Krylov Space Methods

Nonstationary sounds good

Radu Trîmbițaș

"Babeş-Bolyai" University

- These methods are used both to solve Ax = b and to find eigenvalues of A
- They assume A is accessible via a black box subroutine that returns y = Az (and perhaps y = A^Tz if A is nonsymmetric) — no direct access or manipulation of matrix entries is used.
- Reasons:
 - This is the cheapest operation on sparse matrices
 - A may not be represented as a matrix but as a subroutine for computing Ax
- There exists a variety of such methods depending on A and availability of A^T

Extracting information via matrix-vector multiplication

- Given a vector b and a subroutine for computing Ax what can we deduce about A?
- Compute $y_1 = b, \ldots, y_m = Ay_{m-1} = A^{m-1}y_1$. Let $K = [y_1, \ldots, y_m]$.

$$A \cdot K = [Ay_1, \ldots, Ay_{m-1}, Ay_m] = [y_2, \ldots, y_m, A^m y_1].$$
 (1)

• Assume K nonsingular, let $c = -K^{-1}A^m y_1$; $A \cdot K = K \cdot [e_2, e_3, \dots, e_m, -c] \equiv K \cdot C$, or

$$\mathcal{K}^{-1}\mathcal{A}\mathcal{K} = \mathcal{C} = \begin{bmatrix} 0 & 0 & \cdots & 0 & -c_1 \\ 1 & 0 & \cdots & 0 & -c_2 \\ 0 & 1 & \cdots & \vdots & \vdots \\ \vdots & 0 & \cdots & \vdots & \vdots \\ \vdots & \vdots & \cdots & 0 & \vdots \\ \vdots & \vdots & \cdots & 1 & -c_m \end{bmatrix}$$

Extracting information via matrix-vector multiplication

- C upper Hessenberg; it is a *companion matrix* and its caracteristic polynomial is $p(x) = x^m + \sum_{i=1}^m c_i x^{i-1}$
- We can in principle find the eigenvalues of A by finding the zeros of p(x)
- This simple form is not very useful
 - Finding c requires m-1 matrix-vector multiplication by A and solving a linear system with K
 - K is ill-conditioned equivalent to power method y_i converge to a dominant ev of A; column of K tend to get more and more parallel
- We fix this by replacing K with an orthogonal matrix Q such that the leading k columns of K and Q span the same space called a Krylov subspace.
- We will compute only as many leading columns of Q as needed (for the solution of Ax = b or $Ax = \lambda x$) very few compare to matrix size

・ロン ・聞と ・ ほと ・ ほと

• Let K = QR the QR decomposition of K

$$K^{-1}AK = \left(R^{-1}Q^{T}\right)A(QR) = C \Longrightarrow Q^{T}AQ = RCR^{-1} \equiv H$$

- C and H are upper Hessenberg
- If A is symmetric, then $H = Q^T A Q$ is tridiagonal
- We compute columns of Q one at a time, rather than all of them, using the modified Gram-Schmidt algorithm (instead of Householder reflections).

Extracting information via matrix-vector multiplication

• Let Q_n be the $m \times n$ matrix with the first n columns of AQ = QH, or $AQ_n = Q_{n+1}\widetilde{H}_n$:

