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Abstract. In this paper, we give a simple counterexample to show again the limits of Frink’s

construction [17, page 134] and then use Frink’s metrization technique to answer two conjectures
posed by Berinde and Choban [5], and to calculate corresponding metrics induced by some b-metrics

known in the literature. We also use that technique to prove a metrization theorem for 2-generalized

metric spaces, and to deduce the Banach contraction principle in b-metric spaces and 2-generalized
metric spaces from that in metric spaces.
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1. Introduction and preliminaries

The metrization problem is concerned with conditions under which a topological
space X is metrizable [11], where for a function d : X ×X −→ [0,∞) satisfying some
axioms and generating a topology T on X, and for a metric D : X ×X −→ [0,∞),
the topological space (X, T ) is called metrizable by the metric d if T and the metric
topology induced by d coincide. Recall that a space X is a metric space if there
exists a metric D : X ×X −→ [0,+∞) that satisfies the following conditions for all
x, y, z ∈ X.

I. D(x, y) = 0 if and only if x = y.
II. The symmetry: D(x, y) = D(y, x).

III. The triangle inequality: D(x, z) ≤ D(x, y) +D(y, z).

Some generalizations of the triangle inequality (III) were introduced such as

IV. The generalized triangle inequality: If D(x, y) < ε and D(y, z) < ε then
D(x, z) < 2ε.
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V. The uniform regular property: For every ε > 0 there exists φ(ε) > 0 such
that if D(x, y) < φ(ε) and D(y, z) < φ(ε) then D(x, z) ≤ ε.

In 1993 Czerwik [12] introduced the notion of a b-metric with a coefficient 2. This
notion was generalized later with a coefficientK ≥ 1 [13]. In 2010 Khamsi and Hussain
[22] reintroduced the notion of a b-metric under the name metric-type. Another notion
of metric-type, called s-relaxedp metric was introduced in [15, Definition 4.2], see also
[20]. A b-metric is called quasi-metric in [30]. Quasi-metric spaces play an important
role in the study of Gromov hyperbolic metric spaces [35, Final remarks], and in
the study of optimal transport paths [39]. For convenience the names b-metric and
b-metric space will be used in what follows. It is clear that condition (V) reduces
to (IV) if φ(ε) = ε

2 , and every b-metric space (X,D,K) is a space with the distance
function D satisfying (I), (II) and (V) with φ(ε) = ε

2K .
Recall that a distance space is a pair (X,D) consisting of a set X and a function

D : X×X −→ [0,∞) satisfying D(x, y)+D(y, x) = 0 if and only if x = y [5, Definition
2.1]. Note that the convergence in a distance space (X,D) is defined by the usual
way, that is, lim

n→∞
xn = x if lim

n→∞
D(xn, x) = 0 = lim

n→∞
D(x, xn). Similarly, a sequence

{xn} is called Cauchy if lim
n,m→∞

D(xn, xm) = 0. The convergence in (X,D) generates

a topology T , called the sequential topology on (X,D), in the sense of Franklin [16,
page 108]: a subset U is called open in (X, T ) if for each x ∈ U and lim

n→∞
xn = x in

(X,D) there exists n0 such that xn ∈ U for all n ≥ n0. For each x ∈ X and each
r > 0 the set

B(x, r,D) = {y ∈ X : D(x, y) < r}

is called a ball with center x and radius r. There is another topology T (D) on (X,D):
a subset U of X is called open if for each x ∈ U there exists rx > 0 such that
B(x, rx, D) ⊂ U . The topology T (D) is called the topology induced by the distance
D, see also [5, Definition 2.1]. As in the proof of [3, Proposition 3.3.(1)], T (D) is
exactly the topology T provided D is symmetric.

In 1917 Chittenden [10] showed that a space with a distance function satisfying (I),
(II) and (V), that was also called a CF -metric space [5, Definition 3.2], is metrizable.
Consequently, every b-metric space is metrizable [24, page 114]. Chittenden’s proof
was somewhat long and complicated and, although the existence of a distance function
satisfying (III) is proved, it is not defined directly in terms of the original distance
function satisfying (V). In 1937 Frink [17, page 133] presented a simple and direct
proof of the fact that a topological space with a distance function satisfying (I), (II)
and (IV), and also (V), is metrizable without relying on Chittenden’s theorem. Frink’s
metrization technique is also called the chain approach.

Frink’s metrization technique impacted many results. In 1998 Aimar et al. [1] im-
proved Frink’s metrization technique to give a direct proof of a theorem of Maćıas and
Segovia in [30] on the metrization of a b-metric space (X,D,K). In 2006 Schroeder
showed some limits of Frink’s construction, by providing a counterexample of a b-
metric space (X,D,K), for which the function d defined by Frink’s metrization tech-
nique (see (1.1) below) is not a metric [35, Example 2]. In 2009 Paluszyński and
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Stempak [31] also improved Frink’s metrization technique to produce a metric d from
a given b-metric space (X,D).

In 2000 Branciari [9] introduced a notion of a ν-generalized metric space. This
notion was studied by many authors, see [23], [25] and the references given there.
Some authors constructed functions that are 2-generalized metrics but are not metrics
[9, 3. Example], [14, Examples 1 & 2], [26, Example 1], and stated many fixed point
theorems in ν-generalized metric spaces. However, the metrization of ν-generalized
metric spaces was rarely studied. Recently a sufficient condition for ν-generalized
metric spaces to be metrizable was proved [27, Corollary 2.6].

Many authors transferred results from metric spaces to b-metric spaces and other
generalized metric spaces [2], [7], [32]. However, it is necessary to work carefully in
generalized metric fixed point theory, since various fixed point theorems in general-
ized metric spaces, except for b-metric spaces and ν-generalized metric spaces, can be
deduced from the corresponding fixed point theorems in metric spaces [2, 4. Conclu-
sions], [21]. In 2013 Berinde and Choban [5] presented a similar situation in the case
of b-metric spaces. They asserted that working in b-metric spaces (X,D,K) makes
sense since the associate metric d given by (1.1) is not always a metric [5, page 28].
Berinde and Choban introduced the notion of an F -distance space and proposed some
conjectures. Note that there were some typos in [5, Conjecture 6.2] that make a mis-
understanding in the conjecture. By a private communication with the corresponding
author of that paper the conjecture is restated as follows.

Question 1.1 ([5], Conjecture 6.1). Let (X, ρ) be an F -distance space and T : X −→
X be a map such that ρ(Tx, Ty) ≤ λρ(x, y) for some λ ∈ [0, 1) and all x, y ∈ X.

(1) Is the sequence {xn} Cauchy, where xn+1 = Txn for all n ∈ N and some
x1 ∈ X?

