Householder Reflectors and Givens Rotations

Why orthogonality is fine

Radu Trîmbițaș
"Babeș-Bolyai" University

March 11, 2009

Gram-Schmidt as Triangular Orthogonalization

- Gram-Schmidt multiplies with triangular matrices to make columns orthogonal, for example at the first step:

$$
\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right]\left[\begin{array}{cccc}
\frac{1}{r_{11}} & \frac{-r_{12}}{r_{11}} & \frac{-r_{13}}{r_{11}} & \cdots \\
& 1 & & \\
& & 1 & \\
& & & \ddots
\end{array}\right]=\left[\begin{array}{llll}
q_{1} & v_{2}^{(2)} & \cdots & v_{n}^{(2)}
\end{array}\right]
$$

- After all the steps we get a product of triangular matrices

$$
A \underbrace{R_{1} R_{2} \ldots R_{n}}_{\hat{R}^{-1}}=\hat{Q}
$$

- "Triangular orthogonalization"

Householder Triangularization

- The Householder method multiplies by unitary matrices to make columns triangular, for example at the first step:

$$
Q_{1} A=\left[\begin{array}{cccc}
r_{11} & \times & \cdots & \times \\
0 & \times & \cdots & \times \\
0 & \times & \cdots & \times \\
\vdots & \vdots & \ddots & \vdots \\
0 & \times & \cdots & \times
\end{array}\right]
$$

- After all the steps we get a product of orthogonal matrices

$$
\underbrace{Q_{n} \ldots Q_{2} Q_{1}}_{Q^{*}} A=R
$$

- "Orthogonal triangularization"

Introducing Zeros

- Q_{k} introduces zeros below the diagonal in column k
- Preserves all the zeros previously introduced

Householder Reflectors

- Let Q_{k} be of the form

$$
Q_{k}=\left[\begin{array}{ll}
I & 0 \\
0 & F
\end{array}\right]
$$

where I is $(k-1) \times(k-1)$ and and F is $(m-k+1) \times(m-k+1)$

- Create Householder reflector F that introduces zeros:

$$
x=\left[\begin{array}{c}
\times \\
\times \\
\vdots \\
\times
\end{array}\right] \quad F x=\left[\begin{array}{c}
\|x\| \\
0 \\
\vdots \\
0
\end{array}\right]=\|x\| e_{1}
$$

Householder Reflectors-Idea

- Idea: Reflect across hyperplane H orthogonal to $v=\|x\|_{2} e_{1}-x$, by the unitary matrix

$$
F=I-2 \frac{v v^{*}}{v^{*} v}
$$

- Compare with projector

$$
P_{\perp v}=I-\frac{v v^{*}}{v^{*} v}
$$

Choice of Reflector

- We can choose to reflect to any multiple z of $\|x\| e_{1}$ with $|z|=1$
- Better numerical properties with large $\|v\|$, for example $v=\operatorname{sign}\left(x_{1}\right)\|x\| e_{1}+x$
- Note:
$\operatorname{sign}(0)=1$, but in MATLAB,
$\operatorname{sign}(0)==0$

The Householder Algorithm

- Compute the factor R of a QR factorization of $m \times n$ matrix A $(m \geq n)$
- Leave result in place of A, store reflection vectors v_{k} for later use

Algorithm:

Householder
QR
Factorization
for $k:=1$ to n do
$x:=A_{k: m, k} ;$
$v_{k}:=\operatorname{sign}\left(x_{1}\right)\|x\|_{2} e_{1}+x ;$
$v_{k}:=v_{k} /\left\|v_{k}\right\|_{2} ;$
$A_{k: m, k: n}=A_{k: m, k: n}-2 v_{k}\left(v_{k}^{*} A_{k: m, k: n}\right)$

Applying or Forming Q

- Compute $Q^{*} b=Q_{n} \ldots Q_{2} Q_{1} b$ and $Q x=Q_{1} Q_{2} \ldots Q_{n} x$ implicitly
- To create Q explicitly, apply to $x=I$

Algorithm: Implicit Calculation of $Q^{*} b$

$$
\begin{aligned}
& \text { for } k:=1 \text { to } n \text { do } \\
& \qquad b_{k: m}=b_{k: m}-2 v_{k}\left(v_{k}^{*} b_{k: m}\right) ;
\end{aligned}
$$

Algorithm: Implicit Calculation of $Q x$ for $k:=n$ downto 1 do $x_{k: m}=x_{k: m}-2 v_{k}\left(v_{k}^{*} x_{k: m}\right)$;

Operation Count -Householder QR

- Most work done by

$$
A_{k: m, k: n}=A_{k: m, k: n}-2 v_{k}\left(v_{k}^{*} A_{k: m, k: n}\right)
$$

- Operations per iteration:
- $2(m-k)(n-k)$ for the dot products $v_{k}^{*} A_{k: m, k: n}$
- $(m-k)(n-k)$ for the outer product $2 v_{k}(\cdots)$
- $(m-k)(n-k)$ for the subtraction $A_{k: m, k: n}-\cdots$
- $4(m-k)(n-k)$ total
- Including the outer loop, the total becomes

$$
\begin{aligned}
& \sum_{k=1}^{n} 4(m-k)(n-k)=4 \sum_{k=1}^{n}\left(m n-k(m+n)+k^{2}\right) \\
& \sim 4 m n^{2}-4(m+n) n^{2} / 2+4 n^{3} / 3=2 m n^{2}-2 n^{3} / 3
\end{aligned}
$$

Givens Rotations

- Alternative to Householder reflectors
- A Givens rotation $R=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ rotates $x \in \mathbb{R}^{2}$ by θ
- To set an element to zero, choose $\cos \theta$ and $\sin \theta$ so that

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
x_{j}
\end{array}\right]=\left[\begin{array}{c}
\sqrt{x_{i}^{2}+x_{j}^{2}} \\
0
\end{array}\right]
$$

or

$$
\cos \theta=\frac{x_{i}}{\sqrt{x_{i}^{2}+x_{j}^{2}}}, \quad \sin \theta=\frac{-x_{j}}{\sqrt{x_{i}^{2}+x_{j}^{2}}}
$$

Givens QR

- Introduce zeros in column from bottom and up

$$
\begin{align*}
& {\left[\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times
\end{array}\right] \xrightarrow{(3,4)}\left[\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times \\
\mathbf{0} & \times & \times
\end{array}\right] \xrightarrow{(2,3)}\left[\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
\mathbf{0} & \times & \times \\
& \times & \times
\end{array}\right] \xrightarrow{(1,2)}} \tag{1,2}\\
& {\left[\begin{array}{ccc}
\times & \times & \times \\
\mathbf{0} & \times & \times \\
& \times & \times \\
& \times & \times
\end{array}\right] \xrightarrow{(3,4)}\left[\begin{array}{ccc}
\times & \times & \times \\
& \times & \times \\
& \times & \times \\
\mathbf{0} & \times
\end{array}\right] \xrightarrow{(2,3)}\left[\begin{array}{ccc}
\times & \times & \times \\
& \times & \times \\
\mathbf{0} & \times \\
& & \times
\end{array}\right] \xrightarrow{(3,4)} R}
\end{align*}
$$

- Flop count $3 m n^{2}-n^{3}$ (or 50% more than Householder QR)

Figure: Alston S. Householder (1904-1993), American mathematician. Important contributions to mathematical biology and mainly to numerical linear algebra. His well known book "The Theory of Matrices in Numerical Analysis" has a great impact on development of numerical analysis and computer science.

Figure: James Wallace Givens (1910-1993) Pioneer of numerical linear algebra and computer science

Figure: Gatlinburg Conference

