
Chapter 1

Mathematical models in

economy. Short descriptions

1.1 Arrow-Debreu model of an economy

via Walras equilibrium problem.

Let us consider first the so-called Arrow-Debreu model. The presentation

will be brief. A more detailed description and several justifications can

be found in Debreu [6], Border [5] or Isac [8]. Let’s start by presenting

the main elements of an abstract economy.

The fundamental idealization made in modeling an economy is the

notion of commodity. We suppose that it is possible to classify all the

different goods and services in the world economy into a finite number.

Let say m commodities, which are available in infinitely divisible units.

The commodity space is Rm. A vector x ∈ Rm specifies a list of quantities

of each commodity. There are commodity vectors that are exchanged

or manufactured or consumed in economic activities and not individual

commodities. Of course, if x = (x1, x2, · · · , xm) ∈ Rm it is possible that

some quantities xi, i ∈ {1, · · · , m} to be equal to zero. We will denote

by E the set of all available commodities.
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A price vector p lists the value of a unit of each commodity and so

p ∈ Rm.

The value of the commodity vector x, when on the market acts the

price system p is the inner product p · x =
m∑

i=1

pixi.

Let us make now an important remark: the assumption of the exis-

tence of only a finite number of distinct commodities can be eliminated.

So, it is possible to consider economies with an infinite number of distinct

commodities. In this case the commodity space is an infinite-dimensional

vector space and the price vector belongs to the dual space of the com-

modity space. For some references of this topic, see, for example, the

book of Aliprantis, Brown and Burkinshaw [1].

The consumers are the main actors of an economy. The ultimate pur-

pose of an economic organization is to provide commodity vectors for

final consumption by consumers. We will assume that there exists a fi-

nite given number of consumers.

It is quite obviously that not every commodity vector is admissible as

a final consumption for a consumer. We will denote by X ⊂ Rm the set

of all admissible consumption vectors for a given consumer. (or Xi ⊂ Rm

if we discuss about the consumer i) So, X (or Xi) is the consumption

set. What restrictions can be placed on the consumption set ?

A first restriction is that the admissible consumption vectors are

nonnegative.

An alternative restriction is that the consumption set is bounded

below. Under this interpretation, negative quantities of a commodity in

a final consumption vector mean that the consumer is supplying the

commodity as a service. The lower bound puts a limit in the services

that a consumer can provide. Also, the lower bound could be interpreted

as a minimum requirement of some commodity for the consumer.

In a private ownership economy consumers are also characterized by

their initial endowment of commodities. This is an element w (or wi) in
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the commodity space. These are the resources the consumer owns.

In a market economy, a consumer must purchase his consumption

vector at the market prices. The set of all admissible commodity vectors

that he can afford at prices p, given an income M (or Mi) is called the

budget set and will be denoted by A (or Ai). The budget set can be

represented as:

A = {x ∈ X|p · x ≤ M}.

Of course, the budget set can be also empty.

The problem faced by a consumer in a market economy is to choose

a consumption vector or a set of them from the budget set. To do this,

the consumer must have some criteria for choosing. A first method to

formalize the criterion is to assume that the consumer has a utility index,

that is a real-valued function u (or ui) defined on the set of consumption

vectors. The idea is that a consumer would prefer to consume vector

x rather than vector y if u(x) > u(y) and it would be indifferent if

u(x) = u(y). A solution to the consumer’s problem is to find all the

vectors x which maximize u on the budget set, i.e.,

Find x∗ ∈ A such that u(x∗) = max
x∈A

u(x).

This kind of problem is not so easy like it seems. But, if some restrictions

are placed on the utility index, for example if the function u is continuous

and the budget set A is compact, then from the well-known theorem of

Weierstrass, we get that there exist vectors that maximize the value of

u over the budget set, and so the proposed problem has at least a so-

lution. Unfortunately, these assumptions on the consumer’s criterion are

somewhat severe, because we would like that the consumer’s preferences

to mirror the order properties of real numbers for example, if

u(x1) = u(x2), u(x2) = u(x3), · · · , u(xn−1) = u(xn)

then

u(x1) = u(xn),
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but on the other hand one can easily imagine situations where a consumer

is indifferent between x1 and x2, between x2 and x3, etc but not between

x1 and xn. Of course, there are weaker assumptions we can make about

the preferences. These approaches involve multivalued operators, in order

to describe a consumer’s preferences. To do this, let us denote by U(x)

the set of all consumption vectors which consumer strictly prefer to x, i.

e.

