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1. Introduction

Most of the physical problems in real life are considered through non-linear models.
These problems can be modelled using various mathematical techniques, especially
using differential equations and integral equations. Nonlinear problems are of interest
to scientists because almost all the mathematical models are inherently nonlinear in
nature. Nonlinear equations are tricky to solve but give rise to real life phenomena.
The problem of existence of a solution often becomes equivalent to the problems of
detecting a fixed point of a certain operator. Hence, results from fixed point the-
ory can then be employed to obtain solutions of an operator equation. There are
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various notions of solutions of differential equations, and in numerous situations one
cannot just switch to one of them and study solutions in that sense. It is worthy
to establish solutions with strong differentiability, but it might be difficult to ver-
ify their existence. Therefore, one typical request is to deliver solutions in a weaker
sense. Fixed point theory (FPT) has two main branches: Constructive fixed point
theorems in the line of Banach Contraction Principle (BCP) and nonconstructive
fixed point theorems, where results are obtained by using topological properties in
the direction of Brouwer’s/ Schauder’s (SFPT)/ Darbo’s FPT (DFPT). Schauder dis-
cussed the convexity of domains and the compactness of operators. Darbo relaxed the
strong condition of compactness of operators. He used the notion of measure of non-
compactness (MNC) and defined appropriate classes of operators [16]. Krasnoselskii
combined SFPT and BCP together in one result (see [5, 6, 7, 14, 15]). To discuss
more related results, we need to recall the notion of MNC.

Let (X , ‖ · ‖) be an infinite dimensional Banach space and let R = (−∞,+∞),
R+ = [0,+∞). If B ⊆ X , we denote by conv(B) the convex hull of B. Let

BX = {D : ∅ 6= D ⊆ X and D is bounded}
and CX = {D : D ⊆ X and D is relatively compact }.

Definition 1.1. [13] A mapping µ : BX → R+ is called an MNC on X if it attains
the subsequent requirements:

(1◦) Kerµ := {K ∈ BX : µ(K) = 0} is nonempty and Kerµ ⊂ CX ;
(2◦) µ(K1) ≤ µ(K2) for all subsets B1,B2 ∈ BX with B1 ⊂ B2;
(3◦) µ(conv(K)) = µ(K) for any subset K ∈ BX ;
(4◦) µ(λK1 + (1 − λ)K2) ≤ λµ(K1) + (1 − λ)µ(K2) for all subsets K1,K2 ∈ BX

and λ ∈ [0, 1];
(5◦) If {Kn} is a sequence of closed sets from BX such that Kn+1 ⊂ Kn, n ≥ 1

and if lim
n→∞

µ(Kn) = 0, then the intersection K∞ =
∞⋂
n=1
Kn is nonempty.

In Definition 1.1 (1◦), the family Kerµ is called the kernel of MNC µ in X . Also,
(5◦) implies that K∞ belongs to Kerµ. As a matter of fact, since µ(K∞) ≤ µ(Kn)
for any n ≥ 1, we can conclude that µ(K∞) = 0, consequently K∞ ∈ Kerµ. In the
sequel, we denote Λ = {D : D 6= ∅, closed, bounded and convex subset of a Banach
space X}. We denote the set of fixed points of a mapping T by Fix(T ). Also, we
denote F := {T : T is a self continuous operator on D ⊆ X}.

Theorem 1.2. (SFPT [9]). Let D ∈ Λ without boundedness, and T ∈ F with com-
pactness. Then Fix(T ) 6= ∅ in D.

Lemma 1.3. (DFPT [13]) Let D ∈ Λ, T ∈ F be a µ-set contraction operator, that
is, there is a constant k ∈ [0, 1) with µ(T (P)) ≤ kµ(P) for all ∅ 6= P ⊂ D, where µ is
the Kuratowski MNC on X . Then Fix(T ) 6= ∅ in D.

Thereafter, various types of DFPT and their coupled versions were obtained by using
different types of contractive conditions in the sense of MNC (see [3]–[24]). Recently,
Yang et al. [29] proved a coupled fixed point theorem of Krasnoselskii type based on
results in [9]. In our investigation, we focus on findings in the sense of moments in
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a separable Banach space X equipped with the weak topology, induced by X ′. Also,
we deal with the fractional evolution equation of the form

Dα
0 ν(t) = F (t, ν(t)), (1.1)(

ν ∈ X , ν(0) = ν0, α ∈ (0, 1), t ∈ [0,∞)
)
,

where Dα
0 denotes the Riemann-Liouville fractional differential operator (the classic

fractional calculus), given by

0D
α
t ν(t) =

d

dt
I1−αν(t),

corresponding to the fractional integral operator (see [20, 22])

