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Abstract. In this article, we introduced two iterative processes consisting of an inertial term,

forward-backward algorithm and generalized contraction for approximating the solution of monotone

variational inclusion problem. The motivation for this work is to prove the strong convergence of
inertial-type algorithms under some relaxed conditions because many of the existing results in this

direction have only achieved weak convergence. We note that when the space is finite dimension,

there is no disparity between weak and strong convergence, however this is not the case in infinite
dimension. We provide some numerical examples to justify that inertial algorithms converge faster

than non-inertial algorithms in terms of number of iterations and cpu time taken for the computation.
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1. Introduction

Let H be a real Hilbert space. An operator S : H → 2H is said to be monotone if
for any x, y ∈ H, we have

〈u− v, x− y〉 ≥ 0,

for u ∈ Sx and v ∈ Sy. A monotone operator S is said to be maximal if the graph
of S, Gr(S) := {(x, u) ∈ H ×H : u ∈ Sx} is not a subset of the graph of any other
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monotone operator. The problem of finding zeroes of sum of two monotone operators
S and T , namely, a solution to the inclusion problem

0 ∈ (S + T )x (1.1)

continues to be a very attractive research area due to its vast applications in solving
real-life problems that can be formulated in this form. For instance, a stationary
solution to the initial value problem of the evolution equation

0 ∈ ∂u

∂t
+ Fu, u(0) = u0,

can be formulated as (1.1), where the governing maximal monotone operator F is of
the form F := S + T (see [21]). Also in optimization problem, there is often needs to
solve the minimization problem of the form

min
x∈H
{f(x) + h(Bx)}, (1.2)

where f, h : H → R ∪ {+∞} are proper lower semi-continuous convex functions and
B is a bounded linear operator on H. As a matter of fact, problem (1.2) is equivalent
to (1.1) (assuming that f and h◦B have a common point of continuity) with S := ∂f
and T := B∗ ◦ ∂h ◦ B where B∗ is the adjoint of B and ∂f is the subdifferential
operator of f in the sense of convex analysis. It is known that the minimization
problem (1.2) and related optimization problems are widely used in image recovery,
signal processing and machine learning (see, for instance [12]).
The classical Forward-Backward Splitting (FBS) algorithm for solving Problem (1.1)
is given by the following recursion formula

xn+1 = (I + λT )−1

backward︸ ︷︷ ︸ (xn − λSxn)
forward︸ ︷︷ ︸ , λ > 0, n ∈ N. (1.3)

In the last several years, different modifications of te FBS algorithm have been con-
sidered by many authors, see for instance [8, 13, 20, 22] and reference therein. One
of the popular methods used for accelerating the speed of convergence of iterative
schemes is the multi-step method which can be viewed as the following discretization
of the second-order dynamical system with friction:

ẍ(t) + γẋ(t) +∇ϕ(x(t)) = 0,

where γ > 0 represents a friction parameter and ϕ : H → R is a differentiable
function. This can be formulated as a two-step heavy ball method, in which, given
xn and xn−1, the next point xn+1 is determined via

xn+1 − 2xn + xn−1

h2
+ γ

xn − xn−1

h
+∇ϕ(xn) = 0,

for h > 0, which results in an iterative algorithm of the form

xn+1 = xn + β(xn − xn−1)− α∇ϕ(xn), (1.4)

for each n ≥ 0, where β = 1− γh and α = h2. In 1964, Polyak [31] first used (1.4) to
solve the optimization problem:

minϕ(x),
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for all x ∈ H and called it an inertial type extrapolation algorithm. In 1987, Polyak
[30] also considered the relationship between the heavy ball method and the following
conjugate gradient method

xn+1 = xn + βn(xn − xn−1)− αn∇ϕ(xn), (1.5)

for each n ≥ 0, where αn and βn can be choosen through different ways. It is obvious
that the only difference between the heavy ball method (1.4) and (1.5) is the choice
of the parameters.
From Polyak’s work, as an acceleration process, the inertial extrapolation algorithms
were widely studied by many researchers, see, for instance [1, 3, 19] and references
therein. In [4], Alvarez and Attouch translated the idea of the heavy ball method
to the setting of a general maximal monotone operator using the framework of the
proximal point algorithm. The resulting algorithm which was called inertial proximal
point algorithm is written as:{

yn = xn + αn(xn − xn−1),

xn+1 = (I + rnT )−1yn, n ≥ 1.
(1.6)

They showed that if {rn} is non-decreasing and αn ∈ [0, 1) is such that
∞∑
n=0

‖xn − xn−1‖2 <∞, (1.7)

then the algorithm (1.6) converges weakly to a zero of T.
In subsequent work, Moudafi and Oliny [28] introduced an additional single-valued
and Lipschitz continuous operator S into the inertial proximal point algorithm:{

yn = xn + αn(xn − xn−1),

xn+1 = (I + rnT )−1(yn − rnSxn), n ≥ 1.
(1.8)

They proved that the sequence generated by (1.8) converges weakly to a solution of
Problem (1.1) provided that (1.8) satisfied the condition (1.7) used in [4]. Note that
(1.8) does not take the form of the FBS algorithm since S is still evaluated at the
point of {xn}.
Recently, Cholomjiak et al. [11] introduced the following inertial FBS algorithm for
approximating solution of Problem (1.1) where T : H → 2H is maximal monotone,
S : H → H is α-inverse strongly monotone and finding the fixed point of quasi-
nonexpansive mapping U in Hilbert spaces: Given x0, x1 ∈ H compute

zn = xn + θn(xn − xn−1),

zn = αnyn + (1− αn)Uyn,

xn+1 = βnzn + (1− βn)JTrn(I − rnS)zn, n ≥ 1,

where JTrn = (I + rnT )−1, {rn} ⊂ (0, 2α), {θn} ⊂ [0, θ] for some θ ∈ [0, 1) and
{αn}, {βn} are sequences in [0, 1]. They proved a weak convergence theorem, provided
the following conditions are satisfied:

(i)
∑∞
n=1 θn||xn − xn−1|| <∞,

(ii) 0 < lim inf n→∞αn ≤ lim supn→∞ αn < 1,
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(iii) lim sup
n→∞

βn < 1,

(iv) 0 < lim inf
n→∞

rn ≤ lim sup
n→∞

rn < 2α.

In this paper, we introduce some inertial FBS algorithms for approximating solution
of Problem (1.1) without necessarily imposing condition (1.7). Using the concept of
generalized contraction, we prove strong convergence results for the sequence gener-
ated by our algorithms under some mild conditions. It is worthy to note that strong
convergence algorithms are more desirable than the weak convergence ones when
solving optimization problems (see [7]). We also give some application and numerical
example to illustrate the applicability of our proposed methods.

2. Preliminaries

In this section, we give some basic definitions and results which will be used in
the sequel. We denote the strong convergence of {xn} to a by xn → a and the weak
convergence of {xn} to a by xn ⇀ a.
Let H be a Hilbert space and C be a nonempty, closed and convex subset of H. The
metric projection PC : H → C is defined, for each x ∈ H, as the unique element
PCx ∈ C such that

‖x− PC(x)‖ = min{‖x− y‖ : y ∈ C}.

It is well known that PC satisfies the following properties:

(i) 〈x− y, PC(x)− PC(y)〉 ≥ ‖PC(x)− PC(y)‖2, for every x, y ∈ H;
(ii) for x ∈ H and z ∈ C, z = PC(x)⇔

〈x− z, z − y〉 ≥ 0, ∀y ∈ C; (2.1)

(iii) for x ∈ H and y ∈ C,

‖y − PC(x)‖2 + ‖x− PC(x)‖2 ≤ ‖x− y‖2. (2.2)

Given x, y ∈ H, y 6= 0, let Q = {z ∈ H : 〈y, z − x〉 ≤ 0}. Then, for all u ∈ H, the
projection PQ(u) is defined by

PQ(u) = u−max
{

0,
〈y, u− x〉
‖y‖2

}
y, (2.3)

which gives us an explicit formula for finding the projection of any point onto a half
space.
Lemma 2.1. [29] Let H be a real Hilbert space. Then for all x, y, z ∈ H and
α, β, γ ∈ [0, 1] with α+ β + γ = 1, we have

‖αx+ βy+ γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 −αβ‖x− y‖2 −αγ‖x− z‖2 − βγ‖y− z‖2.

