(R), hence the family ¢,, g€ G determines a 2-cocycle
y € Z*(G, F*). By definition, cohi(R) is the class [y] € H*(G, F*).

Clearly, the map sending [R] to (cohi(R), [R;]) is a bijection with inverse given by

(7], [4)) = [F,G ®F 4]

for all [y] e H*(G,F*)] and [A4] € Br(F). It is also easy to see that these maps are
group homomorphisms. []

4 Operations with Clifford classes

4.1. Inflation. Let ¢ : G — G be a surjective group homomorphism, write N = Ker ¢,
and let [S] € Cliff(G, F). Consider the group algebra R := S[N] of S and N. This
F-algebra is strongly G-graded, with components R, = S ,), for all g € G. We obtain
a map

infl, : Cliff(G, F) — Cliff(G, F), [S]— [S[Kerd]],

since if there is a G-graded Morita equivalence between S and S’, then there is a
G-graded Morita equivalence between S[N] and S’[N].

This map restricts to a group homomorphism ICIiff(G, F) — ICliff(G, F), it is
compatible with the action of ICliff(G, F) on Cliff (G, F), and it is compatible with
field extensions.

Note that this construction generalizes the one given in [13, Section 6]. Indeed, if B
is a G-acted algebra and S = B * G is the corresponding skew group algebra, then the
skew group algebra R = 4 x G corresponding to the G-acted algebra A := infly(B)
coincides with S[N].

4.2. Restriction. Let [R] € Cliff (G, F) and let H be a subgroup of G. Then Ry is a
strongly H-graded F-algebra, and truncation induces a map Resg from

Cliff(G, F),; := {[R] € Cliff(G, F) | Z(R))" = F}

to Cliff (H, F).

It is easy to see that this map sends ICIiff(G, F) to ICliff(H, F), it is compat-
ible with the action of ICIiff(G, F) on Cliff(G, F), and it is compatible with field
extensions.

4.3. Induction. A general notion of induction of crossed products was given by
Klasen and Schmid [4]. We present here their construction in a slightly modified
form, and with actions on the left.
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Let R be a crossed product of the ring 4 with the group G. Let e be a central idem-
potent of A such that the centralizer H := Cg(e) has finite index in G. Assume that
the distinct G-conjugates of e are pairwise orthogonal, and their sum is 1. Then
S := eRe = eRy is a crossed product of B := e4 with H, and we say that R = Ind§; S
is induced from S and H. Note that ReR = R, hence R and S are Morita equivalent.

Conversely, let S be a crossed product of B and H, and assume that H has finite
index in G. Then, by [4, Theorem 1], there exists a crossed product R = Indg(S),
which is unique up to an isomorphism of G-graded rings.

To construct R, we start with a presentation S = B;H obtained by choosing an
homogeneous invertible element s, € U(S)N .Sy, for each i€ H. Then the map 7
and the factor set f are given by

7: H — Aut(B), 1.(b) = sxbsgl7
and
p:HxH— U(B), pxy= sxsys_;yl,

forall x, ye Hand b € B. Let {t;|i € G/H} be a system of representatives for the left
cosets of H in G, withty; = 1. Forany x e Gand i € G/H let xi € G/H and x; € H be
defined by the equality

Xt = 1yiX;.
Let A = Z[|G/H] ®z B, and define the multiplication in A4 by
(i®b)(j®b') =0;i @ bb’,

foralli, je G/H and b, b’ € B, where 6;; is the Kronecker symbol. For x, y € G define
oy € Aut 4 and a(x, y) € U(A) by

O-X(i®b)ZXi®TXi(b)7 Ox,y = Z xyi®ﬂ(xi7yxi)~

ieG/H

Finally, let R be the free left A-module with basis {r, | x € G} and multiplication de-
fined by

(ary)(a'ry) = aoy(a")o(x, y)ryy,

for all x, y € G and a,a’ € A. One observes immediately that [13, Definition 8.1] is a
particular case of this construction. More precisely, we have the following.

