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Abstract. This paper is mainly concerned with a generalized hematopoiesis model with harvesting

terms and impulses. Based on the contraction mapping principle and generalized Gronwall-Bellmain
inequality, the new results on the existence, uniqueness and globally exponential stability of the
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1. Introduction

Hematopoiesis model which arisen in blood cell production, was firstly introduced
and studied by Mackey and Glass [15]. Due to its applications in our daily lives,
in last years, the qualitative properties for hematopoiesis model and its generalized
models have been extensively investigated in literature, see for example [8], [9], [7],
[18], [25], [26]. In the real world phenomena, the variation of the environment plays
an important role. In this case, some researchers, such as Saker in [18], Wang and
Li in [24], Yao in [27], studied the dynamic behavior of the following nonautonomous
delay differential equation with time-varying coefficients:

ẋ(t) = −a(t)x(t) +
b(t)

1 + xn(t− τ(t))
, t ≥ 0. (1.1)

For example, Yao in [27] studied the existence and exponential stability of the unique
positive almost periodic solution of (1.1).

Meanwhile, In 1991, Gyori and Ladas [10] investigate the global attractivity of
unique positive equilibrium of the following equation:

ẋ(t) = −ax(t) +
b

1 + xn(t− τ)
, t ≥ 0,
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and Gyori and Ladas gave the open problem of extending the results to equations
with several delays. In order to solve this problem, the following equation was come
up with:

ẋ(t) = −ax(t) +

m∑
i=1

bi(t)

1 + xn(t− τi(t))
, n > 0, (1.2)

and researchers have paid lots of attention on the qualitative properties of (1.2). For
example, Zhang et al in [32] discussed the existence and exponential convergence
of the positive almost periodic solution for (1.2), and Meng [16] studied the global
exponential stability of positive pseudo-almost periodic solutions for (1.2).

Many dynamical systems have impulsive dynamical behaviors due to abrupt
changes at certain instants during the evolution process. The mathematical descrip-
tion of these phenomena leads to impulsive differential equations and the theory of
impulsive problems is experiencing a rapid development, see [5], [13], [12], [17], [23],
[21], [22], [28] and the references therein. Compared with the classical hematopoiesis
model or impulsive equations, the study on hematopoiesis model with impulses has
been few considered in the literature, see [2], [20]. For example, Alzabut et al in [2]
studied the existence and exponential stability of positive almost periodic solutions
for the following impulsive hematopoiesis model of the form:

ẋ(t) = −a(t)x(t) +
b(t)

1 + xn(t− τ)
, t ∈ R, t 6= tk,

∆x(tk) := x(t+k )− x(t−k ) = γkx(tk) + δk, k ∈ N,

where tk represent the instants at which the density suffers an increment of δk units,
x(t+k ), x(t−k ) denote the limit from right and left, respectively.

On the other hand, the existence of pseudo almost periodicity which was first
treated by Zhang [29] around 1990 are the most attractive topics in qualitative theory
of differential equations due to their applications, especially in biology, economics
and physics. The concept of pseudo almost periodicity is a natural generalization of
almost periodicity and the properties of the almost periodic functions do not always
hold in the set of pseudo almost periodic functions. For example, the function f(t) =

sin2 t + sin4
√

11t + exp(−t6 sin4 t), t ∈ R is pseudo almost periodic but not almost
periodic. During the last several years, some criteria ensuring the existence and
stability of pseudo almost periodic solutions have been established for the some certain
and valuable problems, for more details, we refer the readers to see the references [4],
[6], [14], [29], [30] and the books [20], [31].

Moreover, biologists have proposed that the process of harvesting population is of
great significance in the exploitation of biological resources. However, to the best of
our knowledge, little attention has been devoted to the study of positive piecewise
pseudo almost periodic solutions of the hematopoiesis model with linear harvesting
terms and impulses. In order to overcome this deficiency, motivated by the above
works, in this paper, we study the positive piecewise pseudo almost periodic solutions
for the following generalized hematopoiesis model with linear harvesting terms and
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impulses of the form:ẋ(t) = −a(t)x(t) +

P∑
i=1

bi(t)x
m(t− τi(t))

1 + xn(t− τi(t))
−H(x(t− δ(t))), t ∈ R, t 6= tk,

∆x(tk) = x(t+k )− x(t−k ) = γkx(tk) + Ik(x(tk)), k ∈ N,
(E)

where 0 ≤ m < n, a ∈ C(R,R+) is almost periodic function, bi ∈ C(R,R+) and
τi ∈ C(R,R+) are continuous and pseudo almost periodic functions for i = 1, 2, ..., P ,
P ≥ 1 is a positive constant, δ ∈ C(R,R+) is pseudo almost periodic function,
H ∈ C(R+,R+) is continuous and pseudo almost periodic, R+ = (0,+∞). γk, k ∈ N
is pseudo almost periodic sequence, ∆(x(tk)) = x(t+k )−x(t−k ) are impulses at moments
tk and t1 < t2 < · · · is a strictly increasing sequence such that lim

k→±∞
tk = ±∞. The

sequence of functions {Ik(x)}k∈Z is pseudo almost periodic uniform for x ∈ Ω, where
Ω is a subset of R.

The unknown x in (E) stands for the density of mature cells in blood circulation,
a is the rate of lost cells from the circulation at time t, the flux

f(x(t− τi(t))) :=
bi(t)x

m(t− τi(t))
1 + xn(t− τi(t))

of cells in the circulation depends on x(t − τi(t)) at the time t − τi(t), and τi(t)
(i = 1, 2, ..., P ) are time delays between the production of immature cells in the bone
marrow and their maturation.

Compared with some recent results in the literature, such as [2], [16], [20], [32], the
chief contributions of our study contain at least the following two:

1. The hematopoiesis model we are concerned with is more generalized, some
related ones in the literature are the special cases of it. Moreover, we also
extend the hematopoiesis model to the impulsive case. Thus, the generalized
hematopoiesis model with linear harvesting terms and impulses are originally
discussed in the present paper.