Iα(ν)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1ν(s) ds,

F : [0,∞)×X → X is integrable (F ∈ L1([0, T ]×X ,X )), Lipschitz function with the
Lipschitz constant ` > 0, We say that the equation (1.1) has a solution ν : [0, T ]→ X
in the moment mode if it satisfies the following fractional integral equation:

〈ν(t), ρ〉 = 〈ν(η), ρ〉+

∫ t

0

(t− s)α−1

Γ(α)

〈
F
(
s, ν(s)

)
, ρ
〉
ds

+

∫ t−ε

η

(t− s)α

Γ(α+ 1)

〈
F ′
(
s, ν(s)

)
, ρ
〉
ds,

(1.2)

where 0 ≤ η < t − ε, for all ρ ∈ X ′ (weak topology in X ) and ν is continuous in X ′
(weakly continuous). In this work, we shall assume that ρ is bounded by some finite
constant K > 0; thus, we obtain |

〈
F
(
s, ν(s)

)
, ρ
〉
| ≤ K‖F‖.

In this work, we discuss new Krasnoselskii type fixed point and coupled fixed point
results using the concept of DFPT (see [17] and [26]). We generalize the results from
[3, 2, 4, 1, 9, 17, 29, 21, 27, 28].We find the moment solution of (1.1) as well as of the
coupled system

Dα
0 ν(t) = F1(t, υ(t))

Dα
0 υ(t) = F2(t, ν(t)).

2. Krasnoselskii type fixed point outcomes

In this section, we discuss two main Krasnoselskii type fixed point results.
To achieve them, we use the results of DFPT given in [26].

2.1. Result 1. We start with two notions that are required for completing the results
[18].

Definition 2.1. Let ∆ be the set of functions χ : R+ → [0, 1) satisfying χ(tn) →
1→ tn → 0.

Definition 2.2. Let Ψ denote the class of all functions ψ : R+ → R+ which satisfy
the following conditions:
(i)ψ is nondecreasing, (ii)ψ is continuous, (iii)ψ−1({0}) = {0}.

From now on, we take µ(·) as an arbitrary MNC in Banach space X .
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Lemma 2.3. [26] Let D ∈ Λ, T ∈ F satisfy

ψ(µ(T (B)) + ϕ(µ(T (B)))) ≤ χ(ψ(µ(B)))ψ[µ(B) + ϕ(µ(B))], (2.1)

for all ∅ 6= B ⊂ D, where ϕ : R+ → R+ is a continuous mapping, χ ∈ ∆ and ψ ∈ Ψ.
Then Fix(T ) 6= ∅ in D.

We call (2.1) the condition of µ-(ψ,ϕ)-set contraction. Also, we define the family
Γ := {K : K : D → X is a continuous operator}. Next we prove our first main result.

Theorem 2.4. Let D ∈ Λ and Ki ∈ Γ (i = 1, 2) satisfy

(F1) K1x+K2y ∈ D, ∀ x, y ∈ D;
(F2) K1D ⊂ R, where R is a compact set,
(F3) K2 is a µ-(ψ,ϕ)-set contraction.

Then Fix(K1 +K2) 6= ∅ in D.

Proof. Consider an operator T : D → X defined, for x ∈ D, by

T x = K1x+K2x. (2.2)

Obviously, if u ∈ Fix(T ) in D, then u is the solution of equation y = K1y + K2y.
Now, due to continuity of operators K1,K2, T : D → X is continuous. Also, by the
virtue of (F1), we can have T x = K1x + K2x ∈ D for any x ∈ D. Then T : D → D
is continuous. By the virtue of (2.2), for any ∅ 6= B ⊂ D, we can obtain

T B ⊂ K1B +K2B. (2.3)

By the virtue of (F2) and MNC, we have

µ(K1B) = 0. (2.4)

Finally, in view of (F3), (2.3) and (2.4), we have

ψ(µ(T B) + ϕ(µ(T B))) ≤ ψ[µ(A1B +A2B) + ϕ(µ(A1B +A2B))]

≤ ψ[µ(A1B) + µ(A2B) + ϕ(µ(A1B) + µ(A2B))]

= ψ[µ(A2B)) + ϕ(µ(A2B))]

≤ χ(ψ(µ(B)))ψ[µ(B) + ϕ(µ(B))].

Consequently, all the requirements of Lemma 2.3 are fulfilled and thus the result. �

Taking ϕ(t) ≡ λt for t ∈ R+ with λ ≥ 0 in Theorem 2.4, we have the following FPT:

Corollary 2.5. Let all the conditions of Theorem 2.4 be satisfied, apart from the
hypothesis (F3) which is replaced by

(F3’) ψ(µ(K2(B))) ≤ χ(ψ(µ(B)))ψ(µ(B)), for any ∅ 6= B ⊂ D, where χ ∈ ∆ and
ψ ∈ Ψ.