Let S : D(S) → H be a nonlinear mapping defined on D(S) ⊂ H. A point x ∈ H
is called a fixed point of S if Sx = x. We denote the set of all fixed points of S by
F (S). Then S is said to be
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(i) a contraction if there exists α ∈ [0, 1) such that

‖Sx− Sy‖ ≤ α‖x− y‖, ∀x, y ∈ D(S). (2.4)

If α = 1, then S is called a nonexpansive mapping;
(ii) quasi-nonexpansive if F (S) 6= ∅ and

‖Sx− p‖ ≤ ‖x− p‖, x ∈ D(S) and p ∈ F (S);

(iii) firmly nonexpansive if for all x, y ∈ D(S), we have

‖Sx− Sy‖2 ≤ 〈Sx− Sy, x− y〉;
(iv) β-inverse strongly monotone (shortly β-ism) if there exists β > 0 such that

〈x− y, Sx− Sy〉 ≥ β‖Sx− Sy‖2, ∀x, y ∈ D(S).

It is well known that the projection mapping PC is nonexpansive and 1-ism. Also,
the mapping S is nonexpansive if and only if I − S is monotone, where I is the
identity operator on H. Also, if T : H → 2H is maximal monotone operator, then the
resolvent of T denoted by JT is nonexpansive. The inverse strongly monotone (also
referred to as coercive) operators have been widely used to solve practical problems
in various fields, for instance, in traffic assignment problems, see [18] and references
therein.
Definition 2.2. [2] Let {Cn} be a sequence of nonempty closed convex subsets of a
Hilbert space H. We define s− LinCn and w − LsnCn as follows:

(i) x ∈ s − LinCn if and only if there exists xn ⊂ Cn, for all n ∈ N, such that
xn → x.

(ii) y ∈ w − LsnCn if and only if there exists a subsequence {Cni} of {Cn} and
yi ⊂ Cni , for all i ∈ N, such that yi ⇀ y.

(iii) If C0 satisfies

C0 = s− LinCn = w − LsnCn,
it is said that {Cn} converges to C0 in the sense of Mosco [27] and we write
C0 = M − lim

n→∞
Cn. It is easy to show that if {Cn} is nonincreasing with

respect to inclusion, then {Cn} converges to
∞⋂
n=1

Cn in the sense of Tsukada

[34].

The following result is proved by Tsukada [34] for metric projections.
Lemma 2.3. [34] Let H be a Hilbert space. Let {Cn} be a sequence of nonempty
closed convex subsets of H. If C0 = M− lim

n→∞
Cn exists and is nonempty, then for each

x ∈ H, {PCn(x)} converges strongly to PC0(x), where PCn and PC0 are the metric
projections of H onto Cn and C0 respectively.

Definition 2.4. Let (X, d) be a complete metric space. A mapping f : X → X is
called a Meir-Keeler contraction [25] if for every ε > 0, there exists δ > 0 such that

d(x, y) < ε+ δ implies d(f(x), f(y)) < ε, (2.5)

for all x, y ∈ X.
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In the following technical lemma, we give some properties of Meir-Keeler contrac-
tion mappings which will be useful throughout out this work.

Lemma 2.5. The following properties hold.

(1) [25] A Meir-Keeler contraction defined on a complete metric space has a
unique fixed point and is nonexpansive as well.

(2) [33] Let f be a Meir-Keeler contraction on a convex subset C of a Banach
space E. Then for every ε > 0, there exists r ∈ (0, 1) such that

‖x− y‖ ≥ ε implies ‖f(x)− f(y)‖ ≤ r‖x− y‖,

for all x, y ∈ C.
(3) [33] Let C be a convex subset of a Banach space E. Let T be a nonexpansive

mapping on C and let f be a Meir-Keeler contraction on C. Then
(i) T ◦ f is a Meir-Keeler contraction on C;
(ii) for each α ∈ (0, 1), (1− α)T + αf is a Meir-Keeler contraction on C.

Lemma 2.6. [22] Let H be a real Hilbert space. Let T : H → 2H be a maximal
monotone operator and S : H → H be an α-inverse strongly monotone mapping on
H. Define Kr := (I + rT )−1(I − rS), where r > 0 and I is the identity map, then we
have

F (Kr) = (S + T )−1(0). (2.6)

Also, note that Kr is nonexpansive and F (Kr) is closed and convex.

Lemma 2.7. [23] Let {αn} and {δn} be sequences of nonnegative real numbers such
that

αn+1 ≤ (1− δn)αn + βn + γn, n ≥ 1,

where {δn} is a sequence in (0, 1) and {βn} is a real sequence. Assume that

∞∑
n=0

γn <∞.

Then, the following results hold:

(i) If βn ≤ δnM for some M ≥ 0, then {αn} is a bounded sequence.

(ii) If
∞∑
n=0

δn =∞ and lim sup
n→∞

βn
δn
≤ 0, then lim

n→∞
αn = 0.

3. Main results

The first result deals with a new relaxed hybrid algorithm with inertial term.
Theorem 3.1. Let H be a real Hilbert space and C be a nonempty closed convex
subset of H. Let S : C → H be a ν-inverse strongly monotone operator and T : H →
2H be a maximal monotone operator such that Γ := (S + T )−1(0) 6= ∅. Let f be a
Meir-Keeler contraction on C and {xn} be a sequence in H defined as follows: Fix
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x0, x1 ∈ C = D1 = Q1. For all n ≥ 1, choose λ > 0, {θn} ⊂ [0, 1), {αn} ⊂ (0, 1) such
that 0 < lim inf

n→∞
αn ≤ lim sup

n→∞
αn < 1 and γn ∈ [ε0,

1
2 ] for some ε0 ∈ (0, 1

2 ]. Compute

yn = xn + θn(xn − xn−1),

zn = (1− αn)yn + αn(I + λT )−1(I − λS)yn,

Dn = {z ∈ H : 〈yn − zn, z − yn − γn(zn − yn)〉 ≤ 0},
Qn = {z ∈ H : 〈f(xn)− xn, xn − z〉 ≥ 0},
xn+1 = PDn∩Qn

f(xn) ∀ n ≥ 1.

(3.1)

Then {xn} converges strongly to x̄. Moreover we have x̄ = PΓ ◦ f(x̄), i.e., x̄ is the
unique fixed point of the Meir-Keeler contraction PΓ ◦ f .

Proof. First note that Lemma 2 implies that PΓ ◦ f is a Meir-Keeler contraction and
has a unique fixed point x̄ ∈ C. Also, observe that the sets Dn and Qn are half spaces,
hence, the projection PDn∩Qn

can be calculated using the formula (2.3). Next, we
divide the proof into several steps:
Step I: We first show that Γ ⊂ Dn ∩Qn and xn+1 is well defined, for all n ≥ 1. By
Lemma 2, the solution set Γ is closed and convex. From the definitions of Dn and
Qn, we see that the sets are closed and convex. Fix n ≥ 1. Set

Cn := {z ∈ H : ‖z − zn‖ ≤ ‖z − yn‖}.
Then

Cn =

{
z ∈ H :

〈
yn − zn, z − yn −

1

2
(zn − yn)

〉
≤ 0

}
.

