
Chapter 1

The Arrow-Debreu model

1.1 Exchange economies

In the pure theory of international trade, we consider several countries

exchanging goods on international markets at fixed terms of trade. This

model is the genesis of the exchange economies that we discuss in this

and the next two sections. Here, we shall prove the existence of prices -

terms of trade - which clear all markets. Such prices are called equilibrium

prices.

The symbol PR will denote the set of all preferences on Rm
+. We start

our discussion with a general definition of exchange economies with a

finite dimensional commodity space.

Definition 1.1.1 An exchange economy E is a function from a non-

empty set A (called the set of agents or consumers) into Rm
+ × P, i.e.,

E : A → Rm
+ × P .

If E : A → Rm
+ × P is an economy, then the value Ei = (ωi,�i)
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represents the characteristics of agent i; the element ωi is called his initial

endowment and �i his preference or taste. If p is any price vector, then

the non-negative real number p · ωi is called the income of agent i at

prices p and is denoted by ωi, i.e., ωi = p · ωi. When A is a finite set,

the vector ω =
∑
i∈A

ωi is called the total (or the aggregate or the social)

endowment of the economy.

In this section, we shall study an important class of exchange

economies - the neoclassical exchange economies. Their definition is as

follows.

Definition 1.1.2 A neoclassical exchange economy is exchange

economy E : A → Rm
+ × P such that:

1) The set A of agents is finite;

2) Each agent i has a non-zero initial endowment ωi (i.e., ωi > 0)

and his preference relation �i is neoclassical; and

3) The total endowment ω =
∑
i∈A

ωi is strictly positive, i.e. ω � 0

holds.

For the rest of our discussion in this section E will always indicate a

neoclassical exchange economy. In this case, each agent i has a neoclassi-

cal preference �i, and hence, by the discussion in Section 1.3, each agent

i has a demand function xi : Int(Rm
+) → Rm

+. The aggregate demand

minus the total endowment is known as the excess demand function.

Definition 1.1.3 If E is a neoclassical exchange economy, then the ex-

cess demand function for the economy E is the function ζ : Int(Rm
+) →

Rm defined by

ζ(p) =
∑
i∈A

xi(p)−
∑
i∈A

ωi =
∑
i∈A

xi(p)− ω.
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In component form the excess demand function will be denoted as

ζ(·) = (ζ1(·), ζ2(·), . . . , ζm(·)).

The basic properties of the excess demand function are described in

the next theorem.

Theorem 1.1.4 The excess demand function ζ of a neoclassical ex-

change economy satisfies the following properties.

1) ζ is homogeneous of degree zero, i.e., ζ(λp) = ζ(p) holds for all

p � 0 and all λ > 0.

2) ζ is continuous and bounded from below.

3) ζ satisfies Walras’ Law, i.e., p · ζ(p) = 0 holds for all p � 0.

4) If a sequence {pn} of strictly prices satisfies

pn = (pn
1 , p

n
2 , . . . , p

n
m) → p = (p1, p2, . . . , pm)

and pk > 0 holds for some k, then the sequence {ζk(pn)} of the kth

components of {ζ(pn)} is bounded.

5) If pn � 0 holds for each n and pn → p ∈ ∂Rm
+ \ {0}, then there

exists at least one k such that lim sup
n→∞

ζk(pn) = ∞.

Proof. (1) The desired conclusion follows from the fact that xi(λp) =

xi(p) holds for all p � 0, all λ > 0 and all i ∈ A.

(2) The continuity of the excess demand function follows immediately

from Theorem 1.1.8. Since xi(p) ≥ 0 holds for each i, we see that ζ(p) ≥
−ω holds for each p ∈ Int(Rm

+) and so ζ is bounded from below.

(3) If p � 0, then we have

p · ζ(p) = p ·
∑
i∈A

[xi(p)− ωi] =
∑
i∈A

[p · xi(p)− p · ωi] =
∑
i∈A

0 = 0.
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Finally, note that the validity of (4) and (5) can be established easily

by invoking Theorem 1.1.9. �

We now define the notion of an equilibrium price vector for a neoclas-

sical exchange economy.

Definition 1.1.5 A strictly positive price p is said to be an equilib-

rium price for a neoclassical exchange economy whenever

ζ(p) = 0.