Then Fix(K1 +K2) 6= ∅ in D.

Taking χ(t) ≡ λ ∈ [0, 1) for t ∈ R+ in Theorem 2.4, we obtain the following FPT.

Corollary 2.6. Let all the conditions of Theorem 2.4 be satisfied, apart from the
hypothesis (F3) which is replaced by
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(F3”) ψ(µ(K2(B)) + ϕ(µ(K2(B)))) ≤ λ(ψ(µ(B)))ψ[µ(B) + ϕ(µ(B))] for any
∅ 6= B ⊂ D, where ϕ : R+ → R+ is a continuous mapping and ψ ∈ Ψ.

Then Fix(K1 +K2) 6= ∅ in D.

2.2. Result 2. To start our second main result, we need the following preliminaries:

Definition 2.7. [23] Let Υ denote the class of all MT-functions ζ : [0,∞) → [0, 1)
which satisfies Mizoguchi-Takahashi’s condition

lim sup
s→t+

ζ(s) < 1 for all t ∈ [0,∞).

It is noted that if ζ : [0,∞)→ [0, 1) is a non-decreasing function or a non-increasing
function, then ζ is an MT-function. So, the set of MT-functions is a rich class, but it
is worth to mention that there exist functions which are not MT-function.

Definition 2.8. Let Ω denote the set of all functions ω : [0,+∞)→ [0,+∞) satisfy-
ing:

(i) ω is non-decreasing, (ii) ω(t) = 0⇔ t = 0.

Lemma 2.9. [26] Let D ∈ Λ, T ∈ F with

ω(µ(T (B)) + ϕ(µ(T (B)))) ≤ ζ(ω(µ(B)))ω[µ(B) + ϕ(µ(B))], (2.5)

for all ∅ 6= B ⊂ D, where ϕ : R+ → R+ is a continuous mapping, ζ ∈ Υ and ω ∈ Ω.
Then Fix(T ) 6= ∅ in D.

We call (2.5) a µ-(ω, ϕ)-set contractive condition. We have the following result:

Theorem 2.10. Let D ∈ Λ and Ki ∈ Γ (i = 1, 2) satisfy

(F4) K1x+K2y ∈ D, ∀ x, y ∈ D;
(F5) K1D ⊂ R, where R is a compact set;
(F6) K2 is a µ-(ω, ϕ)-set contraction.

Then Fix(K1 +K2) 6= ∅ in D.

Proof. Consider an operator W : D → X defined by

Wx = K1x+K2x, ∀x ∈ D.
Following the proof of Theorem 2.4, we have only to prove thatW satisfy µ-(ω, ϕ)-set
contractive condition. From (F6), (2.3) and (2.4), we have

ω[µ(WB) + ϕ(µ(WB))] ≤ ω[µ(K1B +K2B) + ϕ(µ(K1B +K2B))]

≤ ω[µ(K1B) + µ(K2B) + ϕ(µ(K1B) + µ(K2B))]

= ω[µ(K2B)) + ϕ(µ(K2B))]

≤ ζ(ω(µ(B)))ω[µ(B) + ϕ(µ(B))].

Thus W satisfy all the conditions of Lemma 2.9 and hence the result. �

Putting ϕ(t) ≡ 0 for t ∈ R+ in the condition (F6) of Theorem 2.10, we have the
following outcome:

Corollary 2.11. Let all the conditions of Theorem 2.10 be satisfied, apart from the
hypothesis (F6) which is replaced by
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(F6’) ω(µ(K1(B))) ≤ ζ(ω(µ(B)))ω(µ(B)), for any ∅ 6= B ⊂ D, where ζ ∈ Υ and
ω ∈ Ω.

Then Fix(K1 +K2) 6= ∅ in D.

Taking χ(t) ≡ λ ∈ [0, 1) for t ∈ R+ in Theorem 2.10, we have the following fixed
point result.

Corollary 2.12. Let all the conditions of Theorem 2.10 be satisfied, apart from the
hypothesis (F6) which is replaced by

(F6”) ω(µ(K2(B)) + ϕ(µ(K2(B)))) ≤ λ(ω(µ(B)))ω[µ(B) + ϕ(µ(B))] for any
∅ 6= B ⊂ D, where ϕ : R+ → R+ is a continuous mapping and ω ∈ Ω.

Then Fix(K1 +K2) 6= ∅ in D.