Proposition 4.4. (1) With the above notation, R is a crossed product of A and G, and
R =1Ind5(S).

(2) If S = B« H is a skew group algebra, then Indg(S) is a skew group algebra of
A and G. (In this case we also say that A = Ind$ B as G-algebras.)
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(3) Let R = Ind5(S) and let R’ be another G-graded crossed product. Then there is
an isomorphism

A(Ind5(S) ® R') ~ IndG(A(S ® R};))
of G-graded algebras.
Proof. For (1) we refer to [4, Theorem 1], and (2) follows from the construction. Let e

be a central idempotent of R; such that S = e¢Re =eRy. Thene® 1 e R ® R} is a
central idempotent of A(R ® R’), and we have that

(e@DAR®R)e®1)=(e®@1)A(RRR); =A(S® Ry,).
Hence the statement follows by the definition of the induction. [

Note also that induction of crossed products appears implicitly in [6, Theorem
2.13]. In particular, it says that any central simple G-graded F-algebra is induced
from a uniquely determined (up to conjugacy) central simple H-graded F-algebra
whose 1-component is a skew-field. The following connection with endomorphism

rings of induced modules can be deduced without difficulty.

Proposition 4.5. Let R be a strongly G-graded ring, and let H be a subgroup of G. Let
V' be a simple Ri-module such that its stabilizer (inertia group)

Gy ={g€ H|Ry®g, V ~ V as Rj-modules}

equals H. Then the following statements hold.
(1) Let V = @ieG/H R, @, V be the sum of distinct G-conjugates of V. Then

Endgr(R ®p, V) ~ Indjj(Endg, (Ry ®g, V))
as G-graded crossed products.
(2) Let U be a simple Ry-module containing V as an Ry-submodule. Then Ind§ U is
a simple R-module, and
Endg, (Ind§ U) ~ Ind§(Endg, (U))
as G-algebras.

Finally, induction behaves well with respect to central simple crossed products.

Theorem 4.6. Let H be a subgroup of the finite group G. Then induction of crossed
products from H to G defines a map

Ind : Cliff(H, F) — CIiff (G, F).
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Proof. The proof of [13, Proposition 8.2] adapts easily to show that if S is a central
simple H-graded F-algebra, then Indg(S) is central simple G-graded F-algebra. Now
let S and S’ be equivalent central simple H-graded F-algebras. Then there is an
H-graded (S,S’)-bimodule N inducing a Morita equivalence between S and S’.
Let R=1Ind5(S) and R’ =1Ind(S’). There are central idempotents e € R; and
e’ € R} such that S = eRe and S’ = ¢’R’e’. Then the (R, R")-bimodule

M := Re ®SN ®S/ e/R/
induces a G-graded Morita equivalence between R and R'. []

Corollary 4.7. Let F be a field of characteristic zero and let F be an algebraic closure
of F. Let R a be strongly G-graded F-algebras, write A = Ry, and let H be a subgroup
of G.

Let y be an irreducible character of F Ry such that F(y,) = F, so the class [[y]] be-
longs to CIiff (H, F). Assume that y , contains an irreducible character of FA which is
stabilized by H. Then Indg % is an irreducible character of FR, and

([Ind$ x]] = Ind[[x]] € Cliff (G, F).

5 Rickard equivalences

In this section we show that Clifford classes are invariant under derived equivalences.
We adopt a setting slightly more general than that of [5].

5.1. Let # be a finite extension of the field @, of p-adic numbers, and let ¢ be the
ring of integers in 4.

Fix a finite group G and let R = @geGRH and S = @geGSg be two G-graded
crossed product (-orders. We assume that R and S are symmetric (-algebras, such
that the symmetrizing forms of R and S are G-invariant symmetrizing forms for
A := R; and B := S}, respectively. Write #' R = A4 ®, R, and assume that #'R and
A'S (or equivalently /#'4 and #'B) are semisimple 4 -algebras.

