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REMARKS ON INDUCTION OF G-ALGEBRAS
AND SKEW GROUP ALGEBRAS

TIBERIU COCONEŢ

Abstract. In the first section we give a pointed group version of a result of
Dade on Green theory. Related to this, in the second section we consider an
H-algebra B, where H is a subgroup of a finite group G. For the skew group
algebra B∗H, we prove that its induction to G in the sense of Puig is isomorphic
to the skew group algebra over G of the induction, in the sense of Turull, of B
to G.
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1. PRELIMINARIES

Let O be a discrete valuation, and let A be an O-algebra with identity,
finitely generated as an O-module. Let G be a finite group acting as auto-
morphisms of A, hence A is a G-algebra. For any a ∈ A, and g ∈ G we will
denote by ga the action of g on the element a.

For any subgroup H of G, denote by

AH = {a ∈ A | ga = a for all g ∈ H},

the subalgebra of fixed elements of A by the action of H. Observe that by
restriction, A is a H-algebra. Obviously this subalgebra contains the identity
of the bigger algebra. For two subgroups K and H of G such that K ⊆ H, we
have the relative trace map

TrHK : AK → AH , TrHK(a) =
∑

g∈[H/K]

ga.

We denoted by [H/K] a set of representatives of the right cosets H/K. It
is clearly, a well-defined map which is a additive group homomorphism. If
b ∈ AH then TrHK(ab) = TrHK(a)b and TrHK(ba) = bTrHK(a) which implies that
the image AHK := TrHK(AK) is a two-sided ideal of AH .

We are going to need the following definitions and remarks, hence for the
sake of completeness we just state them here, for further details the reader is
referred to [4].
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Definition 1. A pointed group on the G-algebra A is a pair (H,α), where
H is a subgroup of G and α is a point on AH , i.e. a conjugacy class of a
primitive idempotent i ∈ AH ; we shall use the notation Hα for a pointed
group.

Remark 1. There is an partial order relation denoted “≤” which can be
defined on the set of pointed groups of the G-algebra A. Two subgroups
Kβ, Hα satisfy Kβ ≤ Hα, if K ≤ H and for every i ∈ α there exists j ∈ β such
that j = iji.

Definition 2. A pointed group Pγ is called a defect pointed group of Hα

if and only if Pγ is a minimal pointed group such that α ⊆ TrHP (APγAP ). The
last condition is equivalent to the following statement: for every i ∈ α there
exists j ∈ γ such that i = TrHP (ajb) for some a, b ∈ AP . We also say that Hα

is projective relative to Pγ .

Remark 2. Without specifying the point γ one can equivalently define P
to be the defect of the pointed group Hα, that is, P is minimal such that
α ⊆ AHP . One easily shows that these two definitions are equivalent.

2. A POINTED GROUP VERSION OF A RESULT IN GREEN THEORY

Let e be an idempotent of A satisfying:
1) If g ∈ G and ge 6= e, then gee = 0;
2) For all a ∈ AG we have ea = ae;

Let Ge = {g ∈ G | ge = e} be the subgroup of G fixing e under the
conjugation action. Condition 1) implies that

c := TrGGe
(e) =

∑
g∈[G/Ge]

ge

is an idempotent of AG, and using 2) we see that c is central in AG. Since Ge
fixes e we have (eAe)Ge = eAGee.

Proposition 1. With the above notations, the map

cAG → eAGee, a 7→ ae = ea

is a ring isomorphism. The inverse map sends any b ∈ eAGee into trGGe
(b) ∈

cAG.

Since this is the exact restatement of a result in [1, Section 4], we leave the
proof out of this paper.

Because e is fixed by Ge we deduce that eAe is a Ge-algebra. The next
result is the pointed group version of [1, 4.9].

Proposition 2. Let Pγ be a defect pointed group of (Ge)β on eAe. Then
Pγ′ is a defect pointed group of Gα on cAG. Moreover, the point α is the
correspondent of β with respect to the above isomorphism and γ

′
is a point of

cAP .
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Proof. By definition Pγ ≤ (Ge)β is minimal such that

β ⊆ TrGe
P (eAP e) = e · TrGe

P (AP )e = eAGe
P e.

