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Introduction

@ These methods are used both to solve Ax = b and to find eigenvalues
of A

@ They assume A is accessible via a black box subroutine that returns
y = Az (and perhaps y = ATz if A is nonsymmetric) — no direct
access or manipulation of matrix entries is used.

@ Reasons:

e This is the cheapest operation on sparse matrices
e A may not be represented as a matrix but as a subroutine for
computing Ax

@ There exists a variety of such methods depending on A and
availability of AT
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Extracting information via matrix-vector multiplication

@ Given a vector b and a subroutine for computing Ax what can we
deduce about A?

o Compute y1 = b, ..., ym = Aym-1 = A" 1y Let K = [y1,..., Ym]-
A-K=[An,....AYm-1, AYm| = [v2, -, Ym, A" 1n1]. (1)

@ Assume K nonsingular, let c = —K 1A™y;
A-K=K-le,e3,....em,—c|=K-C, or

(00 - 0 —q ]
10 --- 0 —0o
K'AK = C = o
0
0
L 1 —cm |
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Extracting information via matrix-vector multiplication

@ C upper Hessenberg; it is a companion matrix and its caracteristic
polynomial is p(x) = x™ + Y7, ¢;x' !
@ We can in principle find the eigenvalues of A by finding the zeros of
p(x)
@ This simple form is not very useful
e Finding ¢ requires m — 1 matrix-vector multiplication by A and solving
a linear system with K

e K is ill-conditioned — equivalent to power method y; converge to a
dominant ev of A; column of K tend to get more and more parallel

@ We fix this by replacing K with an orthogonal matrix @ such that the
leading k columns of K and @ span the same space — called a Krylov
subspace.

@ We will compute only as many leading columns of @ as needed (for
the solution of Ax = b or Ax = Ax) — very few compare to matrix size
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Extracting information via matrix-vector multiplication

o Let K = QR the QR decomposition of K
K 1AK = (R—laT) A(QR)=C = QTAQ=RCR ' =H

@ C and H are upper Hessenberg
o If Ais symmetric, then H = QTAQ is tridiagonal
@ We compute columns of @ one at a time, rather than all of them,

using the modified Gram-Schmidt algorithm (instead of Householder
reflections).
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Extracting information via matrix-vector multiplication

o Let Q, be thgvm X n matrix with the first n columns of AQ = QH, or
AQn = Qn+1Hn:

hnt1,n
@ The nth column of AQ, = Qn+1 A, gives
AqGn = hinqr + - - 4+ hanGn + hag1,0Gnt1
@ g; are orthonormal, multiply both sides by qJ-T

n+1 n
qJ'TAqn = Zl hinquqn = hj,n - hn+1,nqn+1 = Aq, — 21 hingi
1= 1=
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The Arnoldi algorithm

Algorithm: Arnoldi lIteration for partial reduction to Hessen-
berg form

b := arbitrary; q1 := b/||b||;

forn:=1,2,3,... do

v i= Adn;

for j:=1 ton do
hjn := qu;
v:=v— hj,q;

hns1n = vl

if hpt1,, =0 then
return

an+1 ‘= V/hn+1,n;

e Complexity n matrix-vector multiplications by A +O(n?m) other work
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The Arnoldi algorithm

o If we stop the algorithm here, what we have learned about A?

° Let Q = [Qny Qu]y Where Qn = [qlr ] qk]v Qu = [qn+11 MR | qm]y
colums of @, excepting g,+1 are unknown

@ Then

Q) AQ, Q) AQ,

H=QTAQ=[Qn Q)" A[Qn Q] = [ QI AQ, Q[ AQ,

n m—n
= n H, H,,
m-—n H,, H,

@ H, is upper Hessenberg, H,, has a single nonzero entry (hn11.,), Hu,
Hy n unknown
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Symmetric Matrices and the Lanczos Iteration

@ For symmetric A, H, reduces to tridiagonal T,, and g,+1 can be
computed by a three-term recurrence:

Aq, = ﬁn—lqn—l +anqn + ,Bnqn+1

Algorithm: Lanczos Iteration
Bo :=0; qo := 0; b:=arbitrary; g1 := b/||b[;
forn:=1,2,3,... do
v := Aqp; {or Aqgn — Bn—1qn—1 for greater stability}
w, =g v;
Vi=vVv— ﬁnflqnfl — &nQqn;
Bn = vl
if B, =0 then
return
Gn+1 2= V/Pn;
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Symmetric Matrices and the Lanczos Iteration

@ If we stop the algorithm here, what we have learned about A?

@ We have

T T
T:=QTAO=%QmQATA[QhoA::[QnAQn OnAQu}

QRIAQ, QIAQ,

n m-—n
= n T, Tun
m-—n Tow Tu
_ Tn Tn7t—1
Tnu TU
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Krylov subspace

Definition

The Krylov subspace IC,(A, b) is (b, Ab, A%b, ..., A"~ 1b).

e We shall write K, instead of IC,(A, b) if A and b are implicit from
the context.

@ H, or T, is the projection of A onto the Krylov subspace .

@ One can show that C, has dimension n iff the Arnoldi or Lanczos
algorithm can compute g, without quitting first.