(2) Does there exist a unique fixed point of T if the space (X, ρ) is complete?

Question 1.2 ([5], Conjecture 6.2). Let (X, ρ) be a symmetric distance space,
(X, T (ρ)) be Hausdorff compact, and T : X −→ X be a map such that ρ(Tx, Ty) ≤
λρ(x, y) for some λ ∈ [0, 1) and all x, y ∈ X. Does there exist a unique fixed point of
T?

In this paper, we are interested in studying Frink’s metrization technique. In
Section 2 we construct a simple counterexample to show again the limits of Frink’s
construction [17, page 134]. In Section 3 we show that the Banach contraction princi-
ple in b-metric spaces can be deduced from the Banach contraction principle in metric
spaces and then calculate corresponding metrics induced by some b-metrics known in
the literature. In Section 4 we give answers to Question 1.1 and Question 1.2. In
Section 5 we prove a metrization condition for 2-generalized metric spaces and show
that the Banach contraction principle in 2-generalized metric spaces can be deduced
from the Banach contraction principle in metric spaces.

Now we recall notions and properties which are useful in what follows.

Definition 1.3 ([13]). Let X be a nonempty set, K ≥ 1 and D : X ×X −→ [0,+∞)
be a function such that for all x, y, z ∈ X,

(1) D(x, y) = 0 if and only if x = y.
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(2) D(x, y) = D(y, x).
(3) D(x, z) ≤ K [D(x, y) +D(y, z)].

Then D is called a b-metric on X and (X,D,K) is called a b-metric space.

Theorem 1.4 ([17], pages 134-135). Let (X,D) be a space satisfying (I), (II) and
(IV). For any x, y ∈ X, define

d(x, y) = inf

{
n∑
i=1

D(xi, xi+1) : x1 = x, x2, . . . , xn+1 = y ∈ X,n ∈ N

}
. (1.1)

Then

(1) For all x, x1, . . . , xn, y ∈ X,

D(x, y) ≤ 2D(x, x1) + 4D(x1, x2) + . . .+ 4D(xn−1, xn) + 2D(xn, y). (1.2)

(2) d is a metric on X.
(3) For all x, y ∈ X,

D(x, y)

4
≤ d(x, y) ≤ D(x, y). (1.3)

In particular,

(1) lim
n→∞

xn = x in (X,D) if and only if lim
n→∞

xn = x in (X, d).

(2) A sequence {xn} is Cauchy in (X,D) if and only if it is Cauchy in (X, d).
(3) The distance space (X,D) is metrizable by the metric d.

Theorem 1.5 ([17], page 135). Let (X, δ) be a space satisfying (I), (II) and (V). For
all ε ≥ 0, put ψ(ε) = min{φ(ε), ε2}, and put

r1 = 1, . . . , rn+1 = ψ(rn), . . .

and for all x, y ∈ X, define

D(x, y) =

{
1 if D(x, y) ≥ r1
1
2n if rn > D(x, y) ≥ rn+1.

Then

(1) The distance space (X,D) satisfies (I), (II) and (IV).
(2) lim

n→∞
xn = x in (X, δ) if and only if lim

n→∞
xn = x in (X,D). In particular, the

distance space (X, δ) is metrizable by the metric d defined as in (1.1).

Remark 1.6. The conclusions of Theorem 1.4 are still true if any strict inequality
in (IV) is replaced by the corresponding inequality.

Theorem 1.7 ([1], Theorem I). Let (X,D,K) be a b-metric space. Then there exists
0 < β ≤ 1, depending only on K, such that

d(x, y) = inf

{
n∑
i=1

Dβ(xi, xi+1) : x1 = x, x2, . . . , xn+1 = y ∈ X,n ∈ N

}
(1.4)

is a metric on X satisfying 1
2D

β ≤ d ≤ Dβ. In particular, if D is a metric then
d = D.
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Theorem 1.8 ([31], Proposition on page 4308). Let (X,D,K) be a b-metric space,
0 < p ≤ 1 satisfying (2K)p = 2, and for all x, y ∈ X,

d(x, y) = inf

{
n∑
i=1

Dp(xi, xi+1) : x1 = x, x2, . . . , xn, xn+1 = y ∈ X,n ∈ N

}
. (1.5)

Then d is a metric on X satisfying 1
4D

p ≤ d ≤ Dp. In particular, if D is a metric
then d = D.

Definition 1.9 ([9], Definition 2.1). Let X be a nonempty set, ν ∈ N, ν ≥ 1 and
ρ : X ×X −→ [0,+∞) be a function such that for any x, y ∈ X and for any family
x1, . . . , xν of pairwise distinct elements in X \ {x, y},

(1) ρ(x, y) = 0 if and only if x = y.
(2) ρ(x, y) = ρ(y, x).
(3) ρ(x, y) ≤ ρ(x, x1) + ρ(x1, x2) + . . .+ ρ(xν , y).

Then ρ is called a ν-generalized metric on X and (X, ρ) is called a ν-generalized metric
space. A sequence {xn} is called convergent to x in (X, ρ) if lim

n→∞
ρ(xn, x) = 0. A

sequence {xn} is called Cauchy if lim
n,m→∞

ρ(xn, xm) = 0. A generalized metric space

(X, ρ) is called complete if each Cauchy sequence is a convergent sequence.

Theorem 1.10 ([18], Theorem 3.3). Let (X,D,K) be a complete b-metric space and
T : X −→ X be a map such that D(Tx, Ty) ≤ λD(x, y) for all x, y ∈ X and some
λ ∈

[
0, 1

K

)
. Then T has a unique fixed point x∗ and lim

n→∞
Tnx = x∗ for all x ∈ X.

Definition 1.11 ([5], Definition 3.3). Let X be a nonempty set and ρ : X ×X −→
[0,+∞) be a function such that for all x, y, z ∈ X,

(1) ρ(x, y) = 0 if and only if x = y.
(2) For every ε > 0, there exists φ(ε) > 0 such that if ρ(x, y) ≤ φ(ε) and ρ(y, z) ≤

φ(ε) then ρ(x, z) ≤ ε and ρ(z, x) ≤ ε.
Then ρ is called an F -distance on X and (X, ρ) is called an F -distance space.

2. Remarks on Frink’s metrization technique

In this section, we construct a simple counterexample to show again the limits of
Frink’s construction [17, page 134]. In 2006 Schroeder constructed a counterexample
showing that for given b-metric space (X,D,K) the distance function d defined by
(1.1) is not a metric [35, Example 2]. The following example, that is simpler than
[35, Example 2], also shows that Theorem 1.4.(1) and Theorem 1.4.(2) do not hold if
a space satisfying (I), (II) and (IV) is replaced by a b-metric space.