U(x) = {y ∈ A|y is strictly preferred to x}, x ∈ A.

Obviously, U : A ( A and it is called the preference multifunction or the

multivalued operator of preferences. For example, in terms of the utility

function, we have

U(x) = {y ∈ A|u(y) > u(x)}.

If we consider the abstract preference multifunction U then a vector

x∗ ∈ A is an optimal preference for a given consumer if and only if

U(x∗) = ∅.

Such elements x∗ are also called U-maximal or simply maximal. It is

easy to see that any fixed point result for a multifunction generate an

existence result for an U -maximal element of the above preference mul-

tifunction. Indeed, let us suppose that

U : A → P(A)

is a multivalued operator such that

U : A → P (A)

satisfies to a fixed point theorem. If y /∈ U(y), for each y ∈ A then

there exists at least one U -maximal element of U . In order to justify

the above assertion, let us suppose by contradiction, that U(y) 6= ∅, for

any y ∈ A. From the fixed point theorem we obtain the existence of an
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element x∗ ∈ A such that x∗ ∈ U(x∗), which is a contradiction with the

hypothesis. Hence, any fixed point result for a multivalued operator is an

U -maximal existence theorem for the preference multifunction.

On the other hand, if we a preference multifunction defined by the

relation:

U(x) = {y ∈ A|y is preferred to x}, x ∈ A,

then a vector x∗ ∈ A is an optimal preference for the consumer if and

only if

{x∗} = U(x∗).

Such points are, by definition, strict fixed points of U . They are also

called end points for the multivalued dynamical system (A, U) generated

by the multivalued operator U . Hence, any strict fixed point theorem is,

in fact, an existence result for an optimal preference.

So, more general the consumer’s problem is to find all vectors which

are optimal preferences with respect to U . The set of solution to a con-

sumer’s problem for given price system p is called the demand set.

Let us discuss now something about the supplier’s problem. This is

much simpler, because the suppliers are motivated by profit. Each sup-

plier j has a production set Y (or Yj) of technologically feasible supply

vectors. A supply vector y specifies the quantities of each commodity

supplied and the amount of each commodity used as an input. Inputs

are denoted by negative quantities and outputs by positive ones. The

profit (net income) associated with a supply vector y at prices p is just

p · y =
m∑

i=1

piyi. The supplier’s problem is then to choose an element y

from the set of technologically feasible supply vectors which maximizes

the associated profit. As in the consumer’s problem, there may be no

solution, as it may pay to increase the outputs and inputs indefinitely at

ever increasing profits. The set of all solutions of the supplier’s problem

is called the supply set.

Thus, for a given price vector p, there is a set of supply vectors yj,
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for each supplier j (determined by maximizing the profit) and a set of

demand vectors xi, for each consumer i (determined by preference opti-

mality).

More precisely, let:

(s1) {y1
1, y

2
1, · · · , ys

1}
(s2) {y1

2, y
2
2, · · · , ys

2}
· · ·
(sl) {y1

l , y
2
l , · · · , ys

l }
be the supply vectors for the suppliers 1, 2, · · · l, where yj

i ∈ Rm, for

i ∈ {1, 2, · · · , l} and j ∈ {1, 2, · · · , s}.
Let

(d1) {x1
1, x

2
1, · · · , yr

1}
(d2) {x1

2, x
2
2, · · · , xs

2}
· · ·
(dn) {x1

n, x
2
n, · · · , xs

n}
be the demand vectors for the consumers 1, 2, · · ·n, where xj

i ∈ Rm,

for i ∈ {1, 2, · · · , r} and j ∈ {1, 2, · · · , s}.
Denote

S(p) := {
l∑

i=1

y
t(i)
i : t(i) = ¯1, s} − the supply set

and

D(p) := {
n∑

j=1

x
t(j)
j : t(j) = ¯1, r} − the demand set

The excess demand multifunction with respect to a given price system

p, is defined as the set of sums of demand vectors minus the set of sums

of supply vectors (i.e., the demand set minus the supply set) and it is

denoted by E(p). Obviously, E is a multivalued operator

E : Rm
+ ( Rm, given by E(p) := D(p)− S(p).

The notion of equilibrium that I am now recalling was basically for-

malized by Leon Walras in 1874.
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By definition, a price vector p∗ ∈ Rm is a Walrasian equilibrium price

if

0 ∈ E(p∗).

This means that some combinations of supply and demand vectors adds

up to zero. We may say that p∗ clears the market.