$$\left[\begin{array}{c}A\end{array}\right]\left[\begin{array}{c}q_{1}\\ \end{array}\right] \left[\begin{array}{c}q_{1}\\ \end{array}\right] = \left[\begin{array}{c}q_{1}\\ \end{array}\right] \left[\begin{array}{c}q_{1}\\ \end{array}\right] \left[\begin{array}{c}h_{11}\\ \end{array}\right] \left[\begin{array}{c}h_{11}\\ \end{array}\right] \left[\begin{array}{c}h_{11}\\ \end{array}\right] \left[\begin{array}{c}h_{1n}\\ \end{array}\right] \left[\begin{array}{c}h_{1n}\end{array}\right] \left[\begin{array}{c}h_{1n}\\ \end{array}\right] \left[\begin{array}{c}h_{1n}\end{array}\right] \left[\left[\begin{array}{c}h_{1n}\end{array}\right] \left[\left[\begin{array}{c}h_{1n}\end{array}\right] \left[\left[\begin{array}{c}h_{1n}\end{array}\right] \left[\left[\begin{array}{c}h_{1n}\end{array}\right] \left[\left[\begin{array}{c}h_{1n}\end{array}\right] \left[\left[\begin{array}{c}h_{1n}\end{array}\right] \left[\left[\begin{array}{c}h_{1n}\end{array}\right] \left[\left[\begin{array}{c}h_{1n}\end{array}\right] \left[\left[\left[\begin{array}{c}h_{1n}\end{array}\right] \left[\left[\left[\begin{array}{c}h_{1n}\end{array}\right] \left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[$$

• The *n*th column of $AQ_n = Q_{n+1}\tilde{H}_n$ gives

$$Aq_n = h_{1n}q_1 + \cdots + h_{nn}q_n + h_{n+1,n}q_{n+1}$$

• q_i are orthonormal, multiply both sides by q_i^T

$$q_j^T A q_n = \sum_{i=1}^{n+1} h_{in} q_j^T q_n = h_{j,n} \Longrightarrow h_{n+1,n} q_{n+1} = A q_n - \sum_{i=1}^n h_{in} q_i$$

Algorithm: Arnoldi Iteration for partial reduction to Hessenberg form

,

$$b := \text{arbitrary}; \ q_1 := b/||b||$$

for $n := 1, 2, 3, ...$ do
 $v := Aq_n;$
for $j := 1$ ton do
 $h_{jn} := q_j^* v;$
 $v := v - h_{jn}q_j;$
 $h_{n+1,n} := ||v||;$
if $h_{n+1,n} = 0$ then
return
 $q_{n+1} := v/h_{n+1,n};$

• Complexity *n* matrix-vector multiplications by $A + O(n^2m)$ other work

The Arnoldi algorithm

- If we stop the algorithm here, what we have learned about A?
- Let $Q = [Q_n, Q_u]$, where $Q_n = [q_1, \ldots, q_k]$, $Q_u = [q_{n+1}, \ldots, q_m]$; colums of Q_u excepting q_{n+1} are unknown

Then

$$H = Q^{T} A Q = [Q_{n}, Q_{u}]^{T} A [Q_{n}, Q_{u}] = \begin{bmatrix} Q_{n}^{T} A Q_{n} & Q_{n}^{T} A Q_{u} \\ Q_{u}^{T} A Q_{n} & Q_{u}^{T} A Q_{u} \end{bmatrix}$$
$$\equiv \begin{array}{c} n & m - n \\ H_{n} & H_{un} \\ H_{nu} & H_{u} \end{bmatrix}$$

• H_n is upper Hessenberg, H_{nu} has a single nonzero entry $(h_{n+1,n})$, H_u , $H_{u,n}$ unknown

Symmetric Matrices and the Lanczos Iteration

• For symmetric A, H_n reduces to tridiagonal T_n , and q_{n+1} can be computed by a three-term recurrence:

$$Aq_n = \beta_{n-1}q_{n-1} + \alpha_n q_n + \beta_n q_{n+1}$$

Algorithm: Lanczos Iteration

$$\beta_0 := 0; \ q_0 := 0; \ b := arbitrary; \ q_1 := b/||b||;$$
for $n := 1, 2, 3, ...$ do
 $v := Aq_n; \{ \text{or } Aq_n - \beta_{n-1}q_{n-1} \text{ for greater stability} \}$
 $\alpha_n := q_n^T v;$
 $v := v - \beta_{n-1}q_{n-1} - \alpha_n q_n;$
 $\beta_n := ||v||;$
if $\beta_n = 0$ then
return
 $q_{n+1} := v/\beta_n;$