2. An innovative method based on contraction mapping principle and generalized
Gronwall-Bellmain inequality is exploited to discuss the existence, uniqueness
and globally exponential stability of the piecewise pseudo almost periodic
solutions for the generalized hematopoiesis model with harvesting terms and
impulses. The results established are essentially new.

The rest of this paper is organized as follows. In Section 2, we will give some
definitions and some useful lemmas. Section 3 and 4 is devoted to establishing some
criteria for the existence, uniqueness and globally exponentially stable of positive
piecewise pseudo almost periodic solution for (E). Finally, in section 5, an numerical
example is given to illustrate the effectiveness of the obtained results.

2. Essential definitions and lemmas

Since the solution for the (E) is a piecewise continuous functions with points of
discontinuity of the first kind t = tk, k ∈ Z and we adopt the following notations,
definitions and lemmas for piecewise pseudo almost periodicity.
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• BC(R,R) (respectively, BC(R×Ω,R)): the Banach space of bounded continuous
functions from R to R (respectively, from R× Ω to R) with the supremum norm.
• PC(R,R): the space formed by all piecewise continuous functions f : R→ R such

that f(·) is continuous at t for any t /∈ {tk}k∈Z, f(t+k ), f(t−k ) exist, and f(t−k ) = f(tk)
for all k ∈ Z.
• PC(R×Ω,R): the space formed by all piecewise continuous functions f : R×Ω→

R such that for any x ∈ Ω, f(·, x) ∈ PC(R,R) and for any t ∈ R, f(t, ·) is continuous
at x ∈ Ω.

Let

T =

{{
tk
}∞
k=−∞ : tk ∈ R, tk < tk+1, k ∈ Z, lim

k→±∞
tk = ±∞

}
denote the set of all sequence unbounded and strictly increasing.

Definition 2.1. [19] A sequence {xn} is called almost periodic if for any ε > 0,
there exists a relatively dense set of its ε-periods, i.e., there exists a natural number
l = l(ε), such that for k ∈ Z, there is at least one number p in [k, k + l], for which
inequality |xn+p − xn| < ε holds for all n ∈ Z. Denote by AP (Z,R) the set of such
sequences.

Definition 2.2. [20] Let {tk} ∈ T , k ∈ Z. We say {tjk} is a derivative sequence of

{tk} and tjk = tj+k − tk, k, j ∈ Z.

Define

PAP0(Z,R) =

{
xn ∈ l∞(Z,R) : lim

n→+∞

1

2n

n∑
k=−n

|xk| = 0

}
.

Definition 2.3. [1] A sequence {xn}n∈Z ∈ l∞(Z,R) is called pseudo-almost periodic
if xn = xn + x̂n, where xn ∈ AP (Z,R), x̂n ∈ PAP0(Z,R). Denote by PAP (Z,R) the
set of such sequences.

Definition 2.4. [20] A piecewise continuous function f : R → R with discontinuity
of first kind at the points tk is said to be almost periodic, if

(a) the set of sequence {tjk}, t
j
k = tk+j − tk, k, j ∈ Z, {tk} ∈ T is equipotentially

almost periodic.
(b) For any ε > 0, there exists a real number δ > 0 such that if the points t′ and

t′′ belong to one and the same interval of continuity of f(t) and satisfy the
inequality |t′ − t′′| < δ, then ‖f(t′)− f(t′′)‖ < ε.

(c) for any ε > 0, there exists a relatively dense set Ωε such that if τ ∈ Ωε, then
‖f(t+ τ)− f(t)‖ < ε for all t ∈ R satisfying the condition |t− tk| > ε, k ∈ Z.

We denote by APT (R,R) the space of all piecewise almost periodic functions.
Obviously, the space APT (R,R) endowed with the norm defined by

‖ϕ‖ = sup
t∈R
|ϕ(t)|

is a Banach space. Let UPC(R,R) be the space of all functions f ∈ PC(R,R) such
that f satisfies the condition (b) in Definition 2.4 .
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Definition 2.5. [14] f ∈ PC(R × Ω,R) is said to be piecewise almost periodic in t
uniformly in x ∈ Ω if for each compact set K ⊆ Ω, {f(·, x) : x ∈ K} is uniformly
bounded, and given ε > 0, there exists a relatively dense set Ωε such that

|f(t+ τ, x)− f(t, x)| ≤ ε
for all x ∈ K, τ ∈ Ωε and t ∈ R, |t− tk| > ε. Denote by APT (R×Ω,R) the set of all
such functions.

Define

PC0
T (R,R) =

{
f ∈ PC(R,R) : lim

r→+∞
|f(t)|dt = 0

}
,

PAP 0
T (R,R) =

{
f ∈ PC(R,R) : lim

r→+∞

1

2r

∫ r

−r
|f(t)|dt = 0

}
,

PAP 0
T (R× Ω,R) =

{
f ∈ PC(R× Ω,R) : lim

r→+∞

1

2r

∫ r

−r
|f(t, x)|dt = 0, uniformly

with respect to x ∈ K, where K is an arbitrary compact subset of Ω

}
,

Definition 2.6. [14] A function f ∈ PC(R,R) is said to be piecewise pseudo almost
periodic if it can be decomposed as f = g + φ, where g ∈ APT (R,R) and φ ∈
PAP 0

T (R,R). Denote by PAPT (R,R) the set of all such functions. PAPT (R,R) is a
Banach space when endowed with the supremum norm.

Remark 2.7. PAP 0
T (R,R) is a translation invariant set of PC(R,R) and it is easy

to see that PC0
T (R,R) ⊂ PAP 0

T (R,R).

Lemma 2.8. Let {fn}n∈N ⊂ PAP 0
T (R,R) be a sequence of functions. If {fn} con-

verges uniformly to f , then f ∈ PAP 0
T (R,R).

