Fixed Point Theory, 21(2020), No. 2, 819-832 DOI: 10.24193/fpt-ro.2020.2.58 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

MODIFIED RELAXED CQ ALGORITHMS FOR SPLIT FEASIBILITY AND SPLIT EQUALITY PROBLEMS IN HILBERT SPACES

HAI YU AND FENGHUI WANG

Department of Mathematics, Luoyang Normal University Luoyang 471022, China

Abstract. In this paper, we investigate the split feasibility problem (SFP) and the split equality problem (SEP) in Hilbert spaces. Motivated by the technique of relaxed projections, we respectively propose a modified relaxed CQ algorithm for the SFP and a modified relaxed alternating CQ algorithm for the SEP. Under standard assumptions, we show that the proposed algorithms converge weakly to a solution of the SFP and the SEP, respectively. Finally, we conduct some numerical experiments to demonstrate the advantage of our proposed algorithms.

Key Words and Phrases: Split feasibility problem, split equality problem, CQ algorithm, projection.

2010 Mathematics Subject Classification: 47J25, 47J20, 47H10, 49N45, 65J15.

Acknowledgments. This work is supported by the National Natural Science Foundation of China (No. 11971216) and Foundation of He'nan Educational Committee (No. 20A110029, 16A520064, 15A520087).

References

- H.H. Bauschke, J.M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38(1996), 367-426.
- [2] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Space, Springer-Verlag, 2011.
- [3] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18(2002), 441-453.
- [4] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20(2004), 103-120.
- Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in product space, Numer. Algor., 8(1994), 221-239.
- [6] P.L. Combettes, Quasi-Fejérian analysis of some optimization algorithms, In: D. Butnariu, Y. Censor, S. Reich (eds.), Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, Elsevier, New York, 2001, 115-152.
- [7] Y.H. Dai, Fast algorithms for projection on an ellipsoid, SIAM J. Optim., 16(2006), 986-1006.
- [8] Q. Dong, Y. Yao, S. He, Weak convergence theorems of the modified relaxed projection algorithms for the split feasibility problem in Hilbert spaces, Optimization Lett., 8(3)(2014), 1031-1046.

HAI YU AND FENGHUI WANG

- [9] M. Fukushima, A relaxed projection method for variational inequalities, Math. Program., 35(1986), 58-70.
- [10] A. Gibali, L. Liu, Y. Tang, Note on the modified relaxation CQ algorithm for the split feasibility problem, Optim. Lett., 12(4)(2018), 813-830.
- B.S. He, Inexact implicit methods for monotone general variational inequalities, Math. Program., A86(1999), 199-217.
- [12] S. He, Z. Zhao, Strong convergence of a relaxed CQ algorithm for the split feasibility problem, J. Ineq. Appl., 2013, 2013:197.
- [13] S. He, Z. Zhao, B. Luo, A relaxed self-adaptive CQ algorithm for the multiple-setes split feasibility problem, Optimization, 64(2015), 1907-1918.
- [14] G. López, V. Martín, F. Wang, H.K. Xu, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Probl., 28(2012), 085004.
- [15] A. Moudafi, Alternating CQ-algorithm for convex feasibility and split fixed-point problems, J. Nonlinear Convex Anal., 15(2014), 809-818.
- [16] A. Moudafi, A relaxed alternating CQ-algorithm for convex feasibility problems, Nonlinear Anal., 79(2013), 117-121.
- [17] B. Qu, N.H. Xiu, A note on the CQ algorithm for the split feasibility problem, Inverse Probl., 21(2005), 1655-1665.
- [18] B. Qu, N.H. Xiu, A new halfspace-relaxation projection method for the split feasibility problem, Linear Algebra Appl., 428(2008), 1218-1229.
- [19] R. Tibshirani, Regression shrinkage and selection via the LASSO, J.R. Stat. Soc. B, 58(1996), 267-288.
- [20] F. Wang, A splitting-relaxed projection method for solving the split feasibility problem, Fixed Point Theory, 14(2013), 211-218.
- [21] F. Wang, Polyak's gradient method for split feasibility problem constrained by level sets, Numerical Algorithms, 77(2018), 925-938.
- [22] Z. Wang, Q. Yang, Y. Yang, The relaxed inexact projection methods for the split feasibility problem, Applied Mathematics and Computation, 217(12)(2011), 5347-5359.
- [23] H.K. Xu, A variable Krasnosel'skii-Mann algorithm and the multiple-set split feasibility problem, Inverse Probl., 22(6)(2006), 2021.
- [24] H.K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Probl., 26(2010), 105018.
- [25] Q. Yang, On variable-step relaxed projection algorithm for variational inequalities, J. Math. Anal. Appl., 302(2005), 166-179.
- [26] Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Probl., 20(2004), 1261-1266.
- [27] H. Yu, W. Zhan, F. Wang, The ball-relaxed CQ algorithms for the split feasibility problem, Optimization, 67(2018), 1687-1699.

Received: November 1st, 2019; Accepted: Januray 10, 2020.

820

MODIFIED RELAXED CQ ALGORITHMS