Example 2.1. Let X = R, and D(x, y) = |x − y|2 for all x, y ∈ X. Then for all
x, y ∈ X,

|x− z|2 ≤ 2
(
|x− y|2 + |y − z|2

)
.
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So (X,D,K) is a b-metric space with K = 2. However, we find that for n large
enough,

2D

(
0,

1

n

)
+ 4D

(
1

n
,

2

n

)
+ . . .+ 4D

(
n− 2

n
,
n− 1

n

)
+ 2D

(
n− 1

n
, 1

)
≤ 4

n

< 1

= D(0, 1).

Then Theorem 1.4.(1) does not hold. We also find that for all n,

d(0, 1) ≤ D
(

0,
1

n

)
+D

(
1

n
,

2

n

)
+ . . .+D

(
n− 2

n
,
n− 1

n

)
+D

(
n− 1

n
, 1

)
≤ 4

n
.

Letting n → ∞ yields d(0, 1) = 0. Then d is not a metric. So Theorem 1.4.(2) does
not hold.

For the case D being a b-metric, Frink’s metrization technique was revised in [1]
and [31], see Theorem 1.7 and Theorem 1.8. Note that Frink reproved Chittenden’s
theorem in [10] by using the technique in the proof of Theorem 1.4, see [17, pages 134-
135]. Then he used Chittenden’s theorem to obtain the metrization of a space under
conditions of Alexandroff and Urysohn, Niemytski and Wilson, and some others. We
next present detailed proofs for these results, which will be useful in next sections.
Notice that the condition corresponding to (C) in Corollary 2.4 originally given by
Alexandroff and Urysohn implied that all sets of Gn are open. Frink [17, page 136]
called a collection of sets Gn1

, . . . , Gnk
a chain joining a and b provided a ∈ Gn1

,
b ∈ Gnk

and two successive sets of the chain have a common point. Then he defined

d(a, b) = inf
{ k∑
r=1

1

2nr
: a ∈ Gn1

, b ∈ Gnk
, Gnr

∈ Gnr
for all r = 1, . . . , k

and Gnr
∩Gnr+1

6= ∅ for all r = 1, . . . , k − 1
}
.

Frink asserted that d is a metric on X. This technique was used later to show
that a space with a distance function satisfying Niemytski and Wilson’s conditions is
metrizable [17, page 137], and to prove some other results [17, Theorems 1, 2, 3 & 4].
However, the following example shows that the above d is not a metric. This implies
that the Frink’s argument in [17, page 136] is not suitable.

Example 2.2. Let X = R with the usual metric d and Gn =
{
B
(
x, 2

n , d
)

: x ∈ X
}

for all n. Then Gn’s satisfy all assumptions of Corollary 2.4. However, for a = 0 and
b = 1, define Gnr

= B
(
r−1
n , 2

n

)
for all r = 1, . . . , n+ 1, then 0 ∈ Gn1

, 1 ∈ Gnn+1
and

Gnr ∩Gnr+1 6= ∅ for all r = 1, . . . , n. Since Gnr ∈ Gn for all r = 1, . . . , n+1, it follows

that d(0, 1) ≤
n+1∑
r=1

1
2nr = n+1

2n . Letting n → ∞ yields d(0, 1) = 0. This implies that d

is not a metric on X.

Corollary 2.3 (Chittenden’s theorem). Let (X, ρ) be a space satisfying (I), (II) and
(V). Then (X, ρ) is metrizable.
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Proof. For any ε > 0, define ψ(ε) = min
{
φ(ε), ε2

}
. Therefore, for all x, y, z ∈ X,

if ρ(x, y) < ψ(ε) and ρ(y, z) < ψ(ε) then ρ(x, z) < ε. For each n ∈ N, define
r1 = 1, . . . , rn+1 = ψ(rn), . . . Then lim

n→∞
rn = 0. Define

D(x, y) = D(y, x) =

 0 if x = y
1 if ρ(x, y) ≥ r1
1
2n if rn > ρ(x, y) ≥ rn+1.

We claim that D satisfies (IV). On the contrary, suppose that there exist ε > 0 and
x, y, z ∈ X satisfying D(x, y) < ε, D(y, z) < ε and D(x, z) ≥ 2ε. Since D(x, z) ≤ 1, it
follows that 2ε ≤ 1, and so ε ≤ 1

2 . Then there exists n0 ≥ 1 satisfying 1
2n0+1 < ε ≤ 1

2n0
.

This implies D(x, y) < 1
2n0

and D(y, z) < 1
2n0

. Therefore ρ(x, y) < rn0+1 = ψ(rn0
)

and ρ(y, z) < rn0+1 = ψ(rn0
). Then ρ(x, z) < rn0

. This gives D(x, z) ≤ 1
2n0

< 2ε,
a contradiction. So D satisfies (IV). It is clear that D also satisfies (I) and (II). By
Theorem 1.4, (X,D) is metrizable by the metric d defined as in (1.1).

We next prove that lim
n→∞

xn = x in (X, ρ) if and only if lim
n→∞

xn = x in (X,D).

Indeed, if lim
n→∞

xn = x in (X, ρ) then lim
n→∞

ρ(xn, x) = 0. For each ε > 0, there exists

n0 such that 1
2n0

< ε. There also exists n1 such that ρ(xn, x) < rn0 for all n ≥ n1.

Since ρ(xn, x) < rn0
, we have D(xn, x) ≤ 1

2n0
, and so D(xn, x) < ε for all n ≥ n1.

This implies that lim
n→∞

D(xn, x) = 0, and thus lim
n→∞

xn = x in (X,D).

Next, let lim
n→∞

xn = x in (X,D). Note that for each ε > 0 there exists n0 such

that rn0 < ε. Since lim
n→∞

xn = x in (X,D), there exists n1 such that D(xn, x) < 1
2n0

for all n ≥ n1. Therefore ρ(xn, x) ≤ rn0 < ε for all n ≥ n1. This implies that
lim
n→∞

ρ(xn, x) = 0, and so lim
n→∞

xn = x in (X, ρ).

By the above, lim
n→∞

xn = x in (X, ρ) if and only if lim
n→∞

xn = x in (X,D). Since

(X,D) is metrizable by the metric d, we get that (X, ρ) is metrizable by the metric
d. �

Corollary 2.4 (Alexandroff and Urysohn). Let X be a space and Gn’s be families of
subsets of X satisfying the following.