Proof. First of all, note that f is necessarily a bounded continuous function from R
into R. For each n ∈ N, let

fn = hn + φn,

where {hn}n∈N ⊂ APT (R,R) and {φn}n∈N ⊂ PAP 0
T (R,R). From [29, Lemma 1.3],

we can have that ‖hn‖ ≤ ‖fn‖. Then, there exists h ∈ APT (R,R) such that

‖hn − h‖ → 0 as n→ +∞.
Similarly, it easily follows that there exists a function φ ∈ BC(R,R) such that

‖φn − φ‖ → 0 as n→ +∞.
Furthermore, for r > 0, we have

1

2r

∫ r

−r
|φ(t)|dt ≤ 1

2r

∫ r

−r
|φn(t)− φ(t)|dt+

1

2r

∫ r

−r
|φn(t)|dt

≤‖φn − φ‖+
1

2r

∫ r

−r
|φn(t)|dt,

hence, we can obtain that φ ∈ PAP 0
T (R,R). Therefore, f = h + φ ∈ PAPT (R,R).

This completes the proof. �
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Definition 2.9. [14] Let PAPT (R×Ω,R) consist of all functions f ∈ PC(R×Ω,R)
such that f = g + φ, where g ∈ APT (R× Ω,R) and φ ∈ PAP 0

T (R× Ω,R).

Lemma 2.10. (Generalized Gronwall-Bellmain inequality) [19] Let a non-negative
function u(t) ∈ PC(R,R) satisfy for t ≥ t0,

u(t) ≤ C +

∫ t

t0

v(τ)u(τ)dτ +
∑

t0<ti<t

βiu(τi),

with C ≥ 0, βi ≥ 0, u(τ) ≥ 0 and τi are the first kind discontinuity points of the
functions u(t). Then the following estimate holds for the function u(t),

u(t) ≤ C
∏

t0<ti<t

(1 + βi)e
∫ t
t0
v(τ)dτ

.

In order to establish the main results, the following assumptions are needed:

(H1) a ∈ C(R,R+) is almost periodic and there exists a constant a > 0 such that
a(t) ≥ a;

(H2) The sequence {γk}k∈N is almost periodic and −1 ≤ γk ≤ 0, k ∈ N;

(H3) The set of sequences {tjk} are equipotentially almost periodic and there exists
σ > 0 such that σ = inf

k∈Z
t1k = inf

k∈Z
(tk+1 − tk) > 0;

(H4) H : R × R → R+ is uniformly pseudo almost periodic and there exists a
constant LH > 0 such that

|H(t, x1)−H(t, x2)| ≤ LH |x1 − x2|, ∀x1, x2 ∈ Ω, t ∈ R.

(H5) The sequence of functions {Ik(x)}k∈N, k ∈ N is pseudo almost periodic uni-
form with respect to x ∈ Ω, and there exist two positive constants µ and LI

such that

|Ik(x)| ≤ µ, for all x ∈ Ω, k ∈ N;

and

|Ik(x1)− Ik(x2)| ≤ LI |x1 − x2|, ∀x1, x2 ∈ Ω, k ∈ N.

3. Existence and uniqueness of positive piecewise pseudo almost
periodic solution

Define

a+ = sup
t∈R
|a(t)|, b+i = max

1≤i≤P
sup
t∈R

bi(t), H
+ = sup

x∈R+

|H(x)|,

a− = inf
t∈R
|a(t)|, b−i = min

1≤i≤P
inf
t∈R

bi(t), H
− = sup

x∈R+

|H(x)|.

Consider the following auxiliary linear equation:{
ẋ(t) = −a(t)x(t), t ∈ R, t 6= tk,

∆x(tk) = γkx(tk), k ∈ N,
(3.1)
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By [19], it is well known that (3.1) with an initial condition x(t0) = x0 has a unique
solution represented by the following form:

x(t; t0, x0) = W (t, t0)x0, t0, x0 ∈ R,

where W is the Cauchy matrix of (3.1) defined as follows:

W (t, s) =


e−

∫ t
s
a(r)dr, tk−1 < s ≤ t ≤ tk;

k+1∏
i=m

(1 + γi) · e−
∫ t
s
a(r)dr, tm−1 < s ≤ tm ≤ tk < t ≤ tk+1.

(3.2)

Lemma 3.1. [19] If (H1)-(H4) are satisfied, then there exists 0 < ε1 < ε, relatively
dense sets Λ of R and Q of Z such that the following relations are fulfilled:

(s1) |a(t+ τ)− a(t)| < ε for all t ∈ R, τ ∈ Λ;
(s2) |b(t+ τ)− b(t)| < ε for all t ∈ R, τ ∈ Λ;
(s3) |e(t+ τ)− e(t)| < ε for all t ∈ R, τ ∈ Λ;
(s4) |γk+q − γk| < ε for all q ∈ Q and k ∈ N;
(s5) |tqk − τ | < ε1 for all τ ∈ Λ, q ∈ Q and k ∈ N.

Lemma 3.2. [3] Let (H1)-(H3) be satisfied, then for the Cauchy matrix W (t, s) of
(3.1), there exists a positive constant a such that

|W (t, s)| ≤ e−a(t−s), t > s, t, s ∈ R.

Lemma 3.3. [3] Let (H1)-(H3) be satisfied, then for ε > 0, t ∈ R, s ∈ R, t ≥ s,
|t−tk| > ε, |s−tk| > ε, k ∈ N, there exists a relatively dense set Λ of ε-almost periods
of the function a(t) and a positive constant M such that for ε ∈ Λ it follows∣∣∣W (t+ τ, s+ τ)−W (t, s)

∣∣∣ ≤ εMe−
a
2 (t−s).

Let D ∈ PC(R,R) denote the set of all piecewise pseudo almost periodic functions.
For any ϕ ∈ D, define ‖ϕ‖ = sup

t∈R
|ϕ(t)|. Then, D is a Banach space.

Due to the biological interpretation of model (E), only positive solutions are mean-
ingful and therefore admissible. In order to obtain the positive solutions of (E), the
initial conditions xt0 = ϕ, ϕ ∈ PC([−r, 0],R+) and ϕ(0) > 0 are needed. We write
x(t; t0, ϕ) for a solution of (E) with the above initial conditions. Let [t0, τ(ϕ)) be the
maximal right interval of existence of x(t; t0, ϕ). If x(t) is continuous and defined on
[−r + t0, δ) with t0, δ ∈ R, then for all t ∈ [t0, δ), we define xt(θ) = x(t + θ) for all
θ ∈ [−r, 0].