There exists another situation called a Walrasian free disposal equilib-

rium. That is the following situation: some commodities might be allowed

to be in excess supply at equilibrium provided their price is zero. So, the

price p∗ is a Walrasian free disposal equilibrium price if there exists

z ∈ E(p∗) such that z ≤ 0 and whenever zi << 0 then p∗i = 0.

Of fundamental importance to this approach is a property of the ex-

cess demand multifunction known as Walras’ law. Shortly, Walras’ law

says that if the profits of all suppliers are returned to consumers as div-

idends, then the value at prices p of any excess demand vector must be

non-positive. This happens because the value of each consumer’s demand

must be no more than his income and the sum of all incomes must be the

sum of all profits from suppliers. Thus, the value of total supply must be

at least as large as the value of total demand. If each consumer spends

all his income, then these two values are equal and the value of excess

demand multifunction must be zero.

Let us present now briefly an example of how the excess demand mul-

tifunction can be expressed. We will consider, for simplicity, the problem

of sharing between ”n” consumers a commodity bundle w, i. e. the supply.

So, the problem is to find n commodity bundles xi, such that
n∑

i=1

xi ≤ w.

A solution to this problem is called an allocation of w. The solution pro-

posed by Walras and his followers consists in letting price systems play

a crucial role. Namely, a consumer i is defined as an automaton asso-

ciating to every price vector p and every income r (in monetary units)

its demand di(p, r), which is the commodity bundle that he buys when

the price system is p and its income is r. So it is assumed that demand
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operator di describes the behavior of the consumer i. Let us recall that,

neoclassical economists assume that demand operators derive from the

maximization of an utility function. But, in what follows, we assume that

consumers are just demand operators di(·, ·) independent of the supply

bundle w.

We also assume that an income allocation of the gross income w is

given. This means the following: if p is the price vector, the gross income

is the value p · w of the supply w. We then assume that gross income

r(p) = p · w is allocated among consumers in incomes ri(p) and hence

r(p) =
n∑

i=1

ri(p). We must observe that the model does not provide this

allocation of income, but assumes that it is given. An example of such an

income allocation is supplied by the so-called exchange economies, where

the supply w is the sum of n supply bundles wi brought to the market

by n consumers. So, in this case r(p) = p · w and ri(p) = p · wi is the

income derived by consumer i from its supply bundle wi. In summary,

the mechanism we are about to describe depends upon:

1) the description of each consumer i by its demand operator di(·, ·)

2) an allocation r(p) =
n∑

i=1

ri(p) of the gross income.

The mechanism works if and only if demand balances supply, i. e. if

and only if
n∑

i=1

di(p, ri(p)) ≤ w. (*)

A solution p∗ to this problem is a Walrasian equilibrium price.

There is no doubt that Adam Smith (1776) is at the origin of what we

now call descentralization, i. e. the ability of a complex system, moved by

different actions to pursuit of different objectives to achieve an allocation

of scarce resources: ”Every individual endeavors to employ his capital so

that its produce may be of greatest value. He generally neither intends

to promote the public security, nor knows how much he is promoting it.
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He intends only his own security, only his own gain. And he is in this

led by an invisible hand to promote and end which has no part of his

intention. By pursuing his own interest, he frequently thus promotes that

of society more effectively that when he really intends to promote it”.

However, Adam Smith did not provide a careful statement of what the

invisible hand manipulates, nor a fortiori, a rigorous argument for its

existence. We had to wait a century for Leon Walras to recognize that

price systems are the elements on which the invisible hand acts and that

actions of different agents are guided by those price systems, providing

enough information to all the agents for guaranteeing the consistency of

their actions with the scarcity of available commodities. (see Aubin and

Cellina [4] or Aubin [3], for more comments and details.)

Hence, if Adam Smith’s invisible hand does provide a Walras equi-

librium p∗, then the consumers i are led to demand commodities

di(p
∗, ri(p

∗)), that permits to share w according to the desire of every-

body.

So, the task is to solve problem (∗).
It is remarkable that a sufficient condition with a clear economic

interpretation is the following financial constraint on the behavior of the

consumers, the so-called individual Walras law:

p · di(p, ri) ≤ ri, for each i ∈ {1, · · · , n}.

The individual Walras law forbids consumers to spend more than their

incomes.

Another hypothesis which appear is the so-called collective Walras

law:
n∑

i=1

p · di(p, ri) ≤
n∑

i=1

ri.

This law allows financial transactions among consumers.