Since γn ∈ [ε0,
1
2 ], we have Cn ⊂ Dn. Let p ∈ Γ, then we have

‖yn − p‖ = ‖xn − p+ θn(xn − xn−1)‖
≤ ‖xn − p‖+ θn‖xn − xn−1‖. (3.2)

Let Uλ = (I + λT )−1(I − λS), then

‖zn − p‖ = ‖(1− αn)yn + αnUλyn − p‖
≤ (1− αn)‖yn − p‖+ αn‖Uλyn − p‖
≤ ‖yn − p‖, (3.3)

since Uλ is nonexpansive and F (Uλ) = Γ. Hence p ∈ Cn which implies that Γ ⊂
Cn ⊂ Dn. Therefore, Γ ⊂ Dn holds for all n ≥ 1. Next, we prove by induction that
Γ ⊂ Dn∩Qn for all n ≥ 1. For n = 1, we have x1 ∈ C = D1 = Q1, then Γ ⊂ D1∩Q1.
Fix k > 1 and assume that Γ ⊂ Dk ∩ Qk. From xk+1 = PDk∩Qk

f(xk) and (2.1), we
obtain

〈f(xk)− xk+1, xk+1 − z〉 ≥ 0, ∀ z ∈ Dk ∩Qk.
Since Γ ⊂ Dk ∩Qk,

〈f(xk)− xk+1, xk+1 − z〉 ≥ 0, ∀ z ∈ Γ.

This together with definition of Qk+1 implies that Γ ⊂ Qk+1 and so Γ ⊂ Dk+1∩Qk+1.
Thus, by induction, we obtain Γ ⊂ Dn ∩ Qn for all n ≥ 0. Since Γ 6= ∅, Dn ∩ Qn is
nonempty and hence xn+1 is well defined.
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Step II: Let Hn = Dn ∩ Qn, for all n ≥ 1. We prove that {xn} converges to

some point in
∞⋂
n=1

Hn. Since Γ ⊂
∞⋂
n=1

Hn, we conclude that
∞⋂
n=1

Hn is a closed and

convex nonempty subset. Using Lemma 2, we know that P ∞⋂
n=1

Hn

◦ f is a Meir-Keeler

contraction on C with a unique fixed point x̄ which obviously belongs to
∞⋂
n=1

Hn.

Since {Hn} is a nonincreasing sequence of nonempty closed convex subsets, it follows

that Γ ⊂
∞⋂
n=1

Hn = M − lim
n→∞

Hn. Setting un = PHn
◦ f(x̄) and applying Lemma 2,

we conclude that

lim
n→∞

un = P ∞⋂
n=1

Hn

◦ f(x̄) = x̄.

Now, we show that lim
n→∞

‖xn − x̄‖ = 0. Assume d = lim sup
n→∞

‖xn − x̄‖ > 0. Since f is

a Meir-Keeler contraction, for any ε ∈ (0, d), there exists δ > 0 such that

lim sup
n→∞

‖xn − x̄‖ > ε+ δ, (3.4)

and

‖x− y‖ < ε+ δ implies ‖f(x)− f(y)‖ < ε (3.5)

for all x, y ∈ C. Since un → x̄, there exists n0 ∈ N such that

‖un − x̄‖ < δ, ∀n ≥ n0. (3.6)

Assume there exists n1 ≥ n0 such that

‖xn1
− x̄‖ < ε+ δ.

From (3.5) and (3.6), we get

‖xn1+1 − x̄‖ ≤ ‖xn1+1 − un1+1‖+ ‖un1+1 − x̄‖
= ‖PHn1+1 ◦ f(xn1)− PHn1+1 ◦ f(x̄)‖+ ‖un1+1 − x̄‖
≤ ‖f(xn1)− f(x̄)‖+ ‖un1+1 − x̄‖
< ε+ δ.

By induction, we can obtain ‖xn1+m − x̄‖ ≤ ε+ δ, for all m ≥ 1, which implies that

lim sup
n→∞

‖xn − x̄‖ ≤ ε+ δ.

This contradiction with (3.4) allows us to conclude that ‖xn − x̄‖ ≥ ε + δ, for all
n ≥ n0. By Lemma 2, there exists r ∈ (0, 1) such that

‖f(xn)− f(x̄)‖ ≤ r‖xn − x̄‖, ∀n ≥ n0.

Thus, we have

‖xn+1 − un+1‖ = ‖PHn+1
◦ f(xn)− PHn+1

◦ f(x̄)‖
≤ ‖f(xn)− f(x̄)‖
≤ r‖xn − x̄‖,
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for every n ≥ n0, which implies

lim sup
n→∞

‖xn+1 − x̄‖ = lim sup
n→∞

‖xn+1 − un+1‖ ≤ r lim sup
n→∞

‖xn − x̄‖.

Since r < 1, we conclude that lim
n→∞

‖xn− x̄‖ = 0, i.e., {xn} converges to x̄ as claimed.

Step III: In order to finish the proof of Theorem 3, we prove that x̄ = PΓ◦f(x̄). Note
that since {xn} is convergent, it is bounded and lim

n→∞
‖xn−xn+1‖ = 0. Moreover, we

have

lim
n→∞

‖yn − xn‖ = lim
n→∞

θn‖xn − xn−1‖ = 0. (3.7)

Since xn+1 ∈ Dn and by the definition of Dn, we have

‖Uλyn − yn‖ =
1

αn
‖zn − yn‖ ≤

1

αn

(
‖zn − xn+1‖+ ‖xn+1 − yn‖

)
≤ 2

αn
‖xn+1 − yn‖ ≤

2

αn

(
‖xn+1 − xn‖+ ‖xn − yn‖

)
.

The properties satisfied by {αn} will imply lim
n→∞

‖Uλyn − yn‖ = 0. Since Uλ is

nonexpansive, we get

‖Uλx̄− x̄‖ ≤ ‖Uλx̄− Uλxn‖+ ‖Uλxn − xn‖+ ‖xn − x̄‖
≤ 2 ‖xn − x̄‖+ ‖Uλxn − xn‖
≤ 2 ‖xn − x̄‖+ ‖Uλxn − Uλyn‖+ ‖Uλyn − yn‖+ ‖yn − xn‖
≤ 2 ‖xn − x̄‖+ 2‖xn − yn‖+ ‖Uλyn − yn‖,

for any n ∈ N.
Using the above properties, we conclude that ‖Uλx̄− x̄‖ = 0, i.e., Uλx̄ = x̄. In other
words, we have x̄ ∈ F (Uλ) = Γ. Note that since xn+1 = PDn∩Qn

◦ f(xn), we have
〈f(xn)− xn+1, xn+1 − y〉 ≥ 0, for any y ∈ Dn ∩Qn. Using the fact Γ ⊂ Dn ∩Qn, we
get

〈f(xn)− xn+1, xn+1 − y〉 ≥ 0, ∀y ∈ Γ.

Since {xn} converges to x̄ ∈ Γ, we get

〈f(x̄)− x̄, x̄− y〉 ≥ 0, ∀y ∈ Γ.

Thus x̄ = PΓ ◦ f(x̄), which completes the proof of Theorem 3.

The next result deals with a Halpern-type algorithm with inertial term.
Theorem 3.2. Let H be a real Hilbert space and C be a nonempty closed convex subset
of H. Let S : C → H be a ν-ism operator and T : H → 2H be a maximal monotone
operator such that Γ := (S + T )−1(0) 6= ∅. Let f be a Meir-Keeler contraction on C.
Consider the sequence {xn} in H defined as follows: Fix x0, x1 ∈ C , choose λ > 0,
{θn} ⊂ [0, α] for some α ∈ (0, 1), {αn}, {βn}, {δn} are sequences in (0, 1) such that
αn + βn + δn = 1. Compute

wn = xn + θn(xn − xn−1),

yn = (I + λT )−1(I − λS)wn,

xn+1 = αnxn + βnyn + δnf(xn), n ≥ 1,

(3.8)



694 L.O. JOLAOSO, M.A. KHAMSI, O.T. MEWOMO AND C.C. OKEKE

Suppose the following conditions are satisfied:

(C1) lim
n→∞

θn
δn
‖xn − xn−1‖ = 0,

(C2) lim inf
n→∞

αnβn > 0,

(C3) lim
n→∞

δn = 0 and
∞∑
n=1

δn = +∞.