Define

η1 =

P∑
i=1

b−i
1 + ηn2

−H+

a+
, η2 =

P∑
i=1

b+i −H
−

a−
. (3.3)

Define

PC0 :=
{
ϕ|ϕ ∈ PC([−r, 0],R), η1 ≤ ϕ(t) ≤ η2, t ∈ [−r, 0]

}
.
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Theorem 3.4. Assume that 1 < η1 ≤ η2. Then for ϕ ∈ PC0, the solution x(t; t0, ϕ)
of (E) satisfies

η1 ≤ x(t; t0, ϕ) ≤ η2,

for all t ∈ [t0, τ(ϕ)) and τ(ϕ) = +∞.

Proof. Set x(t) = x(t; t0, ϕ). Let [0, γ) ⊆ [t0, τ(ϕ)) be an interval such that x(t) > 0
for all t ∈ [0, γ). Firstly, we prove

0 < x(t) ≤ η2, t ∈ [t0, γ). (3.4)

By way of contradiction, if (3.4) does not hold, then there exists t ∈ [t0, γ) such that
x(t) = η2 and 0 < x(t) ≤ η2 for all t ∈ [t0 − r, t). Calculating the derivative of x(t),
we have that

0 < ẋ(t) = −a(t)x(t) +

P∑
i=1

bi(t)x
m(t− τi(t))

1 + xn(t− τi(t))

−H(x(t− δ(t)))

< −a−η2 +

P∑
i=1

b+i −H
− = 0,

which leads to a contradiction. Then, (3.4) is satisfied.
Secondly, we claim that the following inequality holds

x(t) ≥ η1 > 0, t ∈ [t0, τ(ϕ)). (3.5)

Otherwise, there exists t ∈ [t0, τ(ϕ)) such that x(t) = η1 and x(t) ≥ η1 for all
t ∈ [t0 − r, t). Then from (3.4), we can see that η1 ≤ x(t) ≤ η2 for all t ∈ [t0 − r, t).
Calculating the derivative of x(t), we have that

0 < ẋ(t) = −a(t)x(t) +

P∑
i=1

bi(t)x
m(t− τi(t))

1 + xn(t− τi(t))

−H(x(t− δ(t)))

> −a+η1 +

P∑
i=1

b−i
1 + ηn2

−H+ = 0,

which also leads to a contradiction. Then, (3.5) is satisfied. Furthermore, By Theorem
2.3.1 in [11], we have that τ(ϕ) = +∞. Therefore, the proof is completed. �

Theorem 3.5. Assume that (H1)-(H4) hold and the following condition is satisfied

(H6)

P∑
i=1

b+i η
m
2 n

4η1a
+
LH

a
+

LI

1− e−aσ
< 1, where η1 and η2 are defined in (3.3).

Then, (E) possesses a unique piecewise pseudo almost periodic solution.
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Proof. Let D ∈ PC(R,R) denote the set of all piecewise pseudo almost periodic
functions. Define

D∗ =
{
ϕ|ϕ ∈ D, η1 ≤ ϕ(t) ≤ η2, ∀t ∈ R

}
.

where η1 and η2 are defined in (3.3).
Define the operator T in D∗ by

(Tϕ)(t) =

∫ t

−∞
W (t, s)gϕ(s)ds+

∑
tk<t

W (t, tk)Ik(ϕ(tk)), (3.6)

where

gϕ(s) =

P∑
i=1

bi(t)ϕ
m(t− τi(t))

1 + ϕn(t− τi(t))
−H(ϕ(t− δ(t))). (3.7)

We shall prove that T is a contraction mapping on D∗. Then by the contraction
mapping principle, T has a unique fixed point, say x∗, in D∗. By (3.1), x∗ also
satisfies (E) and hence x∗ is the unique piecewise pseudo almost periodic solution of
(E) in D∗.

We divide the proof into the following three steps.
Step 1. Firstly, we show that T is a self-mapping in D∗. Note that for tj ≤ t < tj+1,
j ∈ Z, we have ∑

tk<t

e−a(t−tk) ≤
∑

−∞<k≤j

e−a(j−k)σ

=
∑

0≤m=j−k<+∞

e−amσ =
1

1− e−aσ
.

(3.8)

For ϕ ∈ D∗, by (H5), (H6) and Lemma 3.2, we can get

‖Tϕ‖ = sup
t∈R

{∫ t

−∞
W (t, s)

(
P∑
i=1

bi(t)x
m(t− τi(t))

1 + xn(t− τi(t))
−H(x(t− δ(t)))

)
ds

+
∑
tk<t

W (t, tk)Ik(ϕ(tk))

}

≤ sup
t∈R

{∫ t

−∞
|W (t, s)|

(
P∑
i=1

b+i −H
−

)
ds+

∑
tk<t

|W (t, tk)||Ik(ϕ(tk))|

}

≤ sup
t∈R

{∫ t

−∞
e−a(t−s)

(
P∑
i=1

b+i −H
−

)
ds+

∑
tk<t

e−a(t−tk)µ

}

≤

P∑
i=1

b+i −H
−

a
+

µ

1− e−aσ
< +∞.

For ϕ ∈ D, by (3.6), it is not difficult to see that Tϕ ∈ UPC(R,R).
Let ϑk = Ik(ϕ(tk)), then ϑk ∈ AP (Z,R). Let τ ∈ Λ, q ∈ Q, where Λ, Q are defined
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in Lemma 3.1. Then, for tk < t ≤ tk+1, we have

‖(Tϕ)(t+ τ)− (Tϕ)(t)‖ ≤ sup
t∈R

{∫ t

−∞
|W (t+ τ, s+ τ)−W (t, s)||gϕ(s+ τ)|ds

}
+ sup

t∈R

{∫ t

−∞
|W (t, s)||gϕ(s+ τ)− gϕ(s)|ds

}
+ sup

t∈R

{∑
tk<t

|W (t+ τ, tk+q)−W (t, tk)||ϑk+q|

}

+ sup
t∈R

{∑
tk<t

|W (t, tk)||ϑk+q − ϑk|

}
:= Φ1 + Φ2 + Φ3 + Φ4.