2.3. Result 3. To complete the result of this section, we recall the following prelim-
inaries:

Definition 2.13. Let Ξ denote the set of continuous functions β : R+ → R+ satisfy-
ing

β(tn)→ 0⇒ tn → 0.

Definition 2.14. Let Φ denote the class of all functions φ : R+ → R+ which satisfy
the following conditions:

(i) φ is nondecreasing;
(ii) φ is lower semicontinuous;
(iii) φ(0) = 0 and φ(t) > 0 for t > 0.

Lemma 2.15. [17] Let D ∈ Λ and T ∈ F such that

µ(T (P)) ≤ µ(P)− φ(β(µ(P))) (2.6)

∀ ∅ 6= B ⊂ D, where β ∈ Ξ and φ ∈ Φ. Then Fix(T ) 6= ∅ in D.

We call (2.6) the µ-(φ, β)-set condition. We have the main result as follows:

Theorem 2.16. Let D ∈ Λ and Ki ∈ Γ (i = 1, 2) satisfy

(F7) K1x+K2y ∈ D, ∀ x, y ∈ D;
(F8) K1D ⊂ R, where R is a compact set;
(F9) K2 is a µ-(φ, β)-set contraction.

Then Fix(K1 +K2) 6= ∅ in D.

Proof. Consider the operator Z : D → X defined by

Zx = K1x+K2x, ∀x ∈ D.
Following the proof of Theorem 2.4, we have only to prove that Z satisfy µ-(φ, β)-set
contraction condition. From (F9), (2.3) and (2.4), we have

µ(Z(B)) ≤ µ(K1B +K2B)

≤ µ(K1B) + µ(K2B)

≤ µ(B)− φ(β(µ(B))).

Thus, Z satisfy all the constraints of Lemma 2.15 and hence the result. �
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3. Krasnoselskii type coupled fixed point theorem

Before we start our discussion, we set the following terminology:

Let X be a real Banach space with the norm ‖ · ‖ and let X̂ = X × X . For any
u = (u1, u2), v = (v1, v2) and ζ ∈ R, we define

u+ v = (u1, u2) + (v1, v2) = (u1 + v1, u2 + v2),

ζu = ζ(u1, u2) = (ζu1, ζu2)

and

‖u‖X̂ = ‖(u1, u2)‖X = ‖u1‖+ ‖u2‖.

Then X̂ is a Banach space with the norm ‖ · ‖X̂ .

Definition 3.1. An element (u, v) ∈ X̂ is called a coupled fixed point (CFP) of the

mapping G : X̂ → X if G(u, v) = u and G(v, u) = v. The set of all coupled fixed
points of G is denoted by CFix(G).

3.1. Result 4. In this section, we discuss two new Krasnoselskii-type coupled fixed
point theorems and some consequences by applying the Krasnoselskii fixed point
theorem established in Section 2. We consider the following setup of new MNC to

obtain the result. Let ∅ 6= H1, ∅ 6= H2 ⊆ X be bounded. Then H1 × H2 ⊆ X̂ is

bounded. We construct new MNC in X̂ as

β̂(H1 ×H2) =
β(H1) + β(H2)

2
. (3.1)

Theorem 3.2. Let D ∈ Λ and D̂ = D ×D. Assume that Ji ∈ Γ (i = 1, 2) satisfy

(H1) J1x+ J2y ∈ D, ∀ x, y ∈ D,
(H2) J1D ⊂ R, where R is a compact set,
(H3) J2 is µ-(φ, ϕ)-set contraction

Then CFix(G) 6= ∅ in D̂, where G(x, y) = J1x+ J2y.

Proof. It is easy to see that D̂ ∈ Λ. We define two operators Ĵ1, Ĵ2 by

Ĵ1(x, y) = (J1x,J1y), Ĵ2(x, y) = (J2y,J2x). (3.2)

Since J1,J2 : D → X , it follows that Ĵ1, Ĵ2 : D̂ → X̂ . If ∃ û = (x̂, ŷ) ∈ D̂ such that

û = Ĵ1û+ Ĵ2û, by (3.2), we have

(x̂, ŷ) = Ĵ1(x̂, ŷ) + Ĵ2(x̂, ŷ)

= (J1x̂,J1ŷ) + (J2ŷ,J2x̂)

= (J1x̂+ J2ŷ,J1ŷ + J2x̂)

= (G(x̂, ŷ),G(ŷ, x̂)).

By virtue of Definition 3.1, (x̂, ŷ) ∈ D̂ is a CFP of G. To come up to this conclusion,
we make use of Theorem 2.4.
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Part (I): For any x, y ∈ D, by (H1), we have J1x+J2y ∈ D. Let u = (x, y) ∈ D̂ be

an arbitrary element. We assert that Ĵ1u+ Ĵ2u ∈ D̂. In fact, by the virtue of (3.2),
we have

Ĵ1u+ Ĵ2u = (J1x,J1y) + (J2y,J2x) = (J1x+ J2y,J1y + J2x) ∈ D ×D.