Then the sequence {xn} converges strongly to the unique fixed point of the Meir-Keeler
contraction PΓ ◦ f.
Proof. First, we show that {xn} is bounded. Fix ε > 0 and x∗ ∈ Γ. Since f is a
Meir-Keeler contraction mapping, there exists ρ ∈ [0, 1) such that

ε < ‖x− y‖ implies ‖f(x)− f(y)‖ ≤ ρ ‖x− y‖,

for any x, y ∈ C. From the assumption (C1), it is clear that

M = sup
n≥1

{
‖x0 − x∗‖,

‖f(x∗)− x∗‖
1− ρ

+
βn

1− ρ
θn
δn
‖xn − xn−1‖

}
< +∞.

Put Uλ = (I+λT )−1(I−λS), then Uλ is nonexpansive and F (Uλ) = Γ, which implies
that Uλ(x∗) = x∗. By definition of the sequence {xm}, we have

‖wm − x∗‖ = ‖xm − x∗ + θm (xm − xm−1)‖
≤ ‖xm − x∗‖+ θm‖xm − xm−1‖,

which implies

‖ym − x∗‖ = ‖Uλ(wm)− x∗‖
= ‖Uλ(wm)− Uλ(x∗)‖
≤ ‖wm − x∗‖
≤ ‖xm − x∗‖+ θm‖xm − xm−1‖,

for any m ≥ 1. Thus

‖xm+1 − x∗‖ = ‖αmxm + βmym + δmf(xm)− x∗‖
= ‖αm(xm − x∗) + βm(ym − x∗) + δm(f(xm)− x∗)‖
≤ αm‖xm − x∗‖+ βm‖ym − x∗‖+ δm‖f(xm)− x∗‖
≤ αm‖xm − x∗‖+ βm(‖xm − x∗‖+ θm‖xm − xm−1‖)
+ δm(‖f(xm)− f(x∗)‖+ ‖f(x∗)− x∗‖)
≤ (αm + βm)‖xm − x∗‖+ βmθm ‖xm − xm−1‖
+ δm‖f(xm)− f(x∗)‖+ δm‖f(x∗)− x∗‖
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for all m ≥ 1. Fix m ≥ 1. Then if ‖xm − x∗‖ ≤ ε and since Meir-Keeler contraction
mappings are nonexpansive, we get

‖xm+1 − x∗‖ ≤ (αm + βm)‖xm − x∗‖+ βmθm ‖xm − xm−1‖
+ δm‖xm − x∗‖+ δm‖f(x∗)− x∗‖
≤ (αm + βm + δm))‖xm − x∗‖+ βmθm ‖xm − xm−1‖
+ δm‖f(x∗)− x∗‖
= ‖xm − x∗‖+ βmθm ‖xm − xm−1‖+ δm‖f(x∗)− x∗‖.

Since

βmθm ‖xm − xm−1‖+ δm‖f(x∗)− x∗‖

≤ δm(1− ρ)

(
βmθm

δm(1− ρ)
‖xm − xm−1‖+

1

1− ρ
‖f(x∗)− x∗‖

)
≤ δm(1− ρ) M

≤M,

we get

‖xm+1 − x∗‖ ≤ ε+M.

Otherwise, assume ‖xm − x∗‖ > ε. In this case, we have

‖xm+1 − x∗‖ ≤ (αm + βm)‖xm − x∗‖+ βmθm ‖xm − xm−1‖
+ δm‖f(xm)− f(x∗)‖+ δm‖f(x∗)− x∗‖
≤ (αm + βm)‖xm − x∗‖+ βmθm ‖xm − xm−1‖
+ δmρ‖xm − x∗‖+ δm‖f(x∗)− x∗‖
≤ (1− δm + δmρ)‖xm − x∗‖+ βmθm ‖xm − xm−1‖+ δm‖f(x∗)− x∗‖
= (1− δm(1− ρ))‖xm − x∗‖+ βmθm ‖xm − xm−1‖+ δm‖f(x∗)− x∗‖
= (1− δm(1− ρ))‖xm − x∗‖

+ δm(1− ρ)

(
βmθm

δm(1− ρ)
‖xm − xm−1‖+

1

1− ρ
‖f(x∗)− x∗‖

)
≤ (1− δm(1− ρ))‖xm − x∗‖+ δm(1− ρ) M.

Finally, let us prove that

‖xn − x∗‖ ≤ ε+M, (Bo)

for any n ∈ N. Clearly, if ‖xn − x∗‖ ≤ ε, then the inequality (Bo) holds for this n.
Assume that for some n ≥ 1 and p ≥ 0, we have ‖xn−1 − x∗‖ ≤ ε

‖xn+i − x∗‖ > ε, for i = 0, · · · , p,
‖xn+p+1 − x∗‖ ≤ ε.

Set δ̄j = δj(1 − ρ), for any j ∈ N. Since ‖xn − x∗‖ > ε, our previous calculations
imply

‖xn+1 − x∗‖ ≤ (1− δ̄n)‖xn − x∗‖+ δ̄n M,
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which implies

‖xn+2 − x∗‖ ≤ (1− δ̄n+1)(1− δ̄n)‖xn − x∗‖+ (1− δ̄n+1)δ̄n M + δ̄n+1 M.

Since δ̄j = 1− (1− δ̄j), for any j ≥ 0, we get

(1− δ̄n+1)δ̄n M + δ̄n+1 M = (1− δ̄n+1)(1− (1− δ̄n)) M + δ̄n+1 M

= −(1− δ̄n+1)(1− δ̄n) M + (1− δ̄n+1)M + δ̄n+1 M

= M − (1− δ̄n+1)(1− δ̄n) M,

which implies

‖xn+2 − x∗‖ ≤ (1− δ̄n+1)(1− δ̄n)‖xn − x∗‖+M(1− (1− δ̄n+1)(1− δ̄n)).

Similar calculations will give

‖xn+3−x∗‖ ≤ (1−δ̄n+2)(1−δ̄n+1)(1−δ̄n)‖xn−x∗‖+M(1−(1−δ̄n+2)(1−δ̄n+1)(1−δ̄n)).

When we reach p, we get

‖xn+p − x∗‖ ≤
p−1∏
k=0

(1− δ̄n+k)‖xn − x∗‖+M
(

1−
p−1∏
k=0

(1− δ̄n+k)
)
.

Since ‖xn−1 − x∗‖ ≤ ε, our above calculations imply that ‖xn − x∗‖ ≤ ε+M which
implies

‖xn+p − x∗‖ ≤ (ε+M)

p−1∏
k=0

(1− δ̄n+k) +M
(

1−
p−1∏
k=0

(1− δ̄n+k)
)

= ε

p−1∏
k=0

(1− δ̄n+k) +M

≤ ε+M.