(3.9)
Furthermore, it follows from Lemma 3.3 that

Φ1 = sup
t∈R

{∫ t

−∞
|W (t+ τ, s+ τ)−W (t, s)||gϕ(s+ τ)|ds

}
≤ sup

t∈R

{∫ t

−∞
εMe−

a
2 (t−s) ·

∣∣∣∣∣
P∑
i=1

bi(s+ τ)ϕm(s+ τ − τi(s+ τ))

1 + ϕn(s+ τ − τi(s+ τ))

−H(ϕ(s+ τ − δ(s+ τ)))

∣∣∣∣∣ds
}

≤ sup
t∈R

{∫ t

−∞
εMe−

a
2 (t−s) ·

(
P∑
i=1

b+i +H+

)
ds

}

≤ 2Mε

a

(
P∑
i=1

b+i +H+

)
.

(3.10)

From (3.7) and (H4), we have

|gϕ(s+ τ)− gϕ(s)| =

∣∣∣∣∣
P∑
i=1

bi(s+ τ)ϕm(s+ τ − τi(s+ τ))

1 + ϕn(s+ τ − τi(s+ τ))
−

P∑
i=1

bi(s)ϕ
m(s− τi(s))

1 + ϕn(s− τi(s))

∣∣∣∣∣
+
∣∣∣H(ϕ(s+ τ − δ(s+ τ)))−H(ϕ(s− δ(s)))

∣∣∣
≤

∣∣∣∣∣
P∑
i=1

bi(s+ τ)ϕm(s+ τ − τi(s+ τ))

1 + ϕn(s+ τ − τi(s+ τ))
−

P∑
i=1

bi(s)ϕ
m(s+ τ − τi(s+ τ))

1 + ϕn(s+ τ − τi(s+ τ))

∣∣∣∣∣
+

∣∣∣∣∣
P∑
i=1

bi(s)ϕ
m(s+ τ − τi(s+ τ))

1 + ϕn(s+ τ − τi(s+ τ))
−

P∑
i=1

bi(s)ϕ
m(s− τi(s))

1 + ϕn(s− τi(s))

∣∣∣∣∣
+
∣∣∣H(ϕ(s+ τ − δ(s+ τ)))−H(ϕ(s− δ(s)))

∣∣∣
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≤
P∑
i=1

∣∣∣bi(s+ τ)− bi(s)
∣∣∣+

P∑
i=1

|bi(s)|

∣∣∣∣∣ ϕm(s+ τ − τi(s+ τ))

1 + ϕn(s+ τ − τi(s+ τ))
− ϕm(s− τi(s))

1 + ϕn(s− τi(s))

∣∣∣∣∣
+LH

∣∣∣ϕ(s+ τ − δ(s+ τ))− ϕ(s− δ(s))
∣∣∣,

then, it follows from Lemma 3.1 that

|gϕ(s+ τ)− gϕ(s)| ≤ Pε+

P∑
i=1

b+i η
m
2

∣∣∣∣∣ 1

1 + ϕn(s+ τ − τi(s+ τ))
− 1

1 + ϕn(s− τi(s))

∣∣∣∣∣
+ LHε

≤ Pε+

P∑
i=1

b+i η
m
2 ·

nρn−1

(1 + ρn)2

∣∣∣∣∣ϕ(s+ τ − τi(s+ τ))− ϕ(s− τi(s))

∣∣∣∣∣
+ LHε

≤ Pε+

P∑
i=1

b+i η
m
2 ·

nρn−1

(2
√
ρn)2

ε+ LHε

≤ ε

(
P +

P∑
i=1

b+i η
m
2 n

4η1
+ LH

)
,

where ϕ(s+ τ − τi(s+ τ)), ϕ(s− τi(s)) ∈ D∗, ρ lies between ϕ(s+ τ − τi(s+ τ)) and
ϕ(s− τi(s)). Then, by Lemma 3.2, we get

Φ2 = sup
t∈R

{∫ t

−∞
|W (t, s)||gϕ(s+ τ)− gϕ(s)|ds

}
≤ sup
t∈R

{∫ t

−∞
e−a(t−s) · |gϕ(s+ τ)− gϕ(s)|ds

}
≤ ε
a

(
P +

P∑
i=1

b+i η
m
2 n

4η1
+ LH

)
.

(3.11)

From Lemma 3.1-3.3 and (H4), it follows that

Φ3 = sup
t∈R

{∑
tk<t

|W (t+ τ, tk+q)−W (t, tk)||ϑk+q|

}

≤ sup
t∈R

{∑
tk<t

|W (t+ τ, tk+q)−W (t, tk)| · µ

}

≤ Mµε

1− e−aσ/2
,

(3.12)

and

Φ4 = sup
t∈R

{∑
tk<t

|W (t, tk)||ϑk+q − ϑk|

}
≤ ε

1− e−aσ
. (3.13)
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Substituting (3.10), (3.11), (3.12) and (3.13) into (3.9), we can see that

‖(Tϕ)(t+ τ)− (Tϕ)(t)‖ ≤ ε

[
2M

a

(
P∑
i=1

b+i +H+

)
+

1

a

(
P +

P∑
i=1

b+i η
m
2 n

4η1
+ LH

)

+
Mµ

1− e−aσ/2
+

1

1− e−aσ

]
.

This implies that Tϕ ∈ D.
Step 2. Secondly, we show that T is a self-mapping from PAPT (R,R) to
PAPT (R,R). It is easy to see that gϕ ∈ PAPT (R,R). Let

gϕ = gϕ + ĝϕ,

where gϕ ∈ APT (R,R) and ĝϕ ∈ PAP 0
T (R,R). Since ϑk = Ik(ϕ(tk)) ∈ PAP (Z,R),

let ϑk = ϑk + ϑ̂k, where ϑk and ϑ̂k. Then, we can have

Tϕ = T1ϕ+ T2ϕ,

where

T1ϕ =

∫ t

−∞
W (t, s)gϕ(s)ds+

∑
tk<t

W (t, tk)ϑk,

T2ϕ =

∫ t

−∞
W (t, s)ĝϕ(s)ds+

∑
tk<t

W (t, tk)ϑ̂k.