This shows that Ĵ1u+ Ĵ2u ∈ D̂.
Part (II): In view of the assumption (H2), J1D is involved in a compact set. For

all ∅ 6= Di ⊂ D(i = 1, 2), it follows from Ĵ1(D1 × D2) = (J1D1,J1D2) that Ĵ1D̂ is

contained in a compact set. Let ∅ 6= B ⊆ D be arbitrary. Then B̂ = B×B is arbitrary

in D̂.
Part (III): Last of all, we argue that Ĵ2 is µ̂-(φ, ϕ)-set contractive. To attain this,
we use (H3) and (3.2) and we have

ψ[µ̂(Ĵ2(B̂)) + ϕ(µ̂(Ĵ2(B̂)))]

= ψ[µ̂(Ĵ2(B × B)) + ϕ(µ̂(Ĵ2(B × B)))]

= ψ[µ̂(J2(B)× J2(B)) + ϕ(µ̂(J2(B)× J2(B)))]

= ψ

[
µ(J2(B)) + µ(J2(B))

2
+ ϕ(

µ(J2(B)) + µ(J2(B))

2
)

]
= ψ[µ(J2(B)) + ϕ(µ(J2(B)))]

≤ χ(ψ(µ(B)))ψ[µ(B) + ϕ(µ(B))]

= χ

(
ψ

(
µ(B) + µ(B)

2

))
ψ

[
µ(B) + µ(B)

2
+ ϕ

(
µ(B) + µ(B)

2

)]
= χ(ψ(µ̂(B̂)))ψ[µ̂(B̂) + ϕ(µ̂(B̂))].

Thus, in view of Theorem 2.4, we have the conclusion. �

Putting ϕ(t) ≡ λt for t ∈ R+ with λ ≥ 0 in Theorem 3.2, we have the following
CFPT.

Corollary 3.3. Let all the conditions of Theorem 3.2 be satisfied, apart from the
hypothesis (H3) which is replaced by

(H3’) ψ(µ(J2(B))) ≤ χ(ψ(µ(B)))ψ(µ(B)), ∀ B 6= ∅ ⊂ D, where χ ∈ ∆ and ψ ∈ Ψ.

Then CFix(G(x, y) = J1x+ J2y) 6= ∅ in D̂.

Assuming χ(t) ≡ λ ∈ [0, 1) for t ∈ R+ in Theorem 3.2, we have the following CFPT:

Corollary 3.4. Let all the conditions of Theorem 3.2 be satisfied, apart from the
hypothesis (H3) which is replaced by

(H3”) ψ(µ(J2(B)) + ϕ(µ(J2(B)))) ≤ λ(ψ(µ(B)))ψ[µ(B) + ϕ(µ(B))] ∀ B 6= ∅ ⊂ D,
where ϕ : R+ → R+ is continuous mapping and ψ ∈ Ψ.

Then CFix(G(x, y) = J1x+ J2y) 6= ∅ in D̂.
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3.2. Result 5. Now, we state and prove the second Krasnoselskii type CFP result
using Theorem 2.10. For this, we select different MNC as follows:
Let ∅ 6= H1, ∅ 6= H2 ⊆ X be bounded. Then H1 ×H2 ⊆ X is bounded. We construct
a new MNC in X as follows:

β̂(H1 ×H2) = max{β(H1), β(H2)} (3.3)

Theorem 3.5. Let D ∈ Λ and D̂ = D ×D. Assume that Ji ∈ Γ (i = 1, 2) satisfy

(H4) J1x+ J2y ∈ D, ∀ x, y ∈ D,
(H5) J1D ⊂ R, where R is a compact set,
(H6) J2 is µ-(ω, ϕ)-set contraction, where ζ ∈ Υ and ω ∈ Ω.

Then CFix(G) 6= ∅ in D̂, where G(x, y) = J1x+ J2y.