Therefore, we just proved that either ‖xn − x∗‖ ≤ ε or ‖xn − x∗‖ ≤ ε + M , for
any n ∈ N. In other words, we proved that ‖xn − x∗‖ ≤ ε + M , for any n ∈ N, as
claimed. So {‖xn − x∗‖} is a bounded sequence which implies that {xn} is bounded.
Consequently, {wn}, {yn} and {Uλwn} are bounded. Furthermore, observe that

‖wn − x∗‖2 = ‖xn − x∗ + θn(xn − xn−1)‖2

= ‖xn − x∗‖2 + 2θn〈xn − x∗, xn − xn−1〉+ θ2
n‖xn − xn−1‖2. (3.9)

Also we have

2〈xn − x∗, xn − xn−1〉 = ‖xn − x∗‖2 + ‖xn − xn−1‖2 − ‖xn−1 − x∗‖2. (3.10)
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By substituting (3.10) into (3.9), we have

‖wn − x∗‖2 = (1 + θn) ‖xn − x∗‖2 + (θn + θ2
n) ‖xn − xn−1‖2 − θn ‖xn−1 − x∗‖2

≤ ‖xn − x∗‖2 + θn[‖xn − x∗‖2 − ‖xn−1 − x∗‖2] + 2θn‖xn − xn−1‖2

≤ ‖xn − x∗‖2 + θn(‖xn − x∗‖+ ‖xn−1 − x∗‖)‖xn − xn−1‖
+ 2θn‖xn − xn−1‖2

= ‖xn − x∗‖2 + θn(‖xn − x∗‖+ ‖xn−1 − x∗‖
+ 2‖xn − xn−1‖)‖xn − xn−1‖. (3.11)

Then

‖xn+1 − x∗‖2 = ‖αn(xn − x∗) + βn(yn − x∗) + δn(f(xn)− x∗)‖2

≤ ‖αn(xn − x∗) + βn(yn − x∗)‖2 + 2δn〈f(xn)− x∗, xn+1 − x∗〉
≤ αn‖xn − x∗‖2 + βn‖yn − x∗‖2 + 2δn〈f(xn)− x∗, xn+1 − x∗〉
≤ αn‖xn − x∗‖2 + βn‖wn − x∗‖2 + 2δn〈f(xn)− p, xn+1 − x∗〉

≤ αn‖xn − x∗‖2 + βn

(
‖xn − x∗‖2 + θn(‖xn − x∗‖+ ‖xn−1 − x∗‖

+ 2‖xn − xn−1‖)‖xn − xn−1‖
)

+ 2δn〈f(xn)− x∗, xn+1 − x∗〉

= (1− δn)‖xn − x∗‖2 + βnθn

(
‖xn − x∗‖+ ‖xn−1 − x∗‖

+ 2‖xn − xn−1‖
)
‖xn − xn−1‖+ 2δn〈f(xn)− x∗, xn+1 − x∗〉. (3.12)

Also, by Lemma 2, we have

‖xn+1 − x∗‖2 ≤ αn‖xn − x∗‖2 + βn‖yn − x∗‖2 + δn‖f(xn)− x∗‖2 − αnβn‖yn − xn‖2

≤ αn‖xn − x∗‖2 + βn‖wn − x∗‖2 + δn‖f(xn)−x∗‖2 − αnβn‖yn−xn‖2.

Hence by (3.11), we get

‖xn+1 − x∗‖2 ≤ αn‖xn − x∗‖2 + βn

(
‖xn − x∗‖2 + θn(‖xn − x∗‖+ ‖xn−1 − x∗‖

+2‖xn − xn−1‖)‖xn − xn−1‖
)
− αnβn‖yn − xn‖2

= (1− δn)‖xn − x∗‖2 + βnθn

(
‖xn − x∗‖+ ‖xn−1 − x∗‖

+2‖xn − xn−1‖
)
‖xn − xn−1‖ − αnβn‖yn − xn‖2. (3.13)

Now, let Pn = ‖xn − x∗‖2, for all n ≥ 1. First assume there exists N ∈ N such that
Pn+1 ≤ Pn, for all n ≥ N. In this case {Pn} is convergent and Pn − Pn+1 → 0, as
n→∞. Since {xn} is bounded, it is easy to see from condition (C1) that

θn‖xn − xn−1‖ → 0.
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Hence from (3.13), we have

αnβn‖yn − xn‖2 ≤ (1− δn)‖xn − x∗‖2 + βnθn

(
‖xn − x∗‖+ ‖xn−1 − x∗‖

+2‖xn − xn−1‖
)
‖xn − xn−1‖ − ‖xn+1 − x∗‖2

= Pn − Pn+1 + δn‖xn − x∗‖2 + βnθn

(
‖xn − x∗‖+ ‖xn−1 − x∗‖

+2‖xn − xn−1‖
)
‖xn − xn−1‖,

for all n ≥ 1. Using δn → 0 and condition (C2), we get

lim
n→∞

‖yn − xn‖ = 0. (3.14)

Furthermore,

lim
n→∞

‖wn − xn‖ = lim
n→∞

θn‖xn − xn−1‖ = 0,

thus

‖yn − wn‖ ≤ ‖yn − xn‖+ ‖xn − wn‖ → 0, n→∞. (3.15)

Now, let us re-write xn+1 as xn+1 = αnxn + (1− αn)vn, where

vn =
βn

1− αn
yn +

δn
1− αn

f(xn),

which implies

‖vn − xn‖ ≤
βn

1− αn
‖yn − xn‖+

δn
1− αn

‖f(xn)− xn‖,

for all n ≥ 1. Using δn → 0, condition (C2) and (3.14), we get

lim
n→∞

‖vn − xn‖ = 0. (3.16)

Since {xn} is bounded, there exists a subsequence {xni
} of {xn} such that xni

⇀ q∗ in
H. Also, since ‖wni

−xni
‖ → 0, n→∞, it implies that wni

⇀ q∗. Furthermore, since
Uλ is nonexpansive, then by the demiclosedness of the nonexpansive mapping and
(3.15), we have q∗ ∈ F (Uλ). Therefore by Lemma 2, it follows that q∗ ∈ (S+T )−1(0).
Next, we show that lim sup

n→∞
〈f(x∗)− x∗, xn+1 − x∗〉 ≤ 0, where x∗ = PΓf(x∗). Choose

a subsequence {xni
} of {xn} such that

lim sup
n→∞

〈f(x∗)− x∗, xn+1 − x∗〉 = lim
i→∞
〈f(x∗)− x∗, xni+1 − x∗〉.

Then from (2.2), we have

lim sup
n→∞

〈f(x∗)− x∗, xn+1 − x∗〉 = lim
i→∞
〈f(x∗)− x∗, xni+1 − x∗〉

= 〈u− x∗, q∗ − x∗〉 ≤ 0. (3.17)
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We now show that {xn} converges strongly to x∗. From (3.12), we have

‖xn+1 − x∗‖2 ≤ (1− δn)‖xn − x∗‖2 + βnθn

(
‖xn − x∗‖+ ‖xn−1 − x∗‖

+ 2‖xn − xn−1‖
)
‖xn − xn−1‖+ 2δn〈f(xn)− x∗, xn+1 − x∗〉

≤ (1− δn)‖xn − x∗‖2

+ βnθn

(
‖xn − x∗‖+ ‖xn−1 − x∗‖+ 2‖xn − xn−1‖

)
‖xn − xn−1‖

+ 2δn‖f(xn)− f(x∗)‖‖xn+1 − x∗‖+ 2δn〈f(x∗)− x∗, xn+1 − x∗〉
≤ (1− δn)‖xn − x∗‖2

+ βnθn

(
‖xn − x∗‖+ ‖xn−1 − x∗‖+ 2‖xn − xn−1‖

)
‖xn − xn−1‖

+ δnρ(‖(xn)− x∗‖2 + ‖xn+1 − x∗‖2) + 2δn〈f(x∗)− x∗, xn+1 − x∗〉
= (1− δn(1− ρ))‖xn − x∗‖2

+ βnθn

(
‖xn − x∗‖+ ‖xn−1 − x∗‖+ 2‖xn − xn−1‖

)
‖xn − xn−1‖

+ δnρ‖xn+1 − x∗‖2 + 2δn〈f(x∗)− x∗, xn+1 − x∗〉.