Similar as the previous proof in Step 1, we can see that

T1ϕ ∈ APT (R,R). (3.14)

Moreover, for r > 0, by Lemma 3.2, we have

1

2r

∫ r

−r

∥∥∥∥∫ t

−∞
W (t, s)ĝϕ(s)ds

∥∥∥∥ dt ≤ 1

2r

∫ r

−r

∫ t

−∞
e−a(t−s)‖ĝϕ(s)‖dsdt

=
1

2r

∫ r

−r

∫ +∞

0

e−as‖ĝϕ(t− s)‖dsdt

=

∫ +∞

0

e−asΦ(s)ds,

where

Φ(s) =
1

2r

∫ r

−r
‖ĝϕ(t− s)‖dt.

Since ĝϕ ∈ PAP 0
T (R,R), it follows that ĝ(· − s) ∈ PAP 0

T (R,R) for each s ∈ R. Thus,
we have

lim
r→+∞

Φ(s) = 0, for all s ∈ R.
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By applying the Lebesgue dominated convergence theorem, we can get∫ t

−∞
W (t, s)ĝϕ(s)ds ∈ PAP 0

T (R,R). (3.15)

For a given k ∈ Z, define

Ψ(t) = W (t, tk)ϑ̂k, tk < t ≤ tk+1,

then, by Lemma 3.2, we have that

lim
t→+∞

|Ψ(t)| = lim
t→+∞

|W (t, tk)||ϑ̂k| ≤ lim
t→+∞

e−a(t−s)|ϑ̂k| = 0,

which implies that Ψ(t) ∈ PC0
T (R,R), and it follows from Remark 2.7 that Ψ(t) ∈

PAP 0
T (R,R). Furthermore, define Ψm : R→ R by

Ψm(t) = W (t, tk−m)ϑ̂k−m, m ∈ N+, tk < t ≤ tk+1.

Obviously, Ψm ∈ PAP 0
T (R,R). Then, It follows from Lemma 3.2 that

|Ψm(t)| =
∣∣∣W (t, tk−m)ϑ2k−m

∣∣∣ ≤ sup
k∈Z

{
|ϑ2k| · e−a(t−tk) · e−aσm

}
.

Thus, we can see that the series

∞∑
m=1

Ψm is uniformly convergent on R. By Lemma

2.8, we obtain ∑
tk<t

W (t, tk)ϑ̂k ∈ PAP 0
T (R,R). (3.16)

From (3.14), (3.15) and (3.16), we can see that Tϕ ∈ PAPT (R,R). Therefore T is a
self-mapping from PAPT (R,R) to PAPT (R,R).
Step 3. We show that T is a contraction mapping in D. For any ϕ, ψ ∈ D,

|Tϕ− Tψ| ≤
∫ t

−∞
|W (t, s)||gϕ(s)− gψ(s)|ds+

∑
tk<t

|W (t, tk)||Ik(ϕ(tk))− Ik(ψ(tk))|

≤
∫ t

−∞
|W (t, s)|

∣∣∣∣∣
P∑
i=1

bi(s)ϕ
m(s− τi(s))

1 + ϕn(s− τi(s))
−H(ϕ(s− δ(s)))

−
P∑
i=1

bi(s)ψ
m(s− τi(s))

1 + ψn(s− τi(s))
−H(ψ(s− δ(s)))

∣∣∣∣∣ds
+
∑
tk<t

|W (t, tk)|
∣∣Ik(ϕ(tk))− Ik(ψ(tk))

∣∣
≤
∫ t

−∞
|W (t, s)|

∣∣∣∣∣
P∑
i=1

bi(s)ϕ
m(s− τi(s))

1 + ϕn(s− τi(s))
−

P∑
i=1

bi(s)ψ
m(s− τi(s))

1 + ψn(s− τi(s))

∣∣∣∣∣
+

∫ t

−∞
|W (t, s)|

∣∣∣H(ϕ(s− δ(s)))−H(ψ(s− δ(s)))
∣∣∣ds

+
∑
tk<t

|W (t, tk)|
∣∣Ik(ϕ(tk))− Ik(ψ(tk))

∣∣,
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which together with (H4), (H5) and Lemma 3.2 yields

|Tϕ− Tψ| ≤
∫ t

−∞
e−a(t−s) ·

P∑
i=1

b+i η
m
2 ·

nωn−1

(1 + ωn)2

∣∣∣ϕ(s− τi(s))− ψ(s− τi(s))
∣∣∣

+

∫ t

−∞
e−a(t−s) · LH ·

∣∣∣ϕ(s− δ(s))− ψ(s− δ(s))
∣∣∣ds

+
∑
tk<t

e−a(t−tk) · LI ·
∣∣∣ϕ(tk)− ψ(tk)

∣∣∣
≤
∫ t

−∞
e−a(t−s) ·

P∑
i=1

b+i η
m
2 ·

n

4η1

∣∣∣ϕ(s− τi(s))− ψ(s− τi(s))
∣∣∣

+

∫ t

−∞
e−a(t−s) · LH ·

∣∣∣ϕ(s− δ(s))− ψ(s− δ(s))
∣∣∣ds

+
∑
tk<t

e−a(t−tk) · LI ·
∣∣∣ϕ(tk)− ψ(tk)

∣∣∣
≤

[∑P
i=1 b

+
i η

m
2 n

4η1a
+
LH

a
+

LI

1− e−aσ

]
· ‖ϕ− ψ‖,

where ϕ(s− δ(s)), ψ(s− δ(s)) ∈ D∗, ω lies between ϕ(s− δ(s)) and ψ(s− δ(s)).
Thus, we can obtain

‖Tϕ− Tψ‖ ≤

[∑P
i=1 b

+
i η

m
2 n

4η1a
+
LH

a
+

LI

1− e−aσ

]
· ‖ϕ− ψ‖.