Proof. Following the proof of Theorem 3.2, we define the operators J1,J2 : D → X
and prove the Parts (I) and (II). We only have to prove Part (III), i.e., that Ĵ2 is
µ-(ω, ϕ)-set contractive. For this, we use (H6) and (3.2) and we have

ω[µ̂(Ĵ2(B̂)) + ϕ(µ̂(Ĵ2(B̂)))]

= ω[µ̂(Ĵ2(B × B)) + ϕ(µ̂(Ĵ2(B × B)))]

= ω[µ̂(J2(B)× J2(B)) + ϕ(µ̂(J2(B)× J2(B)))]

= ω[max{µ(J2(B)), µ(J2(B))}+ ϕ(max{µ(J2(B)), µ(J2(B))})]
= ω[µ(J2(B)) + ϕ(µ(J2(B)))]

≤ ζ(ω(µ(B)))ψ[µ(B) + ϕ(µ(B))]

= ζ(ω(max{µ(B), µ(B)}))ω[max{µ(B), µ(B)}+ ϕ(max{µ(B), µ(B)})]

= ζ(ω(µ̂(B̂)))ω[µ̂(B̂) + ϕ(µ̂(B̂))].

Hence, we conclude the result from Theorem 2.10. �

3.3. Result 6. The third type of Krasnoselskii CFP result using Theorem 2.16 is the
following. We need to use (3.1) or (3.3). Similarly as in Theorems 3.2 and 3.5, we
have the following result:

Theorem 3.6. Let D ∈ Λ and D̂ = D ×D. Assume that Ji ∈ Γ (i = 1, 2) satisfy

(H4) J1x+ J2y ∈ D, ∀ x, y ∈ D,
(H5) J1D ⊂ R, where R is a compact set,
(H6) J2 is µ-(φ, β)-set contraction, where β ∈ Ξ and φ ∈ Φ.

Then CFix(G(x, y) = J1x+ J2y) 6= ∅ ∈ D̂.

4. Applications

We consider the fractional differential equation (1.1). Our aim is to show that (1.1)
has a solution in the sense of moments taking the form (1.2), by employing Theorem
2.4.

Theorem 4.1. Define the operator Q : X → X as follows:

(Qν)(t) = (Q1ν)(t) + (Q2ν)(t), (4.1)
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where

(Q1ν)(t) = 〈ν(η), ρ〉+

∫ t

0

(t− s)α−1

Γ(α)

〈
F
(
s, ν(s)

)
, ρ
〉
ds, (4.2)

and

(Q2ν)(t) =

∫ t−ε

η

(t− s)α

Γ(α+ 1)

〈
F ′
(
s, ν(s)

)
, ρ
〉
ds. (4.3)

If K ∈ (0, 1) (the upper bound of ρ) satisfies

` <
Γ(α+ 1)

3KTα

then the operator (4.1) admits at least one fixed point corresponding to the moment
solution of (1.1).

Proof. Our aim is to achieve all the conditions of Theorem 2.4.
Boundedness. By the definition of operator Q, a computation implies

(Qν)(t) = 〈ν(η), ρ〉+

∫ t

0

(t− s)α−1

Γ(α)

〈
F
(
s, ν(s)

)
, ρ
〉
ds

+

∫ t−ε

η

(t− s)α

Γ(α+ 1)

〈
F ′
(
s, ν(s)

)
, ρ
〉
ds

= 〈ν(η), ρ〉+

∫ t

0

(t− s)α−1

Γ(α)

〈
F
(
s, ν(s)

)
, ρ
〉
ds

+ α

∫ t−ε

η

(t− s)α−1

Γ(α+ 1)

〈
F
(
s, ν(s)

)
, ρ
〉
ds

+
εα

Γ(α+ 1)
〈F (t− ε), ρ〉 − tα

Γ(α+ 1)
〈F (η), ρ〉 .

Thus, we obtain

|(Qν)(t)| ≤ K‖ν‖+K‖F‖
∫ t

0

(t− s)α−1

Γ(α)
ds+ αK‖F‖

∫ t−ε

η

(t− s)α−1

Γ(α+ 1)
ds

+
εαK‖F‖
Γ(α+ 1)

+
(t− η)αK‖F‖

Γ(α+ 1)
.

≤ K‖ν‖+K‖F‖
( tα

Γ(α+ 1)
+

(t− ε)α

Γ(α+ 1)
+

εα

Γ(α+ 1)
+

(t− η)α

Γ(α+ 1)

)
.

Taking the maximum norm on t ∈ [0, T ], we have

‖Qν‖ ≤ 4K‖F‖Tα

(1−K)Γ(α+ 1)
:= r, K ∈ (0, 1).