- If we stop the algorithm here, what we have learned about A?
- We have

$$T = Q^{T}AQ = \begin{bmatrix} Q_{n}, Q_{u} \end{bmatrix}^{T}A\begin{bmatrix} Q_{n}, Q_{u} \end{bmatrix} = \begin{bmatrix} Q_{n}^{T}AQ_{n} & Q_{n}^{T}AQ_{u} \\ Q_{u}^{T}AQ_{n} & Q_{u}^{T}AQ_{u} \end{bmatrix}$$
$$\equiv \begin{array}{c} n & m-n \\ m-n & \begin{bmatrix} T_{n} & T_{un} \\ T_{nu} & T_{u} \end{bmatrix}$$
$$= \begin{bmatrix} T_{n} & T_{nu}^{T} \\ T_{nu} & T_{u} \end{bmatrix}$$

ヨト イヨト

Definition

The Krylov subspace $\mathcal{K}_n(A, b)$ is $\langle b, Ab, A^2b, \dots, A^{n-1}b \rangle$.

- We shall write \mathcal{K}_n instead of $\mathcal{K}_n(A, b)$ if A and b are implicit from the context.
- H_n or T_n is the projection of A onto the Krylov subspace \mathcal{K}_n .
- One can show that \mathcal{K}_n has dimension *n* iff the Arnoldi or Lanczos algorithm can compute q_n without quitting first.
- We shall solve Ax = b and $Ax = \lambda x$ using only the information computed by *n* steps of Arnoldi or Lanczos algorithm
- We hope $n \ll m$, so the algorithms are efficient

- For eigenvalues, if $h_{n+1,n} = 0$, then H (or T) is block upper triangular and eigenvalues of H_n are eigenvalues of H, and therefore of A
- To obtain eigenvector of A we multiply eigenvectors of H_n by Q_n
- If $h_{n+1,n}$ is small ew and ev of H_n are good approximations to the ew and ev of A
- Roundoff errors cause a number of algorithms to behave entirely different from how they would in exact arithmetic.
- In particular Lanczos vectorscan loose their orthogonality and become almost linearly dependent.
- Researchers learned how to stabilize the algorithm or that the convergence occured despite instability.

A B F A B F

• We express the solution as "the best" approximation in the Krylov subspace of the form

$$x_n = \sum_{k=1}^n z_k q_k = Q_n z, \quad \text{where } z = [z_1, \dots, z_n]^T$$

• We have to define "best". There are several natural but different definitions, leading to different algorithms. Let $x = A^{-1}b$ be the exact solution and $r_n = b - Ax_n$ be the residual

• x_n minimizes $||x_n - x||_2$ — we do not have enough information

• We express the solution as "the best" approximation in the Krylov subspace of the form

$$x_n = \sum_{k=1}^n z_k q_k = Q_n z, \quad \text{where } z = [z_1, \dots, z_n]^T$$

- We have to define "best". There are several natural but different definitions, leading to different algorithms. Let $x = A^{-1}b$ be the exact solution and $r_n = b Ax_n$ be the residual
- x_n minimizes $||x_n x||_2$ we do not have enough information
- x_n minimizes ||r_n||₂ A symmetric MINRES (minimum residual), A nonsymmetric (generalized minimum residual)

• We express the solution as "the best" approximation in the Krylov subspace of the form

$$x_n = \sum_{k=1}^n z_k q_k = Q_n z, \quad \text{where } z = [z_1, \dots, z_n]^T$$

- We have to define "best". There are several natural but different definitions, leading to different algorithms. Let $x = A^{-1}b$ be the exact solution and $r_n = b Ax_n$ be the residual
- x_n minimizes $||x_n x||_2$ we do not have enough information
- x_n minimizes ||r_n||₂ A symmetric MINRES (minimum residual), A nonsymmetric (generalized minimum residual)
- **③** x_n makes $r_n \perp \mathcal{K}_n$, i.e. $Q_n^T r_n = 0$ SYMMLQ and GMRES

