
Krylov Space Methods
Nonstationary sounds good

Radu Trîmbi̧taş
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Introduction

These methods are used both to solve Ax = b and to �nd eigenvalues
of A

They assume A is accessible via a black box subroutine that returns
y = Az (and perhaps y = AT z if A is nonsymmetric) � no direct
access or manipulation of matrix entries is used.

Reasons:

This is the cheapest operation on sparse matrices
A may not be represented as a matrix but as a subroutine for
computing Ax

There exists a variety of such methods depending on A and
availability of AT

Radu Trîmbiţaş (�Babeş-Bolyai� University) Krylov Space Methods 2 / 17



Extracting information via matrix-vector multiplication

Given a vector b and a subroutine for computing Ax what can we
deduce about A?
Compute y1 = b, . . . , ym = Aym�1 = Am�1y1. Let K = [y1, . . . , ym ].

A �K = [Ay1, . . . ,Aym�1,Aym ] = [y2, . . . , ym ,Amy1]. (1)

Assume K nonsingular, let c = �K�1Amy1;
A �K = K � [e2, e3, . . . , em ,�c ] � K � C , or

K�1AK = C =

26666666664

0 0 � � � 0 �c1
1 0 � � � 0 �c2
0 1 � � � ...

...
... 0 � � � ...

...
...
... � � � 0

...
...
... � � � 1 �cm

37777777775
.
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Extracting information via matrix-vector multiplication

C upper Hessenberg; it is a companion matrix and its caracteristic
polynomial is p(x) = xm +∑m

i=1 cix
i�1

We can in principle �nd the eigenvalues of A by �nding the zeros of
p(x)

This simple form is not very useful

Finding c requires m� 1 matrix-vector multiplication by A and solving
a linear system with K
K is ill-conditioned � equivalent to power method yi converge to a
dominant ev of A; column of K tend to get more and more parallel

We �x this by replacing K with an orthogonal matrix Q such that the
leading k columns of K and Q span the same space �called a Krylov
subspace.

We will compute only as many leading columns of Q as needed (for
the solution of Ax = b or Ax = λx) �very few compare to matrix size
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Extracting information via matrix-vector multiplication

Let K = QR the QR decomposition of K

K�1AK =
�
R�1QT

�
A(QR) = C =) QTAQ = RCR�1 � H

C and H are upper Hessenberg

If A is symmetric, then H = QTAQ is tridiagonal

We compute columns of Q one at a time, rather than all of them,
using the modi�ed Gram-Schmidt algorithm (instead of Householder
re�ections).
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Extracting information via matrix-vector multiplication

Let Qn be the m� n matrix with the �rst n columns of AQ = QH, or
AQn = Qn+1 eHn:

24 A

3524 q1 . . . qn

35 =
24 q1 . . . qn+1

35
266664
h11 � � � h1n

h21
...

. . .
...

hn+1,n

377775
The nth column of AQn = Qn+1H̃n gives

Aqn = h1nq1 + � � �+ hnnqn + hn+1,nqn+1

qi are orthonormal, multiply both sides by qTj

qTj Aqn =
n+1

∑
i=1
hinqTj qn = hj ,n =) hn+1,nqn+1 = Aqn �

n

∑
i=1
hinqi
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The Arnoldi algorithm

Algorithm: Arnoldi Iteration for partial reduction to Hessen-
berg form

b := arbitrary; q1 := b/kbk;
for n := 1, 2, 3, . . . do
v := Aqn;
for j := 1 ton do
hjn := q�j v ;
v := v � hjnqj ;

hn+1,n := kvk;
if hn+1,n = 0 then
return

qn+1 := v/hn+1,n;

Complexity n matrix-vector multiplications by A +O(n2m) other work
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The Arnoldi algorithm

If we stop the algorithm here, what we have learned about A?
Let Q = [Qn,Qu ], where Qn = [q1, . . . , qk ], Qu = [qn+1, . . . , qm ];
colums of Qu excepting qn+1 are unknown

Then

H = QTAQ = [Qn,Qu ]
T A [Qn,Qu ] =

�
QTn AQn QTn AQu
QTu AQn QTu AQu

�

�
n m� n

n
m� n

�
Hn Hun
Hnu Hu

�
Hn is upper Hessenberg, Hnu has a single nonzero entry (hn+1,n), Hu ,
Hu,n unknown
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Symmetric Matrices and the Lanczos Iteration

For symmetric A, Hn reduces to tridiagonal Tn, and qn+1 can be
computed by a three-term recurrence:

Aqn = βn�1qn�1 + αnqn + βnqn+1

Algorithm: Lanczos Iteration
β0 := 0; q0 := 0; b :=arbitrary; q1 := b/kbk;
for n := 1, 2, 3, . . . do
v := Aqn; {or Aqn � βn�1qn�1 for greater stability}
αn := qTn v ;
v := v � βn�1qn�1 � αnqn;
βn := kvk;
if βn = 0 then
return

qn+1 := v/βn;
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Symmetric Matrices and the Lanczos Iteration

If we stop the algorithm here, what we have learned about A?
We have

T = QTAQ = [Qn,Qu ]
T A [Qn,Qu ] =

�
QTn AQn QTn AQu
QTu AQn QTu AQu

�

�
n m� n

n
m� n

�
Tn Tun
Tnu Tu

�
=

�
Tn TTnu
Tnu Tu

�
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Krylov subspace

De�nition

The Krylov subspace Kn(A, b) is


b,Ab,A2b, . . . ,An�1b

�
.