(A) If Gn, G
′
n ∈ Gn and Gn ∩G′n 6= ∅ for some n > 1 then there exists Gn−1 ∈ Gn−1

such that Gn ⊂ Gn−1 and G′n ⊂ Gn−1.
(B) If a 6= b then there exists n such that {a, b} 6⊂ Gn for all Gn ∈ Gn.
(C) If Sn(x) =

⋃
{Gn ∈ Gn : x ∈ Gn} then {Sn(x) : n ∈ N} forms a complete system

of neighborhoods of the point x.

Then X is metrizable.

Proof. Define a function D : X ×X −→ [0,∞) as follows

D(a, b) = D(b, a) =


0 if a = b

1 if a 6= b and {a, b} 6⊂ Gn for all n
1
2n if a 6= b and n = max {k : {a, b} ⊂ Gk} .

Then D satisfies (I), (II) and (IV). By Theorem 1.4, (X,D) is metrizable by the
metric d defined by (1.1).
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Next, we shall prove that lim
n→∞

xn = x in the topological space X if and only

if lim
n→∞

xn = x in (X,D). Indeed, if lim
n→∞

xn = x in the topological space X then

for each ε > 0 there exists n0 such that 1
2n0

< ε. Since lim
n→∞

xn = x in the given

topological space X, there exists n1 such that xn ∈ Sn0(x) for all n ≥ n1. So there
exists Gn0 ∈ Gn0 such that {xn, x} ⊂ Gn0 . Therefore D(xn, x) ≤ 1

2n0
< ε for all

n ≥ n1. This implies that lim
n→∞

xn = x in (X,D).

If lim
n→∞

xn = x in (X,D) then lim
n→∞

D(xn, x) = 0. For each ε > 0 there exists n0

such that 1
2n0

< ε. There also exists n1 such that D(xn, x) < 1
2n0

for all n ≥ n1. Since

D(xn, x) < 1
2n0

, it follows that {xn, x} ⊂ Gn0 for some Gn0 ∈ Gn0 and all n ≥ n1.
Then xn ∈ Sn0

(x) for all n ≥ n1. Therefore lim
n→∞

xn = x in the topological space X.

By the above, lim
n→∞

xn = x in the topological space X if and only if lim
n→∞

xn = x

in (X,D). Since (X,D) is metrizable, the topological space X is metrizable. �

Now, we recall Niemytski and Wilson’s conditions. Note that (VIa), (VIb) and
(VIc) are equivalent [17, page 137], and they are all denoted by (VI).

VIa. The local axiom of the triangle: Given a point a and a number ε > 0, there
exists a number φ(a, ε) > 0 such that if D(a, b) < φ(a, ε) and D(c, b) < φ(a, ε)
then D(a, c) < ε.

VIb. Coherent: If lim
n→∞

D(a, an) = 0 and lim
n→∞

D(an, bn) = 0 then lim
n→∞

D(a, bn) = 0.

VIc. Wilson’s condition IV: For each point a and each k > 0, there is r > 0 such that
if b is a point for which D(a, b) ≥ k and c is any point then D(a, c)+D(b, c) ≥ r.

Corollary 2.5 (Niemytski and Wilson). Let (X, ρ) be a space satisfying (I), (II) and
(VI). Then (X, ρ) is metrizable.

Proof. We may assume that (X, ρ) satisfy (VIa). For any ε > 0 define

φ′(a, ε) = min
{
φ(a, ε),

ε

2

}
and ψ(a, ε) = φ′(a, φ′(a, ε)).

For any x ∈ X and all n ∈ N, define r1(x) = 1 and rn+1(x) = ψ(x, rn(x)). Then
lim
n→∞

rn(x) = 0. Define Vn(x) = B(x, rn(x), ρ) and Gn = {Vn(x) : x ∈ X}. Then all

assumptions of Corollary 2.4 are satisfied, and so (X, ρ) is metrizable by the metric
d induced from the distance D as in the proof of Corollary 2.4. �

3. Applications to b-metric spaces

In this section, we show that the Banach contraction principle in b-metric spaces
can be deduced from the Banach contraction principle in metric spaces. We also use
the formula (1.5) to calculate corresponding metrics induced by some b-metrics known
in the literature.

We find that every b-metric space (X,D,K) is metrizable with the metric d defined
by (1.5). Note that, on transferring fixed point theorems in metric spaces to b-
metric spaces, the contraction constants were assumed to be in

[
0, 1

K

)
⊂ [0, 1), see

for instance first fixed point theorems in b-metric spaces [6, Theorems 3.1-3.3] and
recent results [29, Definition 2.1, Theorems 2.2 & 2.4]. By using the corresponding
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metric of given b-metric defined by (1.5), we next show that the contraction constant
λ ∈

[
0, 1

K

)
in Theorem 1.10 can be relaxed to λ ∈ [0, 1).

Theorem 3.1. Let (X,D,K) be a complete b-metric space and T : X −→ X be a
map such that D(Tx, Ty) ≤ λD(x, y) for all x, y ∈ X and some λ ∈ [0, 1). Then T
has a unique fixed point x∗ and lim

n→∞
Tnx = x∗ for all x ∈ X.

Proof. Let p = log2K 2. Then 0 < p ≤ 1 and (2K)p = 2. So d defined by (1.5) is
a metric on X. Moreover, 1

4D
p ≤ d ≤ Dp. Since (X,D,K) is complete, (X, d) is a

complete metric space. For all x1 = x, x2, . . . , xn+1 = y ∈ X and n ∈ N we have

d(Tx, Ty) = inf

{
n∑
i=1

Dp(yi, yi+1) : y1 = Tx, y2, . . . , yn+1 = Ty ∈ X,n ∈ N

}

≤
n∑
i=1

Dp(Txi, Txi+1)

≤ λp
n∑
i=1

Dp(xi, xi+1).

This implies that

d(Tx, Ty) ≤ λp inf

{
n∑
i=1

Dp(xi, xi+1) : x1 = x, x2, . . . , xn+1 = y ∈ X,n ∈ N

}
= λpd(x, y).

Since λp ∈ [0, 1), T is a contraction map on a complete metric space (X, d). By the
Banach contraction map principle on metric spaces, T has a unique fixed point x∗

and lim
n→∞

Tnx = x∗ in (X, d). Note that 1
4D

p ≤ d ≤ Dp. Then lim
n→∞

Tnx = x∗ in

(X,D,K). �

Next, by using the formula (1.5), we calculate the corresponding metric d induced
by certain b-metric D known in the literature. Two following b-metric spaces were
usually used as “interesting ones” to prove the difference between the setting of b-
metric and the setting of metric [24, page 113]. By using Theorem 1.7 and Theorem
1.8, we can get corresponding metrics induced by these b-metrics as follows.