It follows that for every i ∈ β there exists w ∈ eAP e such that

i = eTrGe
P (w)e = TrGe

P (w).

It follows that j := TrGGe
(i) = TrGP (w) ∈ cAG, and moreover j is a primitive

idempotent of cAG satisfying j = cj. We may take α to be a point of cAG

containing j, hence α = TrGGe
(β). Since ewe = w, it follows w = ew =

cew = cw ∈ cAP , and because j = TrGP (w), where w ∈ cAP , we deduce that
α ⊆ TrGP (cAP ) = (cA)GP . The pointed group Gα is projective relative to P ,
hence there exists γ

′
a such that Gα is projective relative to Pγ′ .

Suppose there would exist a pointed group Rε on cA such that Rε ≤ Pγ′ .
Then we would have R ≤ P ≤ Ge, and by [4, Exercise 13.5, p. 109], for
the points β and γ there would exist a point ε

′
such that Rε′ ≤ Pγ , which

contradicts the minimality of Pγ . �

3. INDUCTION AND SKEW GROUP ALGEBRAS

Let H be a subgroup of a finite group G, and consider an H-algebra A. We
use the definition of induction of A as in [5, Section 8]. The induction of A
from H to G is

IndGH(A) = OG⊗OH A,

where an element g⊗a ∈ OG⊗OHA is denoted by ga, and for b ∈ IndGH(A) and
g ∈ G the element gb is the result of g acting on b. If a, b ∈ A and g1, g2 ∈ G,
the multiplication in this algebra is given by:

(g1a)(g2b) =

{
g(ab) if g = g1 = g2;
0 if g1H 6= g2H.

As noted in [3, 4.3], this is a particular case of the induction of crossed
products introduced in [2].

Consider the map

ψ : G→ AutO(IndGH(A)), g 7→ ψ(g)(a) := ga.

If a ∈ IndGH(A) then a = g ⊗ a
′

for some g ∈ G and some a
′ ∈ A, hence

a = ψ(g)(a
′
) and this means ψ is surjective. For a ∈ IndGH(A) such that

ψ(g)(a) = g ⊗ a = 0, it clearly follows that a = 0, hence ψ(g) is injective.
Even more, for g ∈ G and a, b ∈ IndGH(A) we have

ψ(g)(ab) = g(ab) = g(a)g(b) = ψ(g)(a)ψ(g)(b).

We have shown that for any g ∈ G, ψ(g) is an automorphism of IndGH(A)
which is clearly O-linear.
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Let g1, g2 ∈ G and a ∈ IndGH(A). We have

ψ(g1g2)(a) = g1g2a = g1(g2a) = g1(φ(g2)(a)) = (ψ(g1) ◦ ψ(g2))(a),

hence ψ is a group homomorphism which endows IndGH(A) with a structure of
a G-algebra.

Now let B be an H-algebra over O and consider the skew group algebra
S := B ∗H of B and H. Let A = IndGH(B) be the above induced algebra, and
denote by R := A ∗G the skew group algebra of A over G. The algebra R has
a natural structure of interior G-algebra given by G → R∗, g 7→ 1 · g = g · 1,
in the same manner S has a structure of interior H-algebra.

We may view the elements of R as pairs of the form a ·g = (a, g) = (g
′⊗b, g)

where b ∈ B, g ∈ G and g
′ ∈ [G/H]. The subset of R consisting of elements

in which g
′

= 1 and g ∈ H is a subalgebra of R isomorphic to S. Identifying
S with that subalgebra, the action of G on S is defined in the same way as
the action of G on the elements of A.

There is another type of induction which is due to Puig and which can be
applied to the interior H-algebra S, namely OG⊗OH S ⊗OH OG. Recall that
its algebra structure is given by

(g ⊗ s⊗ g′)(g1 ⊗ s1 ⊗ g
′
1) =

{
g ⊗ s · g′g1 · s1 ⊗ g

′
1 if g

′
g1 ∈ H

0 if g
′
g1 /∈ H,

where g, g
′
, g1, g

′
1 ∈ G and s, s1 ∈ S. The interior G-algebra structure is given

by g ·(x⊗s⊗y) = gx⊗s⊗y and (x⊗s⊗y)·g = x⊗s⊗yg for all g, x, y ∈ G and
s ∈ S. Observe that the induction of S is completely determined by elements
in B and by sets of representatives of the left, respectively right cosets of H
in G. We have the following result.