Hence, Q is bounded in Br.
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Continuity. Let δ > 0 and ν, υ ∈ Br such that ‖ν − υ‖ ≤ δ. Then a computation
implies

|(Qν)(t)− (Qυ)(t)| ≤
∫ t

0

(t− s)α−1

Γ(α)
|
〈
[F
(
s, ν(s)

)
− F

(
s, υ(s)

)
], ρ
〉
|ds

+

∫ t−ε

η

(t− s)α

Γ(α+ 1)
|
〈
[F ′
(
s, ν(s)− F ′

(
s, ν(s)

)
], ρ
〉
|ds

≤
∫ t

0

(t− s)α−1

Γ(α)
K‖F

(
s, ν(s)

)
− F

(
s, υ(s)

)
‖ds

+

∫ t−ε

η

(t− s)α−1

Γ(α+ 1)
K‖F

(
s, ν(s)− F

(
s, ν(s)

)
‖ds

+
εαK

Γ(α+ 1)
‖F
(
s, ν(s)− F

(
s, ν(s)

)
‖, ν0 = υ0

≤ ‖ν − υ‖`K
( tα

Γ(α+ 1)
+

(t− ε)α

Γ(α+ 1)
+

εα

Γ(α+ 1)

)
≤ 3δ`TαK

Γ(α+ 1)
= ε,

where

δ :=
Γ(α+ 1)ε

3Tα`K
, K ∈ (0, 1).

Contractivity. Let ν and υ ∈ Br. Then we have

|(Q2ν)(t)− (Q2υ)(t)| ≤ ‖ν − υ‖`K
( (t− ε)α

Γ(α+ 1)
+

εα

Γ(α+ 1)

)
≤ ‖ν − υ‖ 2`KTα

Γ(α+ 1)
< ‖ν − υ‖ 3`KTα

Γ(α+ 1)
< ‖ν − υ‖.

Hence, Q2 is a contraction mapping.
Measurement. Here, we aim to prove µ(Q)(Br) ≤ µ(Br). For ν and υ ∈ Br, we
have

|(Qν)(t)− (Qυ)(t)| ≤ ‖ν − υ‖`K
( tα

Γ(α+ 1)
+

(t− ε)α

Γ(α+ 1)
+

εα

Γ(α+ 1)

)
≤ ‖ν − υ‖ 3`KTα

Γ(α+ 1)
.

This yields that diam(Q(Br)) ≤ Kα diam(Br), where for sufficient value of 0 < ` <
‖F‖
1−K , we have Kα := 3`TαK

Γ(α+1) < r. Consequently, diam(Q(Br)) ≤ diam(Br). Now, we

define the function ψ : (0,∞)→ (0,∞) as follows: ψ(ς) = ς + 1
2 . Obviously,

ψ(µ(Q(Br))) ≤ ψ(Kα µ(Br)) = Kα µ(Br) +
1

2

< µ(Br) +
1

2
= ψ(µ(Br), Kα < 1.

Hence, Q admits a fixed point analogous to the solution of (4.1). �
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Next, we consider the fractional coupled system

Dα
0 ν(t) = F1(t, υ(t))

Dα
0 υ(t) = F2(t, ν(t)),

(4.4)

where F1 and F2 are integrable (F1, F2 ∈ L1([0, T ]×X ,X ) ), Lipschitz function with
the Lipschitz constants `1, `2 > 0. We aim to show that the system (4.4) has a couple
moment solution, taking the form (1.2).

Theorem 4.2. Define the operator Θ : X × X → X as follows:

Θ(ν, υ) = (Θ1ν)(t) + (Θ2υ)(t), (4.5)

where Θ1 and Θ2 are given by

(Θ1ν)(t) = 〈ν(η), ρ〉+

∫ t

0

(t− s)α−1

Γ(α)

〈
F1

(
s, υ(s)

)
, ρ
〉
ds

+

∫ t−ε

η

(t− s)α

Γ(α+ 1)

〈
F ′1
(
s, υ(s)

)
, ρ
〉
ds,

(4.6)

and

(Θ2υ)(t) = 〈υ(η), ρ〉+

∫ t

0

(t− s)α−1

Γ(α)

〈
F2

(
s, ν(s)

)
, ρ
〉
ds

+

∫ t−ε

η

(t− s)α

Γ(α+ 1)

〈
F ′2
(
s, ν(s)

)
, ρ
〉
ds.

(4.7)

If K ∈ (0, 1) (the upper bound of ρ) satisfies `1 + `2 := ` < Γ(α+1)
3KTα , then the operator

(4.5) admits at least a couple fixed point corresponding to the moment solution of
(4.4).

Proof. Our aim is to apply Theorem 3.2.
Boundedness. For ν, υ ∈ X , we have

|Θ(ν, υ)| ≤ K(‖ν‖+ ‖υ‖) +K(‖F1‖+ ‖F2‖)
∫ t

0

(t− s)α−1

Γ(α)
ds

+ αK(‖F1‖+ ‖F2‖)
∫ t−ε

η

(t− s)α−1

Γ(α+ 1)
ds

+
εαK(‖F1‖+ ‖F2‖)

Γ(α+ 1)
+

(t− η)αK(‖F1‖+ ‖F2‖)
Γ(α+ 1)

.