Example 3.2. Let 0 < p ≤ 1, and

`p =

{
{xn} : xn ∈ R, n ∈ N,

∞∑
n=1

|xn|p <∞

}

and D(x, y) =

( ∞∑
n=1
|xn − yn|p

) 1
p

for all x = {xn} , y = {yn} ∈ `p. Then D is a

b-metric with the coefficient K = 2
1
p [8, Example 1.3]. Define q = p

p+1 . Then
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2.2

1
p

)q
= 2. By Theorem 1.8, (`p, D,K) is metrizable by the metric d defined by

d(x, y) = inf

{
n∑
i=1

Dq(xi, xi+1) : x1 = x, x2, . . . , xn+1 = y ∈ `p, n ∈ N

}
.

We find that Dq(x, y) =

( ∞∑
n=1
|xn − yn|p

) 1
p+1

for all x, y ∈ `p. Then Dq is a metric

on `p. By Theorem 1.7, d = Dq. Then the corresponding metric d is defined by

d(x, y) =

( ∞∑
n=1
|xn − yn|p

) 1
p+1

for all x, y ∈ `p.

Example 3.3. Let 0 < p ≤ 1, and

Lp[0, 1] =

{
x : [0, 1] −→ R :

∫ 1

0

|x(t)|pdt <∞
}

and D(x, y) =

(∫ 1

0

|x(t)− y(t)|p
) 1

p

for all x, y ∈ Lp[0, 1]. Then D is a b-metric with

the coefficient K = 2
1
p [8, Example 1.4].

By a similar argument as in Example 3.2, we get (Lp[0, 1], D,K) is metrizable by the

metric d defined by d(x, y) =

(∫ 1

0

|x(t)− y(t)|p
) 1

p+1

for all x, y ∈ Lp[0, 1].

Two following b-metric spaces play an important role in showing some different
properties of b-metric spaces [3]. By using Theorem 1.8, we can also get corresponding
metrics induced by these b-metrics as follows.

Example 3.4. Let X =
{

0, 1, 12 , . . . ,
1
n , . . .

}
and

D(x, y) =


0 if x = y
1 if x 6= y ∈ {0, 1}
|x− y| if x 6= y ∈ {0} ∪

{
1
2n : n ∈ N

}
4 otherwise.

Then D is a b-metric on X. Note that, in [28, Example 13] and also in [3, Example
3.9], the coefficient K = 8

3 but this fact is not true since for all n,

4 = D

(
1,

1

2n

)
≤ K

[
D (1, 0) +D

(
0,

1

2n

)]
= K

(
1 +

1

2n

)
.

This implies K ≥ 4. Reconsidering the calculation in [28, Example 13] we find that
D is exactly a b-metric with K = 4. Define p = 1

3 . Then (2K)p = 2. By using (1.5),
we get the corresponding metric d defined by

d(x, y) = d(y, x) =



0 if x = y

1 if x 6= y ∈ {0, 1}
|x− y| 13 if x 6= y ∈ {0} ∪

{
1
2n : n ∈ N

}
1 + 3

√
1
2n if x = 1, y ∈

{
1
2n : n ∈ N

}
3
√

4 otherwise.
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Example 3.5. Let X =
{

0, 1, 12 , . . . ,
1
n , . . .

}
and

D(x, y) =


0 if x = y
1 if x 6= y ∈ {0, 1}
|x− y| if x 6= y ∈ {0} ∪

{
1
2n : n ∈ N

}
1
4 otherwise.

Then D is a b-metric on X with K = 4 [3, Example 3.10]. By using (1.5), we get the
corresponding metric d defined by

d(x, y) = d(y, x) =



0 if x = y

3

√
1
4 if x 6= y ∈ {0, 1}

|x− y| 13 if x 6= y ∈ {0} ∪
{

1
2n : n ∈ N

}
3

√
1
4 otherwise.

Next, we calculate the corresponding metric induced by the b-metric in Example
2.1.

Example 3.6. Let X = R, and D(x, y) = |x− y|2 for all x, y ∈ X as in Example 2.1.
Then D is a b-metric with the coefficient K = 2. Define p = 1

2 . Then (2K)p = 2. It
follows from (1.5) that for any x, y ∈ R,

d(x, y) = inf

{
n∑
i=1

D
1
2 (xi, xi+1) : x1 = x, x2, . . . , xn+1 = y ∈ X,n ∈ N

}

= inf

{
n∑
i=1

|xi − xi+1| : x1 = x, x2, . . . , xn+1 = y ∈ X,n ∈ N

}
= |x− y|.

Then d is again the usual metric in R.

Remark 3.7. From above examples, authors should be very carefully to work with
fixed point theorems in b-metric spaces. Note that `p, 0 < p < 1, with the quasi-norm

defined by ‖x‖ =

( ∞∑
n=1
|xn|p

) 1
p

for all x = {xn} ∈ `p is a quasi-Banach space that is

not normable [19, page 1102]. The similar result also holds for Lp[0, 1]. So authors
may study the fixed point theory in quasi-Banach spaces. For interesting ways to
extend fixed point theory in quasi-Banach spaces, the reader may refer to and use the
ideas in [33], [34] and references given there.

4. Applications to answering Berinde-Choban’s questions

In this section, we give answers to Question 1.1 and Question 1.2 mentioned in
Section 1. First, by using the technique in the proof of Corollary 2.3, we give an
affirmative answer to Question 1.1 as follows.

Theorem 4.1. Let (X,σ) be an F -distance space and T : X −→ X be a map such
that σ(Tx, Ty) ≤ λσ(x, y) for some λ ∈ [0, 1) and all x, y ∈ X. Then
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(1) The sequence {xn} is Cauchy, where xn+1 = Txn for all n ∈ N and some
x1 ∈ X.

(2) There exists a unique fixed point of T if the space (X,σ) is complete.

Proof. (1). For all x, y ∈ X, put ρ(x, y) = max{σ(x, y), σ(y, x)}. Then (X, ρ) is a
space satisfying (I), (II) and (V) and ρ is equivalent to σ. By Corollary 2.3, (X, ρ) is
metrizable and so is (X,σ). We also find that for all x, y ∈ X,

ρ(Tx, Ty) = max{σ(Tx, Ty), σ(Ty, Tx)} ≤ max{λσ(x, y), λσ(y, x)} = λρ(x, y).

Now, for all n ∈ N, we have

ρ(xn+1, xn) = ρ(Txn, Txn−1) ≤ λρ(xn, xn−1) ≤ . . . ≤ λn−1ρ(x2, x1).