Hence

‖xn+1 − x∗‖2 ≤
(1− δn(1− ρ))

1− δnρ
‖xn − x∗‖2

+
βnθn

1− δnρ

(
‖xn − x∗‖+ ‖xn−1 − x∗‖+ 2‖xn − xn−1‖

)
× ‖xn − xn−1‖+

2δn
1− δnρ

〈f(x∗)− x∗, xn+1 − x∗〉

=

(
1− δn(1− 2ρ)

1− δnρ

)
‖xn − x∗‖2

+
βnθn

1− δnρ

(
‖xn − x∗‖+ ‖xn−1 − x∗‖+ 2‖xn − xn−1‖

)
× ‖xn − xn−1‖+

δn(1− 2ρ)

1− δnρ
× 2〈f(x∗)− x∗, xn+1 − x∗〉

1− 2ρ
.

= (1− an)‖xn − x∗‖2 + anbn + cn, (3.18)

where

an =
δn(1− 2ρ)

1− δnρ
, bn =

2〈f(x∗)− x∗, xn+1 − x∗〉
1− 2ρ

,

and

cn =
βnθn

1− δnρ

(
‖xn − x∗‖+ ‖xn−1 − x∗‖+ 2‖xn − xn−1‖

)
‖xn − xn−1‖.
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Since
∞∑
n=0

δn = ∞, then
∞∑
n=0

an = ∞ and from (3.17), lim sup
n→∞

bn ≤ 0, then using

Lemma 2(ii) and (3.18), we have lim
n→∞

‖xn−x∗‖2 = 0. Hence {xn} converges strongly

to x∗.
Otherwise, assume there exists a subsequence {Pni

} of {Pn} such that Pni
≤ Pni+1

for all i ∈ N. There exists a non-decreasing sequence {mk} ⊂ N such that mk →∞,
Pmk

≤ Pmk+1, for all k ∈ N.
Following a similar argument as before, we obtain ‖ymk

−xmk
‖ → 0, ‖wmk

−xmk
‖ → 0,

‖ymk
− wmk

‖ → 0 and ‖xmk+1 − xmk
‖ → 0 as k →∞. Also, we get

lim sup
k→∞

〈f(x∗)− x∗, xmk+1 − x∗〉 ≤ 0. (3.19)

Similarly as in (3.18), we have

‖xmk+1 − x∗‖2 ≤
(

1− δmk
(1− 2ρ)

1− δmk
ρ

)
‖xmk

− x∗‖2

+
βmk

θmk

1− δmk
ρ

(
‖xmk

− x∗‖+ ‖xmk−1 − x∗‖

+ 2‖xmk
− xmk−1‖

)
‖xmk

− xmk−1‖

+
δmk

(1− 2ρ)

1− δmk
ρ
× 2〈f(x∗)− x∗, xmk+1 − x∗〉

1− 2ρ
. (3.20)

Since Pmk
≤ Pmk+1, then from (3.20), we have that

0 ≤ ‖xmk+1 − x∗‖2 − ‖xmk
− x∗‖2

≤
(

1− δmk
(1− 2ρ)

1− δmk
ρ

)
‖xmk

− x∗‖2

+
βmk

θmk

1− δmk
ρ

(
‖xmk

− x∗‖+ ‖xmk−1 − x∗‖

+ 2‖xmk
− xmk−1‖

)
‖xmk

− xmk−1‖

+
δmk

(1− 2ρ)

1− δmk
ρ
× 2〈f(x∗)− x∗, xmk+1 − x∗〉

1− 2ρ
− ‖xmk

− x∗‖,

which implies that

δmk
(1− 2ρ)

1− δmk
ρ
‖xmk

− x∗‖

≤ βmk
θmk

1− δmk
ρ

(
‖xmk

− x∗‖+ ‖xmk−1 − x∗‖+ 2‖xmk
− xmk−1‖

)
‖xmk

− xmk−1‖

+
δmk

(1− 2ρ)

1− δmk
ρ
× 2〈f(x∗)− x∗, xmk+1 − x∗〉

1− 2ρ
.
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Hence

‖xmk
− x∗‖

≤ θmk

δmk

(
βmk

1− 2ρ

)(
‖xmk

− x∗‖+ ‖xmk−1 − x∗‖+ 2‖xmk
− xmk−1‖

)
‖xmk

− xmk−1‖

+
2〈f(x∗)− x∗, xmk+1 − x∗〉

1− 2ρ
. (3.21)

From condition (C1) and (3.19), we obtain ‖xmk
− x∗‖ → 0, as k →∞.

As a consequence, we obtain

‖xmk+1 − x∗‖ ≤ ‖xmk+1 − xmk
‖+ ‖xmk

− x∗‖ → 0,

as n→∞. Also, we have Pn ≤ Pmk+1 and thus

Pn = ‖xn − x∗‖2 ≤ ‖xmk+1 − x∗‖2 → 0, (3.22)

as n → ∞. This implies that {xn} converges strongly to x∗. This completes the
proof.
If we replace f(xn) by a fixed u in the last algorithm, we have the classical Halpern-
type algorithm (see [17]) and the result in Theorem 3 still holds. It was shown in [32]
that Halpern-type convergence theorems imply viscosity approximation convergence
theorem for weak contraction.

Remark 3.3. In above algorithm, the condition (C1) may sound bizarre because
one assumes that the sequences {θn} and {δn} are given before we started generating
the sequence {xn}. In fact, the computational algorithm associated to this algorithm
allows to construct the sequence {xn} and the sequences {θn} and {δn} at the same
time to secure that

lim
n→∞

θn
δn
‖xn − xn−1‖ = 0.

As a consequence of our results, we give the following results which follows directly
from our Theorem 3 and Theorem 3.
Corollary 3.4. Let H be a real Hilbert space and C be a nonempty closed convex
subset of H. Let V : C → C be a nonexpansive mapping such that the set of fixed
points of V is not empty, i.e., F (V ) 6= ∅. Let f be a Meir-Keeler contraction on C
and {xn} be a sequence in H defined as follows:

x0, x1 ∈ H, γn ∈ [ε, 1
2 ] for some ε ∈ (0, 1

2 ].

yn = xn + θn(xn − xn−1),

zn = (1− αn)yn + αnV yn,

Dn = {z ∈ H : 〈yn − zn, z − yn − γn(zn − yn)〉 ≤ 0},
Qn = {z ∈ H : 〈f(xn)− xn, xn − z〉 ≥ 0},
xn+1 = PDn∩Qn

f(xn), ∀ n ≥ 1,

(3.23)

where {θn} ⊂ [0, 1), and {αn} ⊂ (0, 1) such that 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1.

Then {xn} converges strongly to x̄ = PF (V )f(x̄).
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Corollary 3.5. Let H be a real Hilbert space and C be a nonempty closed convex
subset of H. Let V : C → C be a nonexpansive mapping such that the set of fixed
points of V is not empty, i.e., F (V ) 6= ∅. Let f be a Meir-Keeler contraction on C
and {xn} be a sequence in H defined as follows:

x0, x1 ∈ C,
wn = xn + θn(xn − xn−1),

yn = V wn,

xn+1 = αnxn + βnyn + δnf(xn), n ≥ 1,

(3.24)

where {θn} ⊂ [0, α] for some α ∈ (0, 1), and {αn}, {βn}, {δn} are sequences in (0, 1)
such that αn + βn + δn = 1. Suppose the following conditions are satisfied:

(C1) lim
n→∞

θn
δn
‖xn − xn−1‖ = 0,

(C2) lim inf
n→∞

αnβn > 0,

(C3) lim
n→∞

δn = 0 and
∑∞
n=1 δn = +∞.

Then, the sequence {xn} generated by the last algorithm converges strongly to a point
x∗, where x∗ = PF (V )f(x∗).