We assume that there exists a finite extension " of 4 such that " is a splitting
field of ARy and ARy for every subgroup H of G. Let @ be the ring of integers
of A.

5.2. We say that there is a G-graded Rickard equivalence between R and S if there is
a complex M of G-graded (R, S)-bimodules which are projective as R-modules and
as right S-modules, such that

M®¢M' ~R
in the homotopy category of G-graded (R, R)-bimodules, and

MV®RM:S
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in the homotopy category of G-graded (S, S)-bimodules, where M is the (-dual of
M. In this case, the functors M ®¢— and MY ®p — are equivalences between the
homotopy categories R-modules and S-modules. This is a G-graded equivalence, in
the sense that it sends G-graded objects to G-graded objects, it commutes with grade
shifting and with grade forgetting functors.

Theorem 5.3. Assume that the complex M induces a G-graded Rickard equivalence
between R and S. Then for each subgroup H of G there is an isomeiry between the
A -characters of ARy and the A -characters of ASy.

These isometries are compatible with restriction, induction, G-conjugation and Galois
conjugation of characters.

Moreover, corresponding characters have equal Clifford classes (and so in particular,
equal Schur indices and determine the same element in the appropriate Brauer group),
and the character correspondence commutes with induction and restriction of Clifford
classes.

Proof. We know that for each subgroup H of G, the complex My induces an H-
graded Rickard equivalence between Ry and Sy, and these equivalences commute
with the induction, restriction and conjugation functors. By a well-known result of
Broué, the Rickard equivalence is compatible with the extensions of @ and ¢, and
induce an isometry of A -characters. The compatibility with Galois-conjugation fol-
lows from the fact that the complex My is Galois-invariant.

Let x be an irreducible character of ARy, and let V be a simple 2 Ry-module
such that yx is a constituent of the character of # ®, V. Let W be the simple
A Ry-module corresponding to V' under the Rickard equivalence. Then the irreduc-
ible character # of ASy corresponding to y is a constituent of A ® w W. The
character y determines the Clifford class

[[x]] = [Endg, (Ru @4 V') °**] € CLiff (H, # (14)),
while # determines the Clifford class
[[7)] = [Ends, (Su ®g W)*™| € Cfl (H, A (n3)).

The endomorphism algebra of a /#'Ry-module is the same when regarded in the cat-
egory of # Ry-modules and in the homotopy category of #'Ry-modules. By Clifford
theory, the restriction of V' to A is a direct sum of H-conjugate simple A-modules.
Since the Rickard equivalences obtained from M commute with induction, restriction
and conjugation, we deduce that there is an isomorphism

Endg, (Ry ®, V) ~ Ends, (Sy ®5 W)

of H-graded # -algebras. Consequently, 4 (x,) = # (ng) and [[x]] = [[n]]-
Let 0 be an irreducible character of 4 contained in y,, and assume that H stabil-
izes 0. Then, by Corollary 4.7, and since V' is #-quasihomogeneous, we have
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Indfj[[#]] = [[Indf; x]] = [Indj(End 4.4(V))]
= [End 44 (Indf; V)] € CLff(H, # (y4)).

The correspondent p of 6 under the G-graded Rickard equivalence is also stabilized
by H, and we similarly have

Indj;[[7] = [[Indj; #]] = [Ind 7 (End.¢5(W))] = [Endss(Indj; W)].

Since Indg V =ARQyp, V corresponds to Indg W under the G-graded Rickard
equivalence, we deduce that

[[Ind7; 7] = [[Indf; #]].