We shall write Kn instead of Kn(A, b) if A and b are implicit from
the context.

Hn or Tn is the projection of A onto the Krylov subspace Kn.
One can show that Kn has dimension n i¤ the Arnoldi or Lanczos
algorithm can compute qn without quitting �rst.

We shall solve Ax = b and Ax = λx using only the information
computed by n steps of Arnoldi or Lanczos algorithm

We hope n� m, so the algorithms are e¢ cient
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Krylov subspace

For eigenvalues, if hn+1,n = 0, then H (or T ) is block upper triangular
and eigenvalues of Hn are eigenvalues of H, and therefore of A

To obtain eigenvector of A we multiply eigenvectors of Hn by Qn
If hn+1,n is small ew and ev of Hn are good approximations to the ew
and ev of A

Roundo¤ errors cause a number of algorithms to behave entirely
di¤erent from how they would in exact arithmetic.

In particular Lanczos vectorscan loose their orthogonality and become
almost linearly dependent.

Researchers learned how to stabilize the algorithm or that the
convergence occured despite instability.
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Solving a system using Krylov subspace

We express the solution as �the best� approximation in the Krylov
subspace of the form

xn =
n

∑
k=1

zkqk = Qnz , where z = [z1, . . . , zn ]T

We have to de�ne �best�. There are several natural but di¤erent
de�nitions, leading to di¤erent algorithms. Let x = A�1b be the
exact solution and rn = b� Axn be the residual

1 xn minimizes kxn � xk2 � we do not have enough information

2 xn minimizes krnk2 � A symmetric MINRES (minimum residual), A
nonsymmetric (generalized minimum residual)

3 xn makes rn ? Kn, i.e. QTn rn = 0 � SYMMLQ and GMRES
4 When A is SPD, it de�nes a norm krkA�1 =

�
rTA�1r

�1/2
. The best

xn minimizes krnkA�1 . This norm is the same as kxn � xkA �
conjugate gradient algorithm
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Radu Trîmbiţaş (�Babeş-Bolyai� University) Krylov Space Methods 13 / 17



Solving a system using Krylov subspace

We express the solution as �the best� approximation in the Krylov
subspace of the form

xn =
n

∑
k=1

zkqk = Qnz , where z = [z1, . . . , zn ]T

We have to de�ne �best�. There are several natural but di¤erent
de�nitions, leading to di¤erent algorithms. Let x = A�1b be the
exact solution and rn = b� Axn be the residual

1 xn minimizes kxn � xk2 � we do not have enough information
2 xn minimizes krnk2 � A symmetric MINRES (minimum residual), A
nonsymmetric (generalized minimum residual)

3 xn makes rn ? Kn, i.e. QTn rn = 0 � SYMMLQ and GMRES

4 When A is SPD, it de�nes a norm krkA�1 =
�
rTA�1r

�1/2
. The best

xn minimizes krnkA�1 . This norm is the same as kxn � xkA �
conjugate gradient algorithm
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Minimizing Residuals

Generalized Minimal RESiduals � iterative method for solving Ax = b

Find xn 2 Kn that minimizes krnk = kb� Axnk
This is a least squares problem: Find a vector c such that

kAKnc � bk = minimum

where Kn is the m� n Krylov matrix
QR factorization could be used to solve for c , and xn = Knc

In practice the columns of Kn are ill-conditioned and an orthogonal
basis is used instead, produced by Arnoldi iteration
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Minimal Residual with Orthogonal Basis

Instead of xn = Knc set xn = Qny , where the orthogonal columns of
Qn span Kn, and solve

kAQny � bk = minimum

For the Arnoldi iteration we showed that AQn = Qn+1H̃n:Qn+1H̃ny � b = minimum
Left multiplication by Q�n+1 does not change the norm (since both
vectors are in the column space Qn+1):H̃ny �Q�n+1b = minimum
Finally, it is clear that Q�n+1b = kbk e1:H̃ny � kbk e1 = minimum
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The GMRES Algorithm

High-level description of the algorithm:

Algorithm: GMRES
q1 := b/kbk;
for n := 1, 2, 3, . . . do
< step n of Arnoldi iteration >
Find y to minimize kH̃ny � kbke1k = krnk;
xn := Qny

The residual krnk does not need to be computed explicitly from xn
Least squares problem has Hessenberg structure, solve with QR
factorization of H̃n (computed by updating the factorization of H̃n�1)

Memory and cost grow with n restart the algorithm by clearing
accumulated data (might stagnate the method)

Radu Trîmbiţaş (�Babeş-Bolyai� University) Krylov Space Methods 16 / 17



Convergence of GMRES

Two obvious observations based on the minimization in Kn: GMRES
converges monotonically and it converges after at most m steps,

krn+1k � krnk ^ krmk = 0

The residual rn = pn(A)b, where pn 2 Pn is a degree n polynomial
with p(0) = 1, so GMRES also �nds a minimizing polynomial:

kpn(A)bk = minimum

Based on this, diagonalizable A = VΛV�1 converges as:

krnk
kbk � κ(V ) inf

pn2Pn
kpnkΛ(A)

or in words: If A has well-conditioned eigenvectors, the convergence is
based on how small polynomials pn can be on the spectrum
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