Both laws do not involve the supply bundle w. A more general model

suppose that the supply is not given, but has to be chosen in a set X∗ of
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available commodity bundles supplied to the market. Thus, the income

derived from this set X∗ is r(p) = sup
w∈X∗

p ·w. When X∗ is reduced to one

supply vector w, we fall back to the case we have considered above.

The mechanism is described by:

i) the ”n” demand operators di(·, ·)

ii) an income allocation r(p) =
n∑

i=1

ri(p), which depends upon X∗

via the above formula.

The problem is to find a price p∗ (a Walrasian equilibrium), cleaning

the market in the sense that:

n∑
i=1

di(p
∗, ri(p

∗)) ∈ X∗.

This means that the sum of the demands lies among the set of available

supplies. If we define the excess demand multifunction E by:

E(p) =
n∑

i=1

di(p
∗, ri(p

∗))−X∗,

then a Walrasian equilibrium p∗ is a solution of the following inclusion:

0 ∈ E(p∗).

Hence, an existence result for the zero-point element of the multivalued

operator E (i. e. an element p∗ ∈ X with 0 ∈ E(p∗)) is, basically, an

existence theorem for a Walrasian equilibrium price of the market.

Of course, there are also many bad points of these models. The first

is that the fundamental nature of Walras world is static, while we live in

a dynamical environment, where no equilibria have been observed. There

exist also several dynamical models built on the ideas of the Walras

hypothesis. More precisely, one regard the price system not as a state of

a dynamical system whose evolution law is known, but as a control which

evolves as an operator of the consumptions according to a feedback law.
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1.2 Equilibrium price, variational inequali-

ties and the complementarity problem.

A particular case of the above model is when the excess demand multi-

function is a singlevalued operator. We will consider now the case when

excess demand set is a singleton for each price vector p and the price

vectors are non-negative. So, for each price vector p, there is a vector

f(p) of excess demands for each commodity. We assume that f is con-

tinuous. A very important property of market excess demand operator is

the individual Walras law. The mathematical statement of Walras’ law

for this singlevalued case can take either two forms. The strong form of

Walras’ law is:

p · f(p) = 0, for all p ,

while the weak form of Walras law replaces the equality by the weak

inequality:

p · f(p) ≤ 0, for all p .

The economic meaning of Walras’ law is that in a closed economy, at

most all of everyone’s income is spent. To see how the mathematical

statement follows from the economic hypothesis, first consider the case

of a pure exchange economy. The k-th consumer comes to market with a

vector wk of commodities and leaves with a vector xk of commodities. If

all the consumers face the price vector p, then their individual budgets

require that p · xk ≤ p · wk, that is they cannot spend more than they

earn. In this case, the excess demand operator is: f(p) =
∑

xk−
∑

wk, i.

e. the sum of total demands minus the sum of total supply. Summing up

the individual budget constraints and rearranging terms we obtain that:∑
p · (xk − wk) ≤ 0 or equivalently p ·

∑
(xk − wk) ≤ 0. Hence we have

obtained: p · f(p) ≤ 0, the weak form of Walras law. The strong form

obtains if each consumer spends all his income.

The case of a production economy is similar. The j-th supplier pro-
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duces a net output vector yj, which yields a net income of p · yj. In a

private ownership economy this net income is redistributed to consumers.

The new budget constraint form for a consumer is :

p · xk ≤ p · wk +
∑

j

αk
j p · yj,

where αk
j is consumers’ k’s share of profits of firm j. Thus

∑
k

αk
j = 1, for

each j. So, the excess demand operator f(p) =
∑

k

xk −
∑

k

wk −
∑

j

yj.

Again adding up the budget constraints and rearranging terms yields p ·
f(p) ≤ 0. The law remains true even if consumers may borrow from each

other, as long as, no borrowing from outside the economy takes place.

Also, we can restrict the prices to belong to the standard simplex because

both constraints and the profit functions are positively homogeneous in

prices. Thus we can normalize prices.

By definition, p∗ ∈ Rm
+ is said to be an equilibrium price if f(p∗) = 0.

A free disposal equilibrium price is a price vector p∗ ∈ Rm
+ satisfying

f(p∗) ≤ 0.

Let us remark that, if p∗ ∈ Rm
+ is a free disposal equilibrium price

and the strong form of Walras law take place (i. e. p · f(p) = 0), then

fi(p
∗) < 0 for some i necessarily implies p∗i = 0, i.e., if a commodity is in

excess, then the price must be zero.