@ We shall solve Ax = b and Ax = Ax using only the information
computed by n steps of Arnoldi or Lanczos algorithm

@ We hope n < m, so the algorithms are efficient
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Krylov subspace

e For eigenvalues, if h,11, =0, then H (or T) is block upper triangular
and eigenvalues of H, are eigenvalues of H, and therefore of A

@ To obtain eigenvector of A we multiply eigenvectors of H, by Q,

@ If hyy1p is small ew and ev of H, are good approximations to the ew
and ev of A

@ Roundoff errors cause a number of algorithms to behave entirely
different from how they would in exact arithmetic.

@ In particular Lanczos vectorscan loose their orthogonality and become
almost linearly dependent.

@ Researchers learned how to stabilize the algorithm or that the
convergence occured despite instability.
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Solving a system using Krylov subspace

@ We express the solution as “the best” approximation in the Krylov
subspace of the form

n
Xy = Z Zkqx = Qnz, where z = [z, .. .,z,,]T
k=1

@ We have to define “best”. There are several natural but different
definitions, leading to different algorithms. Let x = A~1b be the
exact solution and r, = b — Ax, be the residual

@ x, minimizes ||x, — x||, — we do not have enough information
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Solving a system using Krylov subspace

@ We express the solution as “the best” approximation in the Krylov
subspace of the form
n
Xy = Z Zkqx = Qnz, where z = [z, .. .,z,,]T
k=1
@ We have to define “best”. There are several natural but different

definitions, leading to different algorithms. Let x = A~1b be the
exact solution and r, = b — Ax, be the residual

@ x, minimizes ||x, — x||, — we do not have enough information
@ x, minimizes ||r,||, — A symmetric MINRES (minimum residual), A
nonsymmetric (generalized minimum residual)
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Solving a system using Krylov subspace

@ We express the solution as “the best” approximation in the Krylov
subspace of the form

n
Xy = Z Zkqx = Qnz, where z = [z, .. .,z,,]T
k=1

@ We have to define “best”. There are several natural but different
definitions, leading to different algorithms. Let x = A~1b be the
exact solution and r, = b — Ax, be the residual

Xn minimizes ||x, — x||, — we do not have enough information

Xn minimizes ||r,||, — A symmetric MINRES (minimum residual), A
nonsymmetric (generalized minimum residual)
@ x, makesr, L IKC,, i.e. QnTr,7 =0 — SYMMLQ and GMRES
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Solving a system using Krylov subspace

@ We express the solution as “the best” approximation in the Krylov
subspace of the form
n
Xy = Z Zkqx = Qnz, where z = [z, .. .,z,,]T
k=1
@ We have to define “best”. There are several natural but different

definitions, leading to different algorithms. Let x = A~1b be the
exact solution and r, = b — Ax, be the residual

Xn minimizes ||x, — x||, — we do not have enough information

Xn minimizes ||r,||, — A symmetric MINRES (minimum residual), A
nonsymmetric (generalized minimum residual)

X, makes r, L K, ie. Qr,=0— SYMMLQ and GMRES

When A is SPD, it defines a norm ||r||,-1 = (rTAflr)lm. The best
Xn minimizes ||r,]| ,-1. This norm is the same as ||x, — x||, —
conjugate gradient algorithm

©0 o090
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Minimizing Residuals

@ Generalized Minimal RESiduals — iterative method for solving Ax = b
e Find x, € K, that minimizes ||r,|| = ||b — Axy||
@ This is a least squares problem: Find a vector ¢ such that
|AK,c — b|| = minimum
where K}, is the m X n Krylov matrix
@ QR factorization could be used to solve for ¢, and x, = K, ¢
@ In practice the columns of K, are ill-conditioned and an orthogonal

basis is used instead, produced by Arnoldi iteration
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Minimal Residual with Orthogonal Basis

@ Instead of x, = Kj,c set x, = Qpy, where the orthogonal columns of
@, span K, and solve

|AQny — b|| = minimum
@ For the Arnoldi iteration we showed that AQ, = Q11 AH,:
||Qn+1f:/ny - bH = minimum

o Left multiplication by @, ; does not change the norm (since both
vectors are in the column space Qp11):

|Any — Qi1 b|| = minimum
o Finally, it is clear that Q;_ b = ||b|| e:

|Any — ||b]| €1]| = minimum
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The GMRES Algorithm

@ High-level description of the algorithm:

Algorithm: GMRES
qu == b/||bl;
forn:=1,2,3,... do
< step n of Arnoldi iteration >
Find y to minimize ||H,y — ||b]le1] = ||rall;
Xp = Qny

@ The residual ||r,|| does not need to be computed explicitly from x,

@ Least squares problem has Hessenberg structure, solve with QR
factorization of H, (computed by updating the factorization of H,_1)

@ Memory and cost grow with n restart the algorithm by clearing
accumulated data (might stagnate the method)
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Convergence of GMRES

@ Two obvious observations based on the minimization in IC,: GMRES
converges monotonically and it converges after at most m steps,

Irnall < lrall Allrmll =0

@ The residual r, = p,(A)b, where p, € P, is a degree n polynomial
with p(0) = 1, so GMRES also finds a minimizing polynomial:

lpn(A)b|| = minimum

@ Based on this, diagonalizable A = VAV ™! converges as:

b” < K(V) Pnigﬁ)n ||p”||A(A)

or in words: If A has well-conditioned eigenvectors, the convergence is
based on how small polynomials p, can be on the spectrum
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