It follows from (H6) that the mapping T is a contraction.
Hence, the mapping T possesses a unique fixed point x∗ ∈ D with Tx∗ = x∗.

By (3.1), x∗ satisfies (E). Therefore, we can conclude that (E) possesses a unique
piecewise pseudo almost periodic solution x∗ ∈ PAPT (R,R). �

4. Globally exponentially stable of piecewise
pseudo almost periodic solution

In order to discuss the exponential stability of the unique positive piecewise pseudo
almost periodic solutions, firstly, together with (E), we consider the following equation
with initial condition:

ẋ(t) = −a(t)x(t) +

P∑
i=1

bi(t)x
m(t− τi(t))

1 + xn(t− τi(t))
−H(x(t− δ(t))), t ∈ R, t 6= tk,

∆x(tk) = γkx(tk) + Ik(x(tk)), k ∈ N,
xt0 = ϕ,

(4.1)

where ϕ ∈ PC([−r, 0],R+).

Theorem 4.1. Assume that the assumptions of Theorem 3.4 hold and
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(H7)
ln(1 + LI)

σ
+

P∑
i=1

b+i η
m
2 n

4η1
+ LH < a, where η1 and η2 is defined in Theorem

3.4.

Then the unique piecewise pseudo almost periodic solution of (E) is exponential sta-
bile.

Proof. By using integral form of (E), if t > t0, t0 6= tk, k ∈ Z,

x(t) =W (t, t0)x(t0) +

∫ t

t0

W (t, s)gx(s)ds

+
∑

t0<tk<t

W (t, tk) (Ik(x(tk)) + δk) .

Let x(t) be the unique piecewise pseudo almost periodic solution of system (4.1) and
y(t) be an arbitrary solution of system (E) with the following initial condition:

xt0 = ξ, ξ ∈ PC([−r, 0],R+).

Then for x, y ∈ D∗, we have

y(t)− x(t) =W (t, t0)(ϕ− ξ) +

∫ t

t0

W (t, s)
(
gy(s)− gx(s)

)
ds

+
∑

t0<tk<t

W (t, tk)
(
Ik(y(tk))− Ik(x(tk))

)
,

which together with Lemma 3.2, (H4) and (H5) gives

‖y(t)− x(t)‖ ≤|W (t, t0)||ϕ− ξ|+
∫ t

t0

|W (t, s)||gy(s)− gx(s)|ds

+
∑

t0<tk<t

|W (t, tk)|
∣∣Ik(y(tk))− Ik(x(tk))

∣∣
≤e−a(t−t0) · ‖ϕ− ξ‖

+

∫ t

t0

e−a(t−s) ·

∣∣∣∣∣
P∑
i=1

bi(s)y
m(s− τi(s))

1 + yn(s− τi(s))
−H(y(s− δ(s)))

−
P∑
i=1

bi(s)x
m(s− τi(s))

1 + xn(s− τi(s))
−H(x(s− δ(s)))

∣∣∣∣∣
+

∑
t0<tk<t

|W (t, tk)|
∣∣Ik(y(tk))− Ik(x(tk))

∣∣,
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i.e.,

‖y(t)− x(t)‖ ≤ e−a(t−t0) · ‖ϕ− ξ‖

+

∫ t

t0

e−a(t−s) ·
P∑
i=1

b+i η
m
2 ·

nωn−1

(1 + ωn)2

∣∣∣∣∣y(s− τi(s))− x(s− τi(s))

∣∣∣∣∣
+

∫ t

−∞
e−a(t−s) · LH ·

∣∣∣y(s− δ(s))− x(s− δ(s))
∣∣∣ds

+
∑

t0<tk<t

e−a(t−tk) · LI ·
∣∣∣y(tk)− x(tk)

∣∣∣
≤ e−a(t−t0) · ‖ϕ− ξ‖

+

∫ t

t0

e−a(t−s) ·
P∑
i=1

b+i η
m
2 n

4η1
·
∣∣∣y(s− τi(s))− x(s− τi(s))

∣∣∣ds
+

∫ t

t0

e−a(t−s) · LH ·
∣∣∣y(s− δ(s))− x(s− δ(s))

∣∣∣ds
+

∑
t0<tk<t

e−a(t−tk) · LI ·
∣∣∣y(tk)− x(tk)

∣∣∣. (4.2)

Multiplying the both side of (4.2) by ea(t), we have

eat · ‖y(t)− x(t)‖ ≤ eat · e−a(t−t0) · ‖ϕ− ξ‖

+

∫ t

−∞
eat · e−a(t−s) ·

P∑
i=1

b+i η
m
2 n

4η1
·
∣∣∣y(s− τi(s))− x(s− τi(s))

∣∣∣ds
+

∫ t

−∞
eat · e−a(t−s) · LH ·

∣∣∣y(s− δ(s))− x(s− δ(s))
∣∣∣ds

+
∑

t0<tk<t

eat · e−a(t−tk) · LI ·
∣∣∣y(tk)− x(tk)

∣∣∣
≤ eat0 · ‖ϕ− ξ‖+

∫ t

t0

eas ·

(
P∑
i=1

b+i η
m
2 n

4η1
+ LH

)
·
∥∥y(s)− x(s)

∥∥ds
+

∑
t0<tk<t

eatk · LI ·
∥∥y(tk)− x(tk)

∥∥. (4.3)

Let u(t) = ‖y(t)− x(t)‖ · eat, then (4.3) can be rewritten by the following form:

u(t) ≤ u(t0) +

∫ t

t0

(
P∑
i=1

b+i η
m
2 n

4η1
+ LH

)
· u(s)ds+

∑
t0<tk<t

LIu(tk). (4.4)
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Thus, let (4.4) compare with the two inequalities in Lemma 2.10, we can see that

u(t) ≤u(t0)
∏

t0<tk<t

(1 + LI) · exp

(∫ t

t0

(
P∑
i=1

b+i η
m
2 n

4η1
+ LH

)
ds

)

=u(t0)
∏

t0<tk<t

(1 + LI) · exp

((
P∑
i=1

b+i η
m
2 n

4η1
+ LH

)
(t− t0)

)
.

