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Abstract. Many metric fixed point results can be formulated in an abstract ’convexity structure’
setting. This discussion contains a review of some of these, as well as a discussion of other results
which seem to require a bit more structure on the space. A metric space (X,d) is said to be I'-
uniquely geodesic if I" is a family of geodesic segments in X and for each z,y € X there is a unique
geodesic [z,y] € T with endpoints z and y. Let X be I'-uniquely geodesic and let € (X) denote the
family of all bounded closed convex (relative to I') subsets of X. Assume that the family € (X) is
compact in the sense that every descending chain of nonempty subsets of € (X) has a nonempty
intersection. This is a brief discussion of what additional conditions on a mapping 7" : K — K for
K € €(X) always assure that has at least one fixed point. In particular it is shown that if the
balls in X are I'-convex and if the closure of a I'-convex set in X is again I"-convex then a mapping
T : K — K always has a fixed point if it is nonexpansive with respect to orbits in the sense of
Amini-Harandi, et al., and if for each x € K with z # T (z),

inf {lim sup d(T™ (z),T™ (m))} < diam (O (x)) .
me n—oo
Mappings of the above type include those which are pointwise contractions in the sense that for each
z € K there exists a (z) € (0,1) such that

d(T(z),T (y)) <a(z)d(z,y) foraly € K.

The results discussed here extend known results if K is a weakly compact (convex) subset of a
Banach space. A number of open questions are raised in connection with characterizations of normal
structure in certain geodesic spaces.
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