Does every neoclassical exchange economy have an equilibrium price

? The celebrated Arrow-Debreu theorem says yes! The rest of the section

is devoted to establishing this result.

Since the excess demand function ζ is homogeneous of degree zero (in

other words, ζ(λp) = ζ(p) holds for all λ > 0), we see that a strictly

positive price p is an equilibrium price if and only if ζ(λp) = 0 holds for

all λ > 0. In other words, if p is an equilibrium price, then the whole

half-ray {λp : λ > 0} consists of equilibrium prices. This means that

the search for equilibrium prices can be confined to sets that contain at

least one element from each half-ray. The two most commonly employed

normalization of prices are the two sets

∆ = {p ∈ Rm
+ : p1 + p2 + . . . + pm = 1}

and

Sm−1 = {p ∈ Rm
+ : (p1)

2 + (p2)
2 + . . . + (pm)2 = 1}.

Their geometric meaning is shown in Figure ??; notice that each half-

ray determined by a positive vector p intersects both sets. In this chapter,

we shall work exclusively with the ”simplex” ∆.
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Clearly, ∆ is a convex and compact subset of Rm
+. The set of all strictly

positive prices of ∆ will be denoted by S and is the set

S = {p ∈ ∆ : pi > 0 for i = 1, 2, . . . ,m}.

Now we can consider the excess demand function ζ as a function from

S into Rm. According to Theorem 1.1.4, the function ζ : S → Rm has

the following characteristic properties.

Theorem 1.1.6 If ζ(·) = (ζ1(·), ζ2(·), . . . , ζm(·)) is the excess demand

function for a neoclassical exchange economy, then

1. ζ is continuous and bounded from below on S;

2. ζ satisfies Walras’ Law, i.e., p · ζ(p) = 0 holds for each p ∈ S;

3. {pn} ⊆ S, pn → p = (p1, . . . , pm) and pk > 0 imply that the

sequence {ζk(pn)} of the kth components of {ζ(pn)} is bounded; and

4. pn → p ∈ ∂S with {pn} ⊆ S imply lim
n→∞

||ζ(pn)||1 = ∞.

To establish that every neoclassical exchange economy has an equi-

librium price, we shall invoke a fixed point theorem due to S. Kakutani.

For convenience, we recall a few things about correspondences. A corre-

spondence (or a multivalued function) betweeb two sets X and Y is any

function φ : X → 2Y , i.e., the value φ(x) is a subset of Y for each x. As

usual, 2Y denotes the set of all subsets of Y . The graph of a correspon-

dence φ : X → 2Y is the subset of X × Y defined by

Gφ = {(x, y) ∈ X × Y : x ∈ X and y ∈ φ(x)}.

If X and Y are topological spaces, then a correspondence φ : X → 2Y

is said to have a closed graph whenever its graph Gφ is a closed subset

of X × Y . A point x ∈ X is said to be a fixed point for a correspondence
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φ : X → 2X whenever x ∈ φ(x) holds. The fixed point theorem of S.

Kakutani can be stated now as follows.

Theorem 1.1.7 (Kakutani) Let C be a non-empty, compact and convex

subset of some Rm. If φ : C → 2C is a non-empty and convex-valued

correspondence with closed graph, then φ has a fixed point, i.e., there

exists some x ∈ C with x ∈ φ(x).

We are now ready to establish a general result that will guarantee the

existence of equilibrium prices for every neoclassical exchange economy.

Theorem 1.1.8 For a function ζ(·) = (ζ1(·), ζ2(·), . . . , ζm(·)) from S
into Rm assume that:

1) ζ is a continuous and bounded from below;

2) ζ satisfies Walras’ Law, i.e., p · ζ(p) = 0 holds for each p ∈ S;

3) {pn} ⊆ S, pn → p = (p1, . . . , pm) and pi > 0 imply that the

sequence {ζi(pn)} of the ith components of {ζ(pn)} is bounded; and

4) pn → p ∈ ∂S with {pn} ⊆ S imply lim
n→∞

||ζ(pn)||1 = ∞.

Then, there exists at least one vector p ∈ S satisfying ζ(p) = 0.