Theorem 1. The map

ϕ : OG⊗OH S ⊗OH OG→ R, g ⊗ s⊗ f 7→ g · s · f,

where g, f ∈ G and s ∈ S, is an isomorphism of G-graded G-interior algebras,
and the diagram

OG⊗OH S ⊗OH OG // R

OG

OO 66nnnnnnnnnnnnnnn

of G-graded G-interior algebras is commutative.

Proof. For x, y ∈ [G/H] and b ∈ B, the map ϕ sends x⊗ b⊗ y to xb · (xy).
It is clear that ϕ is a well-defined map, since for other representatives of the
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right respectively left cosets x
′
, y
′

we have

ϕ(x
′ ⊗ b⊗ y′) = ϕ(1x

′ ⊗ b⊗ 1y
′
)

= ϕ(x(x
′
)−1x

′ ⊗ b⊗ y(y
′
)−1y

′
)

= ϕ(x⊗ b⊗ y).

Let us show that ϕ is indeed a morphism of algebras. Let x ⊗ b ⊗ y and
x
′ ⊗ b′ ⊗ y′ be two elements of the Puig’s induction of S. Then by definition

we have

(x⊗ b⊗ y)(x
′ ⊗ b′ ⊗ y′) =

{
x⊗ b · yx′ · b′ ⊗ y′ if yx

′ ∈ H
0 if yx

′
/∈ H.

Note that in our case yx
′ ∈ H is equivalent to yx

′
= 1. Then

ϕ((x⊗ b⊗ y)(x
′ ⊗ b′ ⊗ y′)) =

{
ϕ(x⊗ b · yx′ · b′ ⊗ y′) if yx

′ ∈ H
0 if yx

′
/∈ H

=

{
x(bb

′
) · (xy′) if yx

′
= 1

0 if yx
′ 6= 1.

On the other hand, ϕ(x⊗ b⊗ y) = xb · (xy), and ϕ(x
′ ⊗ b′ ⊗ y′) = x

′
b
′ · (x′y′),

hence by applying the definition of the product in R the definition of the
product in A we get

ϕ(x⊗ b⊗ y)ϕ(x
′ ⊗ b′ ⊗ y′) = xb · (xy) · x

′
b
′ · (x′y′)

= xb(xy)x
′
b
′ · (xyx′y′)

=

{
x(bb

′
) · (xyx′y′) if x = xyx

′

0 if xH 6= xyx
′
H

=

{
x(bb

′
) · (xy′) if 1 = yx

′

0 if 1 6= yx
′ .

Now let g ∈ G. Then

ϕ(g · (x⊗ b⊗ y)) = ϕ(gx⊗ b⊗ y) = gxb · (gxy)

= (1 · g)(xb · (xy))

= g · ϕ(x⊗ b⊗ y),

and

ϕ((x⊗ b⊗ y) · g) = ϕ(x⊗ b⊗ yg) = xb · (xyg)

= (xb · (xy))(1 · g) = ϕ(x⊗ b⊗ y) · g.
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So ϕ is indeed a morphism of interior G-algebras. Note that in the above
equalities

1 =
∑

g∈[G/H]

g ⊗ 1B =
∑

g∈[G/H]

g1B

is the identity of A and multiplying this identity by xb on either side the
product is different from zero exactly when g = x.

In order to check the surjectivity of ϕ we consider a · g = g
′
b · g ∈ R where

g, g
′ ∈ G and b ∈ B. Let x

′
, x ∈ [G/H] be two representatives such that

g
′

= x
′
h
′

and g = hx for some h
′
, h ∈ H. Then denoting by b

′
the element of

A being h
′
b, we have

a · g = x
′
b
′ · (hx) = (x

′
b
′ · h)(1 · x)

= ϕ(x
′ ⊗ b′ ⊗ h) · x

= ϕ(x
′ ⊗ b′ · h⊗ 1) · x

= ϕ(x
′ ⊗ b′ · h⊗ x),

hence ϕ is surjective.
If

∑
x,y∈[G/H] x⊗ bx,y ⊗ y ∈ Ker(ϕ), then

ϕ(
∑

x,y∈[G/H]

x⊗ bx,y ⊗ y) =
∑

x,y∈[G/H]

xbx,y · (xy) = 0.

