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Abstract. The paper deals with semilinear evolution equations in complex Hilbert spaces. Nonlocal

associated Cauchy problems are studied and the existence and uniqueness of classical solutions is
proved. The controllability is investigated too and the topological structure of the controllable set

discussed. The results are applied to nonlinear Schrödinger evolution equations with time dependent

potential. Several examples of nonlocal conditions are proposed. The evolution system associated
to the linear part is not compact and the theory developed in Okazawa-Yoshii [21] for its study is

used. The proofs involve the Schauder-Tychonoff fixed point theorem and no strong compactness is

assumed on the nonlinear part.
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