イロト 不得下 イヨト イヨト 二日

• We express the solution as "the best" approximation in the Krylov subspace of the form

$$x_n = \sum_{k=1}^n z_k q_k = Q_n z, \qquad ext{where } z = [z_1, \dots, z_n]^T$$

- We have to define "best". There are several natural but different definitions, leading to different algorithms. Let $x = A^{-1}b$ be the exact solution and $r_n = b Ax_n$ be the residual
- x_n minimizes $||x_n x||_2$ we do not have enough information
- x_n minimizes ||r_n||₂ A symmetric MINRES (minimum residual), A nonsymmetric (generalized minimum residual)
- x_n makes $r_n \perp \mathcal{K}_n$, i.e. $Q_n^T r_n = 0$ SYMMLQ and GMRES
- When A is SPD, it defines a norm ||r||_{A⁻¹} = (r^TA⁻¹r)^{1/2}. The best x_n minimizes ||r_n||_{A⁻¹}. This norm is the same as ||x_n x||_A conjugate gradient algorithm

- Generalized Minimal RESiduals iterative method for solving Ax = b
- Find $x_n \in \mathcal{K}_n$ that minimizes $||r_n|| = ||b Ax_n||$
- This is a least squares problem: Find a vector c such that

$$\|AK_nc - b\| = \min$$

where K_n is the $m \times n$ Krylov matrix

- QR factorization could be used to solve for c, and $x_n = K_n c$
- In practice the columns of K_n are ill-conditioned and an orthogonal basis is used instead, produced by Arnoldi iteration

Minimal Residual with Orthogonal Basis

• Instead of $x_n = K_n c$ set $x_n = Q_n y$, where the orthogonal columns of Q_n span \mathcal{K}_n , and solve

$$\|AQ_ny - b\| = \min$$

• For the Arnoldi iteration we showed that $AQ_n = Q_{n+1}\tilde{H}_n$:

$$\left\| Q_{n+1} \tilde{H}_n y - b \right\| = \min$$

• Left multiplication by Q_{n+1}^* does not change the norm (since both vectors are in the column space Q_{n+1}):

$$\left\|\tilde{H}_{n}y-Q_{n+1}^{*}b\right\|=\min$$

• Finally, it is clear that $Q_{n+1}^*b = \|b\| e_1$:

$$\left\| ilde{H}_n y - \left\|b
ight\| extsf{e}_1
ight\| = \mathsf{minimum}$$

The GMRES Algorithm

• High-level description of the algorithm:

```
Algorithm: GMRES

q_1 := b/||b||;

for n := 1, 2, 3, ... do

< step n of Arnoldi iteration >

Find y to minimize ||\tilde{H}_n y - ||b||e_1|| = ||r_n||;

x_n := Q_n y
```

- The residual $||r_n||$ does not need to be computed explicitly from x_n
- Least squares problem has Hessenberg structure, solve with QR factorization of H
 _n (computed by updating the factorization of H
 _{n-1})
- Memory and cost grow with n restart the algorithm by clearing accumulated data (might stagnate the method)

イロト イポト イヨト イヨト

Convergence of GMRES

• Two obvious observations based on the minimization in \mathcal{K}_n : GMRES converges monotonically and it converges after at most *m* steps,

$$||r_{n+1}|| \leq ||r_n|| \wedge ||r_m|| = 0$$

• The residual $r_n = p_n(A)b$, where $p_n \in \mathbb{P}_n$ is a degree *n* polynomial with p(0) = 1, so GMRES also finds a minimizing polynomial:

$$\|p_n(A)b\| = \min$$

• Based on this, diagonalizable $A = V\Lambda V^{-1}$ converges as:

$$\frac{\|r_n\|}{\|b\|} \leq \kappa(V) \inf_{\rho_n \in \mathbb{P}_n} \|\rho_n\|_{\Lambda(A)}$$

or in words: If A has well-conditioned eigenvectors, the convergence is based on how small polynomials p_n can be on the spectrum

注▶ ★ 注▶ -