Consider a ∈ A and invertible element, then for any g ∈ G the element ga is
invertible. Fix x

′
, y
′ ∈ [G/H] and multiply the above equality with x

′
a · 1 on

the left and with (y
′
)−1
a · 1 on the right. One obtains x

′
ax
′
bx′ ,y′

x
′
a = 0, which

means abx′ ,y′a = 0 hence bx′ ,y′ = 0. Thus ϕ is injective and the theorem is
proven. �

Remark 3. a) Since we identified S with its isomorphic subalgebra of R,
viewing s = b · h, then the product g · s · f is gb · hf , where gb ∈ A.

b) One can easily verify that ϕ(1) = 1, and that for g = xh ∈ G with
x ∈ [G/H] and h ∈ H, we have

xhb = g ⊗ b = x⊗ hb = x(hb).

In order to clarify the choice of ϕ, observe that

g · s · f = g · (
∑
h∈H

bh · h) · f =
∑
h∈H

gbh · ghf,

and for another element g
′ · s′ · f ′ =

∑
h∈H

g
′
b
′
h · g

′
hf
′
, one gets

(g · s · f)(g
′ · s′ · f ′) = (

∑
h∈H

gbh · ghf)(
∑
h∈H

g
′
b
′
h · g

′
hf
′
)
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On the other hand,

ϕ(g ⊗ s · fg′ · s′ ⊗ f ′) =

{
(
∑

h∈H
gbh · ghf)(

∑
h∈H

g
′
b
′
h · g

′
hf
′
) if fg

′ ∈ H
0 if fg

′
/∈ H.

The product (g · s · f)(g
′ · s′ · f ′) contains sums of elements of the form

gbh
ghfg

′
b
′

h′
· (ghfg′h′f ′)

which are zero if gH 6= ghfg
′
H that is fg

′
/∈ H.

c) R has a G-algebra structure induced by its interior structure, namely if
φ : G→ R∗ is the homomorphism giving the interior structure, then

ψ : G→ Aut(R), ψ(g) = Inn(φ(g)),

where for a ∈ R, ψ(g)(a) = g · a · g−1 := ga, gives R an G-algebras structure.
The same argument works for the interior G-algebra OG ⊗OH S ⊗OH OG,
which becomes a G-algebra by

g(x⊗ s⊗ y) = gx⊗ s⊗ yg−1.

The isomorphism in the theorem is actually an isomorphism of G-algebras, in
other words R and OG⊗OH S⊗OHOG are isomorphic as G-algebras. Indeed,
for g ∈ G and x⊗ s⊗ y ∈ OG⊗OH S ⊗OH OG we obtain

f(g(x⊗ s⊗ y)) = f(gx⊗ s⊗ yg−1) = gx · s · yg−1

= g(x · s · y)g−1 = gf(x⊗ s⊗ y).

d) Let c =
∑

g∈[G/Ge]
ge be the G-invariant idempotent constructed in the

second paragraph. Then c is the identity of the algebra (cAc)∗G = c(A∗G)c.
These two algebras are in particular crossed products of A and G, and of
cAc and G respectively. The idempotent e is the identity, hence a central
idempotent of e(A ∗ Ge)e = (eAe) ∗ Ge. By using the uniqueness of the
induction as presented in [2], we may write

c(A ∗G)c = IndGGe
(e(A ∗Ge)e).

If B = IndGGe
(eAe) is the induction to G in the sense of Turull of the algebra

e(A ∗Ge)e, by using the above theorem we have

c(A ∗G)c = IndGGe
(e(A ∗Ge)e)

= OG⊗OGe e(A ∗Ge)e⊗OGe OG
' B ∗G.

The equality (cAc) ∗G = c(A ∗G)c forces the isomorphism

cAc ' B = OG⊗OGe eAe,

hence the G-algebra cAc is the Turull induction to G of the Ge-algebra eAe.
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