4. Application and numerical example

4.1. Application to split feasibility problem. Let H1 and H2 be real Hilbert
spaces, C and Q be nonempty closed and convex subsets of H1 and H2 respectively.
Let A : H1 → H2 be a bounded linear operator. The Split Feasibility Problem (SFP)
is to find a point x̂ which satisfies the condition

x̂ ∈ C and Ax̂ ∈ Q. (4.1)

We denote the solution set of SFP by Γ. The SFP was first introduced by Censor
and Elfving [9] in finite-dimensional Hilbert spaces and has received much attention
from many authors due to its various applications in signal processing. Several iter-
ative methods have been developed for solving the SFP and its related optimization
problems (see for example, [3, 19]) and references therein.
To solve the SFP (4.1), it is important to study the following Convexly Constrained
Minimization Problem (CCMP):

min
x∈C

f(x) where f(x) =
1

2
‖Ax− PQ(Ax)‖2. (4.2)

It is noted in [22] that the SFP (4.1) and the CCMP (4.2) are not fully equivalent
because every solution to the SFP (4.1) is evidently a minimizer of the CCMP (4.2),
however a solution to the CCMP (4.2) does not necessarily satisfy the SFP (4.1).
Further, if the solution set of the SFP (4.1) is nonempty, then it follows from Lemma
4.2 in [35] that Γ = C ∩ (∇f)−1Q 6= ∅.
Recall that the indicator function on C is the function iC , defined as

iC(x) =

{
0, x ∈ C,
∞, x /∈ C.

(4.3)
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It is well known that the resolvent of iC is the metric projection PC . Now setting
S(x) = 1

2‖Ax− PQ(Ax)‖2 and T (x) = iC(x) in our Theorem 3 and 3, we obtain the
following two strong convergence results for approximating the solution of SFP (4.1)
in Hilbert spaces.
Theorem 4.1. Let H1 and H2 be real Hilbert spaces and A : H1 → H2 be a bounded
linear operator and A∗ be the adjoint of A. Let C and Q be nonempty closed convex
subsets of H1 and H2 respectively. Suppose Γ = C∩A−1(Q) 6= ∅ and λ ∈ (0, 2

‖A‖ ). Let

f be a Meir-Keeler contraction on C and {xn} be a sequence in H defined as follows:

x0, x1 ∈ H, γn ∈ [ε, 1
2 ] for some ε ∈ (0, 1

2 ].

yn = xn + θn(xn − xn−1),

zn = (1− αn)yn + αnPC(I − λA∗(I − PQ)A)yn,

Dn = {z ∈ H : 〈yn − zn, z − yn − γn(zn − yn)〉 ≤ 0},
Qn = {z ∈ H : 〈f(xn)− xn, xn − z〉 ≥ 0},
xn+1 = PDn∩Qn

f(xn), ∀ n ≥ 1,

(4.4)

where λ > 0 and {θn} ⊂ [0, 1), {αn} ⊂ (0, 1) such that

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1.

Then {xn} converges strongly to x̄ = PΓf(x̄).
Theorem 4.2. Let H1 and H2 be real Hilbert spaces and A : H1 → H2 be a bounded
linear operator and A∗ be the adjoint of A. Let C and Q be nonempty closed convex
subsets of H1 and H2 respectively. Suppose Γ = C∩A−1(Q) 6= ∅ and λ ∈ (0, 2

‖A‖ ). Let

f be a Meir-Keeler contraction on C and {xn} be a sequence in H defined as follows:
x0, x1 ∈ C,
wn = xn + θn(xn − xn−1),

yn = PC(I − λA∗(I − PQ)A)wn,

xn+1 = αnxn + βnyn + δnf(xn), n ≥ 1,

(4.5)

where {θn} ⊂ [0, α] for some α ∈ (0, 1), {αn}, {βn}, {δn} are sequences in (0, 1) such
that αn + βn + δn = 1 and λ > 0. Suppose the following conditions are satisfied:

(C1) lim
n→∞

θn
δn
‖xn − xn−1‖ = 0,

(C2) lim inf
n→∞

αnβn > 0,

(C3) lim
n→∞

δn = 0 and
∑∞
n=1 δn = +∞.

Then, the sequence {xn} generated by Algorithm 4.5 converges strongly to a point x∗,
where x∗ = PΓf(x∗).

4.2. Numerical experiments. In this subsection, we provide some numerical ex-
amples to show the relevance of our results.
We now present the following numerical examples which show that our Algorithms
3.1 and 3.8 performs better in terms of number of iteration and time of convergence
than the non-inertial algorithms (i.e., by taking θn = 0 in each algorithms). All
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computation are carried out using Matlab 2014b on a HP personal computer with

4gb RAM. The stopping criterion used for both test is ‖xn+1−xn‖
‖x2−x1‖ < 10−4.

Example 4.3. Consider the variational inequality problem of finding a point x∗ ∈ C
such that

〈Sx∗, y − x∗〉 ≥ 0, ∀ y ∈ C, (4.6)

where S : C → H is a monotone operator. It is well known that Problem (4.6) is
equivalent to the following inclusion problem:

find x∗ ∈ C such that 0 ∈ (S +NC)x∗, (4.7)

where NC is the normal cone of C.
Now, let H = Rm with the standard topology and S : Rm → Rm be defined by

Sx = Mx+ q, (4.8)

where

M = NNT +K +D, (4.9)

where N is a m ×m matrix, K is a m ×m skew-symmetric matrix, D is a m ×m
diagonal matrix, whose diagonal entries are non-negative so that M is positive definite
and q is a vector in Rm. In this example, we consider the feasible set C ⊂ Rm as the
closed and convex polyhedron which is defined as C = {x ∈ Rm : Qx ≤ b}, where Q
is a l ×m matrix and b is a non-negative vector. Since S is monotone, we can apply
our Algorithms 3.1 and 3.8 to solve problem (4.7) (in this case, the resolvent of NC
is the metric projection operator PC).
Taking

θn =
1

(100n+ 1)2
, δn =

1√
100n+ 1

, βn =
n+ 1

3(n+ 1)
, αn = 1− δn − βn, λ = 0.05,

the matrices N,K,D, the vector q and the initial points x0, x1 are generated randomly
and the projection PC is computed using optimization tool box in Matlab. We test
our Algorithms 3.1 and 3.8 for the cases when m = 10, 20, 30, 50 and compare the
output with the non-inertial algorithms, i.e., by taking θn = 0 in each algorithm. The
numerical results are seen in Table 1 and Figure 1.

Table 1. Table showing computation results for Example 4.3.

Alg 3.1 Alg 3.1 with θn = 0 Alg 3.8 Alg 3.8 with θn = 0

m = 10 No. of Iter. 11 39 30 54
CPU time (sec) 1.2199 6.3814 3.0654 5.7250

m = 20 No. of Iter. 11 42 31 55
CPU time (sec) 1.4301 8.7918 4.0307 7.1364

m = 30 No. of Iter. 11 42 31 55
CPU time (sec) 2.3917 11.5262 3.4360 6.2248

m = 50 No. of Iter. 12 44 32 58
CPU time (sec) 2.9431 9.4373 5.2682 14.0695
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Figure 1. Example 4.3, Top Left: m = 10; Top Right: m = 20;
Bottom Left: m = 30; Bottom Right: m = 50.

Example 4.4. Let S : H → R be a convex and differentiable function and consider
the problem:

min
x∈C
{S(x)}. (4.10)

This is equivalent to finding a point x∗ ∈ C such that (see [16])

0 ∈ (∇S +NC), (4.11)

where NC is the normal cone of C. It is clear that ∇S is k-inverse strongly monotone.
Let T = ∂C , the indicator function of C,then, T is maximal monotone) and the
proximal operator with respect to T, proxλT = PC , where PC is defined by

PC(x) =

{
b− 〈a,x〉‖a‖2 a+ x, 〈a, x〉 > b,

x, 〈a, x〉 ≤ b,
(4.12)

where 0 6= a ∈ L2([0, 1]) and b ∈ R. Hence, we can apply our Algorithms 3.1 and 3.8
to solve problem (4.11).
We choose H = L2([0, 1]) with the inner product given by

〈x, y〉 =

∫ 1

0

x(t)y(t)dt.