This implies lim
n→∞

ρ(xn+1, xn) = 0. So there exists n0 such that ρ(xn+1, xn) < 1 for all

n ≥ n0. By using notations d and D in the proof of Corollary 2.3 again, we find that
for each n ≥ n0 there exists kn such that rkn > ρ(xn+1, xn) ≥ rkn+1. This implies
D(xn+1, xn) ≤ 1

2kn
. By using (1.3) we have d(xn+1, xn) ≤ D(xn+1, xn) ≤ 1

2kn
. So,

for m ≥ n ≥ n0,

d(xn, xm) ≤ d(xn, xn+1) + . . .+ d(xm−1, xm) ≤ 1

2kn
+ . . .+

1

2km−1
≤
∞∑
i=kn

1

2i
.

This implies lim
n,m→∞

d(xn, xm) = 0. Then {xn} is Cauchy in (X, d). By Theorem

1.4.(3), {xn} is Cauchy in (X,D). Now, for each ε > 0, there exists n0 such that
rn0
≤ ε. Since {xn} is Cauchy in (X,D), there exists n1 such that D(xn, xm) < 1

2n0

for all n,m ≥ n1. Therefore ρ(xn, xm) ≤ rn0
< ε for all n,m ≥ n1. This implies that

{xn} is Cauchy in (X, ρ). Since ρ is equivalent to σ, we get that {xn} is Cauchy in
(X,σ).

(2). If (X,σ) is complete then there exists x∗ such that lim
n→∞

xn = x∗ in (X,σ).

Therefore lim
n→∞

σ(xn, x
∗) = 0. Note that for all n,

σ(Tx∗, xn+1) = σ(Tx∗, Txn) ≤ λσ(x∗, xn).

Letting n → ∞ yields lim
n→∞

σ(Tx∗, xn+1) = 0. Then lim
n→∞

xn+1 = Tx∗ in (X,σ).

Since (X,σ) is metrizable by d, the limit of a convergent sequence in (X,σ) is unique.
This implies that Tx∗ = x∗ and then T has a fixed point. It is easy to see that the
fixed point of T is unique. �

Recall that a symmetric distance ρ on a topological space X is a function ρ :
X × X −→ [0,∞) satisfying (I), (II) and A = A if and only if ρ(x,A) > 0 for any
x 6∈ A, where A is the closure of A and ρ(x,A) = inf{ρ(x, y) : y ∈ A} [4, page 125].
On Question 1.2 Berinde and Choban asserted that any Hausdorff compact space
with a symmetric distance is metrizable [5, page 29], also see the details proof at [4,
pages 126-127]. The following example shows that there exists a Hausdorff compact
space with a symmetric distance that is not coherent.

Example 4.2. There exists a Hausdorff compact space with a symmetric distance
that is not coherent.
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Proof. Let X = {0} ∪ { 1n : n ∈ N} and

ρ(x, y) = ρ(y, x) =



0 if x = y
1
2n if (x, y) =

(
0, 1

2n

)
1

2n+1 if (x, y) =
(

1, 1
2n+1

)
1 if (x, y) =

(
0, 1

2n−1

)
or (x, y) =

(
1, 1

2n

)
|x− y| otherwise.

Then (X, ρ) is a Hausdorff compact space with the symmetric distance ρ, where the
topology on X is induced by its convergence with respect to ρ. We find that

lim
n→∞

ρ

(
1

2n
,

1

2n+ 1

)
= lim
n→∞

∣∣∣∣ 1

2n
− 1

2n+ 1

∣∣∣∣ = 0

and lim
n→∞

ρ
(

1
2n , 0

)
= 0.

However, lim
n→∞

ρ
(

1
2n+1 , 0

)
= 1 6= 0. So (X, ρ) is not coherent. �

The following theorem is a partial answer to Question 1.2.

Theorem 4.3. Let (X, ρ) be a symmetric distance space and T : X −→ X be a map
such that (X, T (ρ)) is Hausdorff compact, ρ is coherent, and ρ(Tx, Ty) ≤ λρ(x, y) for
some λ ∈ [0, 1) and all x, y ∈ X. Then T has a unique fixed point.

Proof. For each x ∈ X, since (X, T (ρ)) is sequentially compact, there exists x∗ ∈ X
such that lim

n→∞
T knx = x∗ in (X, T (ρ)). Then lim

n→∞
T knx = x∗ in (X, ρ) and thus

lim
n→∞

ρ(T knx, x∗) = 0. (4.1)

We find that ρ(TT knx, Tx∗) ≤ λρ(T knx, x∗) for all n. Letting n→∞ and using (4.1)
we obtain

lim
n→∞

ρ(TT knx, Tx∗) = 0. (4.2)

We also find that for all n,

ρ(Tn+1x, Tnx) ≤ λρ(Tnx, Tn−1x) ≤ . . . ≤ λnρ(Tx, x).

This implies lim
n→∞

ρ(TTnx, Tnx) = 0. Therefore

lim
n→∞

ρ(TT knx, T knx) = 0. (4.3)

By (4.2) and (4.3), since ρ is coherent, we get

lim
n→∞

ρ(T knx, Tx∗) = 0. (4.4)

From (4.1) and (4.4), since (X, ρ) is Hausdorff, we get Tx∗ = x∗. So T has a fixed
point. It is easy to see that the fixed point of T is unique. �

One may conjecture that Theorem 4.3 holds without the condition that ρ being
coherent. However, the following question, that is inspired by Nemytzki-Edelstein
theorem in metric spaces and also by [5, Conjecture 6.2], is still open.
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Question 4.4. Let (X, ρ) be a symmetric distance space, (X, T (ρ)) be Hausdorff
compact, and T : X −→ X be a map such that ρ(Tx, Ty) < ρ(x, y) for all distinct
x, y ∈ X. Does there exist a unique fixed point of T?

5. Applications to 2-generalized metric spaces

In this section, by using the idea in the proof of [17, Theorem 2], we prove a
metrization theorem for 2-generalized metric spaces. Here the main difference is that
assumptions of [17, Theorem 2] hold for all elements while the assumptions relating to
2-generalized metric spaces in our result hold only for distinct elements. We also show
that the Banach contraction principle in 2-generalized metric spaces can be deduced
from the Banach contraction principle in metric spaces.

We first show that there exists a 2-generalized metric space that is not metrizable.

Example 5.1. Let (X, ρ) be the 2-generalized metric space in [27, Example 2.13].
Then there exists a convergent sequence having two limits. This implies that (X, ρ)
is not metrizable.