Proof. Let ζ : S → Rm be a function satisfying the four properties of

the theorem. As usual, ζ will be written in component form as ζ(·) =

(ζ1(·), ζ2(·), . . . , ζm(·)).
For each p ∈ S, we define a subset Λ(p) of {1, 2, . . . ,m} by

Λ(p) = {k ∈ {1, 2, . . . ,m} : ζk(p) = max{(ζi(p) : i = 1, 2, . . . ,m)}.

That is, when p ∈ S, the set Λ(p) consists of all those commodities

which have the greatest excess demand. Clearly, Λ(p) 6= ∅. For p ∈
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∆ \ S = ∂S, let

Λ(p) = {k ∈ {1, 2, . . . ,m} : pk = 0}.

Clearly, Λ(p) 6= ∅ holds in this case too.

Now we define a correspondence φ : ∆ → 2∆ by the formula

φ(p) = {q ∈ ∆ : qk = 0 for all k 6∈ Λ(p)}.

Since Λ(p) 6= ∅, it easily follows that φ(p) 6= ∅ for all p ∈ ∆. More-

over, note that φ(p) is a convex and compact subset of ∆ - in fact, φ(p) is

a face of ∆. In addition, note that if Λ(p) = {1, 2, . . . ,m}, then φ(p) = ∆.

Thus, we have defined a correspondence φ : ∆ → 2∆ which is non-

empty, compact, and convex-valued. We claim that φ has also a closed

graph.

To establish that φ has a closed graph, assume that pn → p in ∆,

πn → π in ∆ and πn ∈ φ(pn) for each n. we have to show that π ∈ φ(p).

We distinguish two cases.

Case I. p ∈ S.

In this case, we can assume that pn � 0 holds for each n. Now let

k 6∈ Λ(p). This means that ζk(p) < max{ζi(p) : i = 1, 2, . . . ,m}. Since

ζ is continuous at p, there exists some N such that

ζk(pn) < max{ζi(pn) : i = 1, 2, . . . ,m}

holds for all n ≥ N , and therefore k 6∈ Λ(pn) holds for all n ≥ N . Now

from the relation πn = (πn
1 , πn

2 , . . . , πn
m) ∈ φ(pn), we see that πn

k = 0 for

all n ≥ N . In view of πn → π, we have lim
n→∞

πn
k = πk, and so πk = 0. In

other words, πk = 0 holds for all k 6∈ Λ(p), and so π ∈ φ(p).

Case II. p ∈ ∆ \ S = ∂S.
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Without loss of generality, we can suppose that p =

(0, 0, . . . , 0, pr+1, . . . , pm), where 1 ≤ r < m and pi > 0 holds for

each i = r + 1, r + 2, . . . ,m. In this case we distinguish two subcases.

Case IIa. There exists a subsequence of {pn} (which we can assume

it to be {pn} itself) lying in S.

In this case, note that Λ(p) = {1, 2, . . . , r}, and so

φ(p) = {q ∈ ∆ : qi = 0 for i = r + 1, r + 2, . . . ,m}.

Now from our hypothesis, it follows that the sequence {ζi(pn)} is

bounded for each i = r + 1, . . . ,m and that lim
n→∞

||ζ(pn)||1 = ∞. There-

fore, since ζ is bounded from below, there exists some n0 such that

Λ(pn) ⊆ {1, 2, . . . , r} holds for each n ≥ n0. The latter and πn ∈ φ(pn)

imply πn ∈ φ(p) for all n ≥ n0. Consequently π = lim
n→∞

πn ∈ φ(p).

Case IIb. No subsequence of {pn} lies in S.

In this case, we can assume {pn} ⊆ ∂S and p =

(0, . . . , 0, pr+1, . . . , pm). Since lim
n→∞

pn
i = pi holds for each i = 1, . . . ,m,

we infer that there exists some N such that Λ(pn) ⊆ {1, . . . , r} holds for

all n ≥ N . From πn ∈ φ(pn), it follows that πn
i = 0 for all n ≥ N and all

i = r + 1, r + 2, . . . ,m. This (in view of πn → π) implies that πi = 0 for

i = r + 1, . . . ,m and so π ∈ φ(p).

Thus, we have established that the correspondence φ has a closed

graph. Now, by Kakutani’s fixed point theorem (Theorem 1.1.7), φ has

a fixed point, say p, i.e., p ∈ φ(p). We claim that p is an equilibrium

price.