Let us take

C = {x(t) ∈ L2([0, 1]) : 〈x(t), 3t2〉 = 1},
and

S(x(t)) =

∫ 1

0

x(t)dt, δn =
1

5n+ 1
, βn =

2n

3n+ 2
, αn = 1− δn − βn and λ = 1.

We take

θn =

{
min

{
0.5, εn

‖xn−xn−1‖

}
, if xn 6= xn−1,

0.5 if xn = xn−1,
(4.13)
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where εn = 1
(5n+1)2 . It is easy to see that condition (C1) (C2) and (C3) are satisfied.

We test our Algorithms 3.1 and 3.8 with various initial values given below and compare
the output with the non-inertial algorithms.

Case I: x1 = 3 exp(−2t) cos(3t), x0 = t3 + cos(4t);
Case II: x1 = 5t sin(2πt), x0 = exp(3t) + cos(−2t);
Case III: x1 = (2 cos(7t) + 3 sin(5t))/5, x0 = 3(t3 + exp(−3t));
Case IV: x1 = 5πt exp(−2t), x0 = 3 cos(2πt)2.

The numerical results can be seen in Table 2 and Figures 2.

Table 2. Table showing computation results for Example 4.4.

Alg 3.1 Alg 3.1 with θn = 0 Alg 3.8 Alg 3.8 with θn = 0

Case I No. of Iter. 3 6 13 50
CPU time (sec) 0.6622 1.1389 0.7734 3.3577

Case II No. of Iter. 4 5 11 53
CPU time (sec) 0.6695 1.3355 0.6144 2.2959

Case III No. of Iter. 4 8 11 60
CPU time (sec) 1.0976 3.7500 0.6144 2.1449

Case IV No. of Iter. 4 9 16 76
CPU time (sec) 1.1848 8.7895 1.9476 3.7501
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Figure 2. Example 4.4, Top Left: Case I; Top Right: Case II;
Bottom Left Case III; Bottom Right: Case IV.
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5. Conclusion

In this paper, we introduced two new inertial algorithms which consist of hybrid
(or CQ) algorithm and viscosity approximation method with Meir-Keeler contraction
mapping in real Hilbert space. We proved two strong convergence theorems for ap-
proximating solutions of monotone inclusion problems under some mild conditions in
real Hilbert spaces. We also provide some numerical examples to show the efficiency
and accuracy of our algorithms. Our contributions in this paper are highlighted as
follow:

(i) The Meir-Keeler contraction mapping can be seen as a generalization of the
contraction mapping. Hence, our results in this paper generalize the related
results in [14, 15, 10].

(i) The strong convergence theorem achieved in this paper improved the corre-
sponding weak convergence results of inertial algorithms in [5, 11] and some
other related results.

Acknowledgement. The authors sincerely thank the anonymous reviewer for his
careful reading, constructive comments and fruitful suggestions that substantially im-
proved the manuscript. The first and fourth authors acknowledge with thanks the bur-
sary and financial support from Department of Science and Innovation and National
Research Foundation, Republic of South Africa Center of Excellence in Mathemat-
ical and Statistical Sciences (DSI-NRF COE-MaSS) Doctoral Bursary. The second
author would like to acknowledge the support provided by the Deanship of Scientific
Research at King Fahd University of Petroleum and Minerals for funding this work
through Project No. IN171032. The third author is supported by the National Re-
search Foundation (NRF) of South Africa Incentive Funding for Rated Researchers
(Grant Number 119903). Opinions expressed and conclusions arrived are those of the
authors and are not necessarily to be attributed to the CoE-MaSS and NRF.

References

[1] H.A. Abass, K.O. Aremu, L.O. Jolaoso, O.T. Mewomo, An inertial forward-backward splitting

algorithm for approximating solutions of certain optimization problems, J. Nonlin. Funct. Anal.,

2020(2020), Article ID 6.
[2] A.A.N. Abdou, B.A.S. Alamri, Y.-J. Cho, L.-J. Zhu, Iterative approximations with hybrid tech-

niques for fixed points and equilibrium problems, Filomat, 30(7)(2016), 1997-2009.
[3] T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, Modified inertial subgradient extragradient method

with self-adaptive stepsize for solving monotone variational inequality and fixed point problems,

Optimization, (2020), https://doi.org/10.1080/02331934.2020.1723586.
[4] F. Alvarez, H. Attouch, An inertial proximal method for monotone operators via discretization

of a nonlinear oscillator with damping, Set Valued Anal., 9(2001), 3-11.

[5] H. Attouch, A. Cabot, Convergence of a relaxed inertial forward-backward algorithm for struc-
tured monotone inclusions, Applied Math. Optim., 38(2019).

[6] H. Attouch, J. Poypouquet, The rate of convergence of Nestrov’s accelerated forward-backward

method is actually faster than 1
k2 , SIAM J. Optim., 26(2016), 1824-1836.

[7] H.H. Bauschke, P.L. Combettes, A weak-to-strong convergence principle for Fejer-monotone
methods in Hilbert spaces, Math. Oper. Res., 26(2001), 248-264.

[8] L.C. Ceng, Approximation of common solutions of a split inclusion problem and a fixed point
problem, J. Appl. Numer. Optim., 1(2019), 1-12.



710 L.O. JOLAOSO, M.A. KHAMSI, O.T. MEWOMO AND C.C. OKEKE

[9] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product

space, Numerical Algorithms, 8(2)(1994), 221-239.

[10] W. Cholamjiak, P. Cholamjiak, S. Suantai, An inertial forward-backward splitting method for
solving inclusion problems in Hilbert spaces, J. Fixed Point Theory Appl., 20(42)(2018).

[11] W. Cholamjiak, N. Pholasa, S. Suantai, A modified inertial shrinking projection method for

solving inclusion problems and quasi nonepansive multivalued mappings, Comput. Appl. Math.,
(2018), 1-25.

[12] P.L. Combettes, V.R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale

Modeling and Simulation, 4(4)(2005), 1168-1200.
[13] F. Cui, Y. Tang, Y. Yang, An inertial three-operator splitting algorithm with applications to

image inpainting, Appl. Set-Valued Anal. Optim., 1(2019), 113-134.

[14] Q.L. Dong, D. Jiang, P. Cholamjiak, Y. Shehu, A strong convergence result involving an inertial
forward-backward algorithm for monotone inclusions, J. Fixed Point Theory Appl., 19(4)(2017),

3097-3118.
[15] Q.L. Dong, H.B. Yuan, Y.J. Cho, Modified inertial Mann algorithm and inertial CQ-algorithm

for nonexpanive mappings, Optim. Lett., (2017), doi: 10.1007/211590-016-1102-9.

[16] H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer Academic
Publishers Group, Dordrecht, The Netherlands, 1996.

[17] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73(1967), 591-597.

[18] D. Han, H.K. Lo, Solving non-additive traffic assignment problems: a descent method for co-
coercive variational inequalities, Eur. J. Oper. Res., 159(2004), 529-544.

[19] L.O. Jolaoso, K.O. Oyewole, C.C. Okeke, O.T. Mewomo, A unified algorithm for solving split

generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space,
Demonstr. Math., 51(2018), 211-232.

[20] Y. Kimura, K. Nakajo, Strong convergence for a modified forward-backward splitting method in

Banach spaces, J. Nonlinear Var. Anal., 3(2019), 5-18.
[21] P.L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM

Journal on Numer. Anal., 16(6)(1979), 964-979.
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