From (H3), we can know that σ = infk∈Z t
1
k = inf

k∈Z
(tk+1 − tk) > 0, then we have

u(t) ≤u(t0) ·
∏

t0<tk<t

(1 + LI) · exp

((
P∑
i=1

b+i η
m
2 n

4η1
+ LH

)
(t− t0)

)

≤u(t0) · (1 + LI)
t−t0
σ · exp

((
P∑
i=1

b+i η
m
2 n

4η1
+ LH

)
(t− t0)

)

=u(t0) · exp

(
ln(1 + LI)

σ
(t− t0)

)
· exp

((
P∑
i=1

b+i η
m
2 n

4η1
+ LH

)
(t− t0)

)

=u(t0) · exp

((
ln(1 + LI)

σ
+

P∑
i=1

b+i η
m
2 n

4η1
+ LH

)
(t− t0)

)
.

Thus, we obtain

‖y(t)− x(t)‖ =u(t) · e−at

≤u(t0) · exp

((
ln(1 + LI)

σ
+

P∑
i=1

b+i η
m
2 n

4η1
+ LH

)
(t− t0)

)
· e−at

≤‖ϕ− ξ‖ · exp

((
ln(1 + LI)

σ
+

P∑
i=1

b+i η
m
2 n

4η1
+ LH − a

)
(t− t0)

)
,

which together with ln(1+LI)
σ +

∑P
i=1

b+i η
m
2 n

4η1
+LH < a yields the the unique piecewise

pseudo almost periodic solution of (E) is exponential stable. �

5. Example

In this section, we present an example to demonstrate the main established results.

Example 5.1. Consider the following hematopoiesis model with harvesting terms
and impulses: 

ẋ(t) = − | sin
√
2t|+1

24 x(t) + 1
4 ·

x
1
20 (t−esin t)

1+x
1
10 (t−esin t)

+ | sin
√
2t|+1

20 · x
1
20 (t−ecos t)

1+x
1
10 (t−ecos t)

− sin x(t−sin
√
2t)+1

8 , t ∈ R, t 6= tk,

∆x(tk) = − | sin k|+| sinπk|4 · x(tk) + | sin k|
40 · cos(x(tk)).

(5.1)
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Problem (5.1) can be regarded as a problem of the form (E), where

P = 2, a(t) =
| sin
√

2t|+ 1

12
, b1(t) =

1

4
, b2(t) =

| sin
√

2t|+ 1

6
,

H(x) =
sinx+ 2

60
, τ1(t) = esin t, τ2(t) = ecos t,

γk = −| sin k|+ | sinπk|
4

∈ AP (Z,R), tk = k +
| sin k − cos k|

8
,

Ik(x) =
| sin k|

40
· cosx ∈ PAP (Z,R).

Then, we can see that

m =
1

20
, n =

1

10
, −1 ≤ γk ≤ 0, a+ =

1

6
, a− =

1

12
,

b+1 = b−1 =
1

4
, b+2 =

1

3
, b−2 =

1

6
, H+ =

1

20
, H− =

1

30
,

and conditions (H1), (H2), (H4) and (H5) are satisfied with

a− = a =
1

12
, µ =

1

40
, LH =

1

60
, LI =

1

40
.

Moreover, {tjk}, k ∈ Z, j ∈ Z are equipotentially almost periodic and

t1k =k + 1 +
1

8

∣∣∣ sin(k + 1)− (k + 1)
∣∣∣− (k +

1

8

∣∣∣ sin k − cos k
∣∣∣)

≥1− 1

8

∣∣∣ sin(k + 1)− sin k]−
[

cos(k + 1)− cos k
]∣∣∣

≥1− 1

4

∣∣∣∣sin 1

2
cos

2k + 1

2

∣∣∣∣− 1

4

∣∣∣∣sin 1

2
sin

(2k + 1)

2

∣∣∣∣
≥1− 1

4
sin

1

2
− 1

4
sin

1

2
>

4

5
,

which leads to

σ = inf
k∈Z

t1k = inf
k∈Z

(tk+1 − tk) =
4

5
> 0,

then the condition (H3) holds. Furthermore, by a simple calculation, we have

η1 =

∑P
i=1

b−i
1+ηn2

−H+

a+
≈ 1.8324069, η2 =

∑P
i=1 b

+
i −H−

a−
≈ 6.6,∑P

i=1 b
+
i η

m
2 n

4η1a
+
LH

a
+

LI

1− e−aσ
≈ 0.9846429 < 1,

ln(1 + LI)

σ
+

P∑
i=1

b+i η
m
2 n

4η1
+ LH ≈ 0.06678543 < a =

1

12
,

hence, conditions (H6) and (H7) can be easily satisfied. Therefore, by Theorem 3.5
and Theorem 4.1, we can see that (5.1) has a unique positive piecewise pseudo almost
periodic solution and the solution is globally exponentially stable.
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Remark 5.2. Since there are few paper consider positive piecewise pseudo almost
periodic solutions of the generalized hematopoiesis model with harvesting terms and
impulses. One can see that all the results in [1]-[31] can not directly be applicable
to (5.1) to obtain the existence, uniqueness and globally exponentially stable of the
positive piecewise pseudo almost periodic solution. These implies that the results in
this paper are essentially new.

6. Conclusion

In this paper, we investigate generalized hematopoiesis model with harvesting
terms and impulses, which are more generalized and different from the corresponding
ones known in the literature. The results on the existence and uniqueness of positive
piecewise pseudo almost periodic solution have been completely established by means
of the contraction mapping principle, the global exponential stability of pseudo almost
periodic solutions are further obtained by applying the generalized Gronwall-Bellmain
inequality. Our results can improve and extend previous works in the literature.

Acknowledgments. The authors thank the anonymous reviewers for their insightful
suggestions which improved this work significantly.
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