To see this, note first that p 6∈ ∂S. Indeed, if p ∈ ∂S, then we have

pk = 0 for each p = 0 6∈ ∆, a contradiction. Thus, p ∈ S, i.e., p � 0.

Next, put M = max{ζi(p) : i = 1, 2, . . . ,m}, and note that pi > 0
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for all i = 1, . . . ,m and p ∈ φ(p) imply that Λ(p) = {1, 2, . . . ,m}. This

means that ζi(p) = M holds for each i. On the other hand, using Walras’

Law, we see that

M =

(
m∑

i=1

pi

)
M =

m∑
i=1

piM =
m∑

i=1

piζi(p) = p · ζ(p) = 0,

and this implies that ζ(p) = 0. The proof of the theorem is now complete.

�

A special form of Arrow-Debreu theorem can be stated as follows.

Theorem 1.1.9 (Arrow-Debreu) Every neoclassical exchange economy

has an equilibrium price, i.e., there exists at least one price p � 0 satis-

fying ζ(p) = 0.

Proof. The conclusion follows immediately by observing that (by Theo-

rem 1.1.6) any excess demand function satisfies the hypothesis of Theo-

rem 1.1.8. �

Is should be emphasized that the proof of the preceding result is non

constructive. It guarantees the existence of equilibrium prices but it does

not provide any method of computing them. A constructive proof of the

existence was first given by H. E. Scarf. As a matter of fact, it is very

difficult to predict where the equilibrium prices lie on the simplex even

in very simple cases. The next example illustrates this point.

Example 1.1.10 Consider an economy having R2 as commodity space

and three agents - i.e., A = {1, 2, 3} - with the following characteristics:

Agent 1: Initial endowment ω1 = (1, 2) and utility function u1(x, y) =

xy.
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Agent 2: Initial endowment ω2 = (1, 1) and utility function u2(x, y) =

x2y.

Agent 3: Initial endowment ω3 = (2, 3) and utility function u3(x, y) =

xy2.

Note that the preferences represented by the above utility functions

are all neoclassical - and all are only strictly monotone on Int(R2
+). The

total endowment is the vector ω = ω1 + ω2 + ω3 = (4, 6).

Next, we shall determine the demand functions x1(·), x2(·) and x3(·).
To this end, let p = (p1, p2) � 0 be fixed.

The first agent maximizes the utility function u1(x, y) = xy subject to

the budget constraint p1x+p2y = p2 +2p2. Employing Lagrange multipli-

ers, we see that at the maximizing point we must have ∇u = (y, x) = λp.

This leads us to the system of equations

y = λp1, x = λp2 and p1x + p2y = p1 + 2p2.

Solving the above system, we obtain

x1(p) =

(
p1 + 2p2

2p1

,
p1 + 2p2

2p2

)
.

The second agent maximizes the utility function u2(x, y) = x2y subject

to p1x + p2y = p1 + p2. Using Lagrange multipliers again, we obtain the

system

2xy = λp1, x2 = λp2 and p1x + p2y = p1 + p2.

Solving the system, we obtain

x2(p) =

(
2p1 + 2p2

3p1

,
p1 + p2

3p2

)
.
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Finally, for the third agent we have the system

y2 = λp1, 2xy = λp2 and p1x + p2 = 2p1 + 3p2,

from which we get

x3(p) =

(
2p1 + 3p2

3p1

,
4p1 + 6p2

3p2

)
.

Therefore,

x1(p) + x2(p) + x3(p) =

(
11p1 + 16p2

6p1

,
13p1 + 20p2

6p2

)
and so

ζ(p) =

(
11p1 + 16p2

6p1

,
13p1 + 20p2

6p2

)
− (4, 6)

=

(
−13p1 − 16p2

6p1

, . . .
13p1 − 16p2

6p2

)
.

Clearly, ζ(p) = 0 holds if and only if 13p1 − 16p2 = 0. Taking into

account that p1 + p2 = 1, we infer that an equilibrium price is

peq =

(
16

29
,
13

29

)
≈ (0.45, 0.55).

The equilibrium half-ray is ”close” to the bisector line p2 = p1.
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