Recently Suzuki [36, Example 7] constructed an example of a 2-generalized metric
space (X, ρ) that does not have any topology being compatible with ρ. Therefore, that
2-generalized metric space (X, ρ) is also not metrizable in the sense that the induced
metric and given 2-generalized metric having the same convergence of nets. Suzuki et
al. [38] proved that every 3-generalized metric space is metrizable and for any ν ≥ 4,
and not every ν-generalized metric space has a compatible symmetric topology. Note
that if the 2-generalized metric ρ is continuous in its variables then the 2-generalized
metric space (X, ρ) is metrizable [27, Corollary 2.6.(1)]. The following example shows
that there exists a 2-generalized metric space (X, ρ) that is metrizable but ρ is not
continuous in its variables.

Example 5.2. Let X =
{

0, 1, 12 , . . . ,
1
n , . . .

}
and

ρ(x, y) = ρ(y, x) =

 0 if x = y
1
n if x = 0, y = 1

n
2 otherwise.

We will show that ρ is a 2-generalized metric. For all x, y ∈ X it is clear that
ρ(x, y) ≥ 0, ρ(x, y) = ρ(y, x); and ρ(x, y) = 0 if and only if x = y. For all x, y ∈ X
and u 6= v ∈ X \ {x, y} we consider the following three cases.
Case 1. x = y. Then ρ(x, u) + ρ(u, v) + ρ(v, y) ≥ 0 = ρ(x, y).
Case 2. x = 0 and y = 1

n . Then v 6= 0 and thus

ρ(x, u) + ρ(u, v) + ρ(v, y) ≥ ρ(v, y) = 2 ≥ 1

n
= ρ(x, y).

Case 3. x = 1
n 6= y = 1

m . Then u 6= 0 or v 6= 0. This implies that

ρ(x, u) + ρ(u, v) + ρ(v, y) ≥ 2 = ρ(x, y).

By the above, ρ is a 2-generalized metric on X. We find that lim
n→∞

ρ( 1
n , 0) =

lim
n→∞

1
n = 0 in R. Then lim

n→∞
1
n = 0 in (X, ρ). However, lim

n→∞
ρ
(
1
n , 1
)

= 2 6= 1 = ρ(0, 1)

and thus ρ is not continuous in its variables.
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Since lim
n→∞

1
n = 0 in (X, ρ) and each point 1

n is isolated in (X, ρ), we find that

(X, ρ) is metrizable by the usual metric d on X.

We next give a condition for the metrization of a 2-generalized metric space.

Theorem 5.3. Let (X, ρ) be a 2-generalized metric space such that the limit of a
convergent sequence is unique. Then

(1) There exists a metric d on X such that lim
n→∞

xn = x in (X, ρ) if and only if

lim
n→∞

xn = x in (X, d). In particular, (X, ρ) is metrizable by the metric d.

(2) A sequence {xn} is Cauchy in (X, ρ) if and only if it is Cauchy in (X, d). In
particular, (X, ρ) is complete if and only if (X, d) is complete.

Proof. (1). For any a ∈ X and n ≥ 0, define Un(a) =
{
x ∈ X : ρ(a, x) < 1

3n

}
.

Let a, b ∈ X. If for each n ≥ 0 there exists yn ∈ X such that {a, b} ⊂ Un(yn),
then ρ(yn, a) < 1

3n and ρ(yn, b) <
1
3n for all n ≥ 0. Letting n → ∞ we find that

lim
n→∞

ρ(y, a) = lim
n→∞

ρ(y, b) = 0. This implies lim
n→∞

yn = a and lim
n→∞

yn = b, and

thus a = b. So, for a 6= b, there exists n such that {a, b} 6⊂ Un(y) for all y ∈ X.
Moreover, if n ≤ m then Un(y) ⊃ Um(y) for all y ∈ X. So we can define a function
D : X ×X −→ [0,∞) as follows

D(a, b) =

{
0 if a = b
1
2k

if a 6= b, k = min {n : {a, b} 6⊂ Um(y) for all y ∈ X,m ≥ n} .

It is clear that D satisfies (I) and (II). We shall prove that D satisfies (IV). By
Remark 1.6, it is sufficient to show that for each ε > 0 and all distinct elements a, b, c,
if D(a, b) ≤ ε and D(b, c) ≤ ε then D(a, c) ≤ 2ε.

Indeed, if ε > 1
2 then D(a, c) ≤ 1 < 2ε. If ε ≤ 1

2 then there exists n ∈ N such

that D(a, b) ≤ 1
2n ≤ ε and D(b, c) ≤ 1

2n ≤ ε. Then there exist x, y ∈ X such that
{a, b} ⊂ Un(x) and {b, c} ⊂ Un(y). If x = y then {a, c} ⊂ Un(x). This implies
D(a, c) ≤ 1

2n ≤ ε ≤ 2ε. If x 6= y and a = y or c = x then {a, c} ⊂ Un(a). This implies

D(a, c) ≤ 1
2n ≤ ε < 2ε.

If x 6= y and a 6= y, c 6= x, then we consider the following four cases.
Case 1. a = x and c = y. Then b ∈ Un(a) and b ∈ Un(c). This implies {a, c} ⊂ Un(b).
So D(a, c) ≤ 1

2n ≤ ε < 2ε.
Case 2. a = x and c 6= y. If b 6= y then

ρ(a, c) ≤ ρ(a, b) + ρ(b, y) + ρ(y, c) <
1

3n
+

1

3n
+

1

3n
=

3

3n
=

1

3n−1
.

So {a, c} ⊂ Un−1(c). This implies D(a, c) ≤ 1
2n−1 ≤ 2ε. If b = y then {a, c} ⊂ Un(b).

This implies D(a, c) ≤ 1
2n ≤ ε < 2ε.

Case 3. a 6= x and c = y. If b 6= x then

ρ(a, c) ≤ ρ(a, x) + ρ(x, b) + ρ(b, c) <
1

3n
+

1

3n
+

1

3n
=

3

3n
=

1

3n−1
.

So {a, c} ⊂ Un−1(c). This implies D(a, c) ≤ 1
2n−1 ≤ 2ε. If b = x then {a, c} ⊂ Un(b).

This implies D(a, c) ≤ 1
2n ≤ ε < 2ε.
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Case 4. a 6= x and c 6= y. If b = x then

ρ(a, c) ≤ ρ(a, b) + ρ(b, y) + ρ(y, c) <
1

3n
+

1

3n
+

1

3n
=

3

3n
=

1

3n−1
.

So {a, c} ⊂ Un−1(c). This implies D(a, c) ≤ 1
2n−1 ≤ 2ε. If b = y then

ρ(a, c) ≤ ρ(a, x) + ρ(x, b) + ρ(b, c) <
1

3n
+

1

3n
+

1

3n
=

3

3n
=

1

3n−1
.

So {a, c} ⊂ Un−1(c). This implies D(a, c) ≤ 1
2n−1 ≤ 2ε. If b 6= x and b 6= y then

a, b, c, x, y are distinct. So

ρ(a, y) ≤ ρ(a, x) + ρ(x, b) + ρ(b, y) <
1

3n
+

1

3n
+

1

3n
=

3

3n
=

1

3n−1
.