A mathematical more general problem is what is known as the non-

linear complementarity problem. The function f is assumed to be con-

tinuous and its domain is a closed convex cone C (a set C is a cone if for

any x ∈ C and each λ ∈ R+ we have that λx ∈ C) in Rm. The problem

is:

find p∗ ∈ C such that f(p∗) ∈ C∗ and p∗ · f(p∗) = 0.

(Here C∗ := {y ∈ Rm : y · x ≤ 0 for each x ∈ C} is the dual of the cone

C.)
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If in particular, C is the non-negative cone Rm
+ , then its dual C∗ = Rm

−

and so f(p∗) ∈ C∗ becomes f(p∗) ≤ 0. In this case, since f(p∗) ≤ 0 can

be also writen p · f(p∗) ≤ 0, for each p ∈ Rm
+ , then we immediately get

that p · f(p∗) ≤ p∗ · f(p∗) = 0 and so the problem becomes:

find p∗ ∈ Rm
+ such that p · f(p∗) ≤ p∗ · f(p∗), for each p ∈ Rm

+ .

Of course, the complementarity problem could be formulated in a

more general setting, for example in a Hilbert space or in a dual system

of locally convex spaces (E, E∗), see Isac [8].

So, in both, the price problem and the complementarity problem there

is a cone C and a function f defined on C and we are looking for a p∗ ∈ C

satisfying f(p∗) ∈ C∗. As we already mentioned above, another way to

write the condition f(p∗) ∈ C∗ is the following:

p · f(p∗) ≤ 0, for all p ∈ C.

Since in both problems (in the price problem, on the assumption of the

strong Walras’ law, while in the complementarity problem, by definition)

p∗ · f(p∗) = 0, we can rewrite this as:

p · f(p∗) ≤ p∗ · f(p∗), for all p ∈ C.

A system of inequalities of the above form is called a system of varia-

tional inequalities, because it compares expressions involving f(p∗) and

p∗ with expressions involving f(p∗) and p, where p can be viewed as a

variation of p∗. The intuition involved in these situation is the following:

if a commodity is in excess demand, then its price should be raised and

if it in excess supply, then its price should be lowered. This increases the

value of demand. Let us say that price p is better than price p∗ if p gives

a higher value to p∗’s excess demand than p∗ does. The variational in-

equalities tell us that we are looking for a maximal element of this binary

relation. Of course, a multivalued operator is then involved, namely

U(p) = {q ∈ C|q · f(p) > p · f(p)}, p ∈ C,
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and, as we mentioned above, we are looking for an element p∗ ∈ C such

that U(p∗) = ∅.

If we consider f : Rm
+ → Rm and we denote by (VIP) the variational

inequalities problem and by (CP) the complementarity problem then:

(V IP ) find p∗ ∈ Rm
+ such that p · f(p∗) ≤ p∗ · f(p∗), for each p ∈ Rm

+ .

(CP ) find p∗ ∈ Rm
+ such that f(p∗) ∈ Rm

− and p∗ · f(p∗) = 0

are equivalent.

Indeed, if p∗ ∈ Rm
+ is a solution of (CP) then f(p∗) ∈ Rm

− and p∗ ·
f(p∗) = 0. Then p · f(p∗) ≤ 0 = p∗ · f(p∗), for each p ∈ Rm

+ and so p∗ is a

solution of (VIP).

For the reverse implication, let p∗ ∈ Rm
+ is a solution of (VIP). Then

f(p∗) · (p− p∗) ≤ 0, for each p ∈ Rm
+ . By taking p = 0 and p = 2p∗ in the

above relation, we immediately get that

f(p∗) · p∗ = 0.

Next, we need to show now that f(p∗) ∈ Rm
− . If we suppose by contra-

diction that here exists i ∈ {1, 2, · · · , m} such that fi(p
∗) > 0 then, by

a suitable choice for the vector p (with a large pi > 0) we obtain a con-

tradiction with f(p∗) · (p− p∗) ≤ 0. This shows that fi(p
∗) > 0, for each

i ∈ {1, 2, · · · , m}. See also G. Isac [7], pp. 63.

Finally, we would like to point out another (obvious) connection with

fixed point theory. Let H be a Hilbert space and K be a convex cone in

H. Let f : K → H be an operator defining a complementarity problem.

Then, x∗ is a solution for the complementarity problem if and

only if x∗ is a fixed point of the operator g := 1K + f .

For important contributions in the field of complementarity theory

and connections to mathematical economics and variational inequalities

theory see Isac [7], [8], Isac, Bulavski, Kalashnikov [9].
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