Finally, let ¢ be an irreducible character of .# R lying over 0, and assume that for any
g € G there exists h € H such that 90 = "0. Then [[¢]] € Cliff (G, # (x,));, and

[[Resy; ¢]] = Resg (4] e Clff (H, # (x.4)),

where Resj ¢ denotes the restriction of ¢ to A 'Ry. The correspondent  of ¢ is an
irreducible character of 'S lying over the correspondent p of . Arguments as above
show that

[Resy; ¢]] = [[Resj; y]] € CLff (H, # (z,)). O

6 Turull’s conjecture and blocks with cyclic defect groups

Let G be a finite group, p a prime number and D a p-subgroup of G. Denote by
Irr(G, D) the union of the sets Irr(B) of ordinary irreducible characters belonging to
p-blocks B of G having defect group D. The notation Irry means characters of height
zero. Also let Q, denote the field of p-adic numbers, and (]_)[, its algebraic closure.

Turull [14] formulated the following conjecture strengthening Navarro’s conjecture
B [7, Section 1].

Conjecture 6.1. There exists a bijection
f : Irrg(G, D) — Irrg(Ng(D), D)

having the following properties:

(1) if y e Irrg(B), and B has defect group D, then f(y) € Irrg(b), where b is the
Brauer correspondent block of Ng(D) of the block B;

(2) f commutes with the action of Gal(®Q,/®,); so, in particular, Q,(x) = Q,(/(x))
for every y € Irry (G, D);
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(3) for every y € Irro(G, D), we have m,(f(y)) = m,(x), so that f(x) and y have the
same p-local Schur index.

Turull also proved in [14, Theorem 2.2] that the above conjecture holds for blocks
with cyclic defect groups. In this section we point out that this result is also a conse-
quence of Rouquier’s work [10] on Broué’s conjecture. We mention here that a
detailed discussion of the connections between Broué’s conjecture and the Alperin—
McKay, Dade, Isaacs—Navarro conjectures can be found in [15]. Uno states in [15,
Section 4] that Rouquier’s complex is invariant under a certain Galois action. What
we need here is a splendid tilting complex defined over small fields.

6.2. We adopt the setting of [3, Chapter VII]. Let #" be a finite extension of Q,, ¢
the ring of integers in ", and k the residue field of (0. Assume that D is a cyclic
subgroup of G of order p* > 1. For 0 <i < a, let D; be the unique subgroup of D
of index p’, and let N; = Ng(D;). Let B be a block of (G, and let B; be the block of
ON; corresponding to B.

6.3. Under the assumption that the p-modular system (', 0, k) is ‘big enough’, a
result of Rouquier ([10, Theorem 10.1]) states that the block algebras B and By are
splendidly Rickard equivalent. The main ingredients of his proof are the following:

(1) the Morita stable equivalence between B = B, and B,_; given by restriction and
induction;

(2) the structure of the block algebra B, having normal defect group D;

(3) the construction of a Rickard tilting complex, based on the information on
modules and characters encoded in the Brauer tree;

(4) inductionon i, i =a,a—1,...,0.

Note that (1) and (4) do not require assumptions on the size of the p-modular sys-
tem (%', 0, k), and also the result on structure of blocks with normal defect groups
generalizes to small fields (see [2, Theorem 1.17], or [1] for an alternative proof).
The Brauer tree of B is defined if ¢ satisfies condition (*) of [3, p. 276]. However,
this condition can be avoided as well.

Proposition 6.4. The blocks B and By are splendidly Rickard equivalent.

Proof. There is a totally ramified extension .#"' of " for which condition (x) of [3,
p. 276] is satisfied. Let ¢’ be the ring of integers in 2#”’. Then the residue field of ¢ is
k. Let B’ be the block of ¢’ G corresponding to B, and B} the block of ¢ N correspond-
ing to By. By [10, Theorem 10.1], there is a splendid tilting complex X’ of (B’, B))-
bimodules. Then k ®, X' is a splendid tilting complex of (kB’, kB|)-bimodules. By
[9, Theorem 5.2], there is a splendid tilting complex X of (B, By)-bimodules such that

k®C‘X:k®@5’XI;

and X is unique up to isomorphism. []
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