Therefore ρ(a, y) < 1
3n−1 . Note that ρ(c, y) < 1

3n < 1
3n−1 . This implies {a, c} ⊂

Un−1(y). Then D(a, c) ≤ 1
2n−1 ≤ 2ε.

By the above four cases, we get that D satisfies (IV). So D satisfies (I), (II) and
(IV). By Theorem 1.4, there exists a metric d on X such that lim

n→∞
xn = x in (X,D)

if and only if lim
n→∞

xn = x in (X, d). We check at once that lim
n→∞

xn = x in (X, ρ)

if and only if lim
n→∞

xn = x in (X,D). Therefore lim
n→∞

xn = x in (X,D) if and only

if lim
n→∞

xn = x in (X, d). In particular, (X, ρ) is metrizable by the metric d which is

defined by (1.1).
(2). We will check that {xn} is Cauchy in (X, ρ) if and only if {xn} is Cauchy

in (X,D). Indeed, if {xn} is Cauchy in (X, ρ), then lim
n,m→∞

ρ(xn, xm) = 0. For

each ε > 0, there exists n0 such that
1

2n0
< ε. There also exists n1 such that

ρ(xn, xm) <
1

3n0
for all n,m ≥ n1. Since ρ(xn, xm) <

1

3n0
, {xn, xm} ⊂ Un0

(xm). So

D(xn, xm) ≤
1

2n0
< ε for all n,m ≥ n1. Therefore lim

n→∞
D(xn, xm) = 0. This implies

that {xn} is Cauchy in (X,D).
Next, if {xn} is Cauchy in (X,D), then lim

n,m→∞
D(xn, xm) = 0. For each ε > 0,

there exists n0 such that
1

3n0
< ε. There also exists n1 such that D(xn, xm) ≤

1

2n0

for all n,m ≥ n1. So {xn, xm} ⊂ Un0(xm) for all n,m ≥ n1. Therefore ρ(xn, xm) ≤
1

3n0
< ε for all n,m ≥ n1. Thus lim

n→∞
ρ(xn, xm) = 0. This implies that {xn} is Cauchy

in (X, ρ).
By the above, {xn} is Cauchy in (X, ρ) if and only if {xn} is Cauchy in (X,D).

By Theorem 1.4.(3), {xn} is Cauchy in (X,D) if and only if {xn} is Cauchy in (X, d).
So {xn} is Cauchy in (X, ρ) if and only if {xn} is Cauchy in (X, d). By (1) we get
that (X, ρ) is complete if and only if (X, d) is complete. �

Corollary 5.4. Let (X, ρ) be a 2-generalized metric space. Then

(1) If ρ is continuous in its variables then (X, ρ) is metrizable.
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(2) (X, ρ) is metrizable if and only if the limits of a convergent sequence in (X, ρ)
is unique.

Proof. (2) is a direct consequence of Theorem 5.3. We only need to prove (1). Since
ρ is continuous in its variables, the limit of a convergent sequence in (X, ρ) is unique.
By Theorem 5.3.(1), (X, ρ) is metrizable. �

By using the metrization technique of a 2-generalized metric space presented in the
proof of Theorem 5.3 we reprove the Banach contraction principle on 2-generalized
metric spaces as follows. Note that Suzuki et al. [37] also studied Banach contraction
principle and some other fixed point results in ν-generalized metric spaces. Moreover,
the Hausdorff property of a 2-generalized metric space was used in the proof of [9,
Theorem 2.1] though it is a confusion, see also [27, Remark 2.12].

Theorem 5.5 ([9], Theorem 2.1). Let (X, ρ) be a Hausdorff complete 2-generalized
metric space and T : X −→ X be a map such that ρ(Tx, Ty) ≤ λρ(x, y) for all
x, y ∈ X and some λ ∈ [0, 1). Then T has a unique fixed point x∗, and lim

n→∞
Tnx = x∗

for all x ∈ X.

Proof. Let x = x0 ∈ X and xn+1 = Txn for all n ∈ N. We find that

ρ(xn+1, xn) = ρ(Txn, Txn−1) ≤ λρ(xn, xn−1) ≤ . . . ≤ λnρ(x1, x0).

This implies lim
n→∞

ρ(xn+1, xn) = 0. So there exists n0 such that ρ(xn+1, xn) ≤ 1
3 for

all n ≥ n0. By using again notations in the proof of Theorem 5.3, we find that, for
each n ≥ n0, there exist kn and a ∈ X such that {xn+1, xn} ⊂ Ukn(a). This implies
D(xn+1, xn) ≤ 1

2kn
. By (1.3) we have d(xn+1, xn) ≤ D(xn+1, xn) ≤ 1

2kn
. So, for

m ≥ n ≥ n0,

d(xn, xm) ≤ d(xn, xn+1) + . . .+ d(xm−1, xm) ≤ 1

2kn
+ . . .+

1

2km−1
≤
∞∑
i=kn

1

2i
.

This implies lim
n,m→∞

d(xn, xm) = 0. Then {xn} is Cauchy in (X, d). By Theorem

5.3.(2), {xn} is Cauchy in (X, ρ). Since (X, ρ) is complete, there exists x∗ such that
lim
n→∞

xn = x∗ in (X, ρ). Note that, for all n,

ρ(Tx∗, xn+1) = ρ(Tx∗, Txn) ≤ λρ(x∗, xn).

This implies lim
n→∞

ρ(Tx∗, xn+1) = 0. So lim
n→∞

xn+1 = Tx∗ in (X, ρ). By Theorem

5.3.(1), (X, ρ) is metrizable, so the limit of a convergent sequence in (X, ρ) is unique.
Then Tx∗ = x∗, that is, T has a fixed point. It is easy to see that the fixed point of
T is unique. �

Finally, by using the technique used in the proof of Theorem 5.3, we calculate the
corresponding metric d induced by the first 2-generalized metric space [9, 3. Example]
as follows.
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Example 5.6. Let X = {a, b, c, e} and

ρ(x, y) = ρ(y, x) =


0 if x = y

3 if (x, y) = (a, b)

1 if (x, y) ∈ {(a, c), (b, c)}
2 otherwise.

Then (X, ρ) is a 2-generalized metric space and ρ is not a metric [9, 3. Example].
By using again notations in the proof of Theorem 5.3 we find that x 6∈ U0(y) for all
x 6= y. Therefore

D(x, y) = D(y, x) =

{
0 if x = y

1 otherwise.

Note that D is a metric on X. So d = D.
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