≤ K(‖ν‖+ ‖υ‖) +K(‖F1‖+ ‖F2‖)

×
( tα

Γ(α+ 1)
+

(t− ε)α

Γ(α+ 1)
+

εα

Γ(α+ 1)
+

(t− η)α

Γ(α+ 1)

)
.

Taking the maximum norm on t ∈ [0, T ], we have

‖Θ(ν, υ)‖ ≤ 4K(‖F1‖+ ‖F2‖)Tα

(1−K)Γ(α+ 1)
:= r, K ∈ (0, 1).

Hence, Θ is bounded in Br.
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Continuity. Let δ > 0 and νi, υi ∈ Br such that ‖ν1 − ν2‖ ≤ δ/2, ‖υ1 − υ2‖ ≤ δ/2.
Then a computation implies

|Θ(ν1, υ1)−Θ(ν2, υ2)| = |(Θ1ν1)(t) + (Θ2υ1)(t)− (Θ1ν2)(t)− (Θ2υ2)(t)|
= |(Θ1ν1)(t)− (Θ1ν2)(t) + (Θ2υ1)(t)− (Θ2υ2)(t)|

≤ ‖υ1 − υ2‖`1K
( tα

Γ(α+ 1)
+

(t− ε)α

Γ(α+ 1)
+

εα

Γ(α+ 1)

)
+ ‖ν1 − ν2‖`2K

( tα

Γ(α+ 1)
+

(t− ε)α

Γ(α+ 1)
+

εα

Γ(α+ 1)

)
≤ 3δ`1T

αK

2Γ(α+ 1)
+

3δ`2T
αK

2Γ(α+ 1)
=

3δ`TαK

Γ(α+ 1)
= ε, ` = `1 + `2,

where

δ :=
Γ(α+ 1)ε

3Tα`K
, K ∈ (0, 1).

Contractivity. Let ν and υ ∈ Br, we have

|(Θ2ν)(t)− (Θ2υ)(t)| ≤ ‖ν − υ‖`2K
( tα

Γ(α+ 1)
+

(t− ε)α

Γ(α+ 1)
+

εα

Γ(α+ 1)

)
≤ ‖ν − υ‖ 3`2KT

α

Γ(α+ 1)
< ‖ν − υ‖ 3`KTα

Γ(α+ 1)
< ‖ν − υ‖.

Hence, Q2 is a contraction mapping.
Measurement. Here, we aim to prove µ(Θ(Br) ≤ 2µ(Br). For ν and υ ∈ Br, we
have

|Θ(ν1, υ1)−Θ(ν2, υ2)| ≤ ‖υ1 − υ2‖`1K
( tα

Γ(α+ 1)
+

(t− ε)α

Γ(α+ 1)
+

εα

Γ(α+ 1)

)
+ ‖ν1 − ν2‖`2K

( tα

Γ(α+ 1)
+

(t− ε)α

Γ(α+ 1)
+

εα

Γ(α+ 1)

)
≤
(
‖ν1 − ν2‖+ ‖υ1 − υ2‖

) 3`TαK

Γ(α+ 1)
.

Then we conclude that diam(Θ(Br)) ≤ 2Kα diam(Br), where for sufficient value

of 0 < ` < ‖F1‖+‖F2‖
1−K we have Kα := 3`TαK

Γ(α+1) < r. Consequently, diam(Θ(Br)) ≤
2diam(Br). Now we consider the function ψ : (0,∞) → (0,∞) given as follows:
ψ(ς) = ς + 1. Obviously,

ψ(µ(Θ(Br))) ≤ ψ(2Kα µ(Br)) = 2Kα µ(Br) + 1

< 2[µ(Br) + 1], Kα < 1

< 2[µ(Br) + 1](µ(Br) + 1) = χ[ψ(µ(Br))]ψ[µ(Br)],

where χ(ς) = 2ς. Hence, Θ admits a coupled fixed point corresponding to the couple
moment solution of (4.1). �
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4.1. Numerical example. Consider the following fractional differential equation:

Dα
t ν(t) =

1

3
ν(t), ν(0) = ν0; (4.8)

where ν ∈ X = C[0, 1]. Let Q : C[0, 1] → C[0, 1] be given by (Qν)(t) = 〈ν(t), ρ〉,
where ρ(y) = sin(y)

2 . It is clear that K = 1
2 < 1 and ‖F‖ = 1

3 ; thus for α = 0.5, we

have ` = 1
3 < 0.586. In view of Theorem 4.1, we conclude that (4.8) has a solution in

the mode of moments.
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