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1. Introduction

An ultrametric space (X, d) is said to be spherically complete if every shrinking
collection of balls in X has nonempty intersection. Let CB(X) be the set of all closed
and bounded subsets of X, T : X → CB(X) be a set-valued mapping, and x, y ∈ X
be two distinct points. If

H(Tx, Ty) < d(x, y),

then T is called contractive, and if

H(Tx, Ty) ≤ d(x, y),

then T is called nonexpansive; here H(·, ·) is Hausdorff distance. A point x ∈ X is
said to be a fixed point of T if x ∈ Tx and a stationary point (also known as end
point or strict fixed point, see e.g. [6, 8]) of T if Tx = {x}. For any x ∈ X and any
nonempty subset A of X, the radius of A relative to x is defined as

rx(A) = sup
y∈A

d(x, y).

The set-valued mapping T is said to have the approximate stationary point property
if

inf
x∈X

rx(Tx) = 0,
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and to have the strong approximate stationary point property if for each ball of the
form B = B(x, rx(Tx)),

inf
z∈B

rz(Tz) = 0.

Some papers in the literature discuss the existence and uniqueness of endpoints of
set-valued mappings in metric and uniform spaces (see [1], [10], [9] and the references
therein). In [1] Amini extended the Boyd-Wong contraction [2] to end-points of set-
valued mappings. It is known that every contractive mapping in a spherically complete
ultrametric space has a fixed point [5]. In this paper we show that a contractive
mapping on an ultrametric space has a stationary point if and only if it has the
approximate stationary point property. As a result we recover Amini’s and Petalas
and Vidalis’s results (resp. [1] and [5]). We also extend some known result, due to
Petalas and Vidalis [5] to set-valued nonexpansive mappings. We show that a set-
valued nonexpansive mapping has a stationary point if and only if it has the strong
approximate stationary point property.

2. Stationary points of contractive mappings

It is natural to ask what conditions may be imposed to have stationary points on
spherecially complete ultrametric spaces. Let B(x, r) denote the closed ball centered
at x with the radius r > 0.

Theorem 2.1. Let (X, d) be a spherically complete ultrametric space and T : X →
CB(X) be a contractive mapping. Then T has a unique stationary point if and only
if T has the approximate stationary point property.

Proof. The ’if’ part is obvious so we just prove the ’only if’ part. Let T have the
approximate stationary point property.

For each w ∈ X note B = B(w, rw(Tw)) is T -invariant. To see this, let x ∈ B,
z ∈ Tx, and ε > 0 be given. Let v ∈ Tw be such that d(z, v) ≤ d(z, Tw) + ε. Then

d(w, z) ≤ max{d(w, v), d(z, v)}

≤ max{rw(Tw), d(z, Tw) + ε}

≤ max{rw(Tw), H(Tx, Tw) + ε}

≤ max{rw(Tw), d(x,w) + ε}

≤ max{rw(Tw), rw(Tw) + ε}

= rw(Tw) + ε.

Since ε > 0 was arbitrary we have that z ∈ B. This shows that Tx ⊆ B for x ∈ B, so
B is T -invariant.

Since infx∈X rx(Tx) = 0, there exists a sequence (xn) in X such that

limn rxn(Txn) = 0, and rxn+1
(Txn+1) ≤ rxn(Txn)

for each n ∈ N. We claim

B(xn+1, rxn+1
(Txn+1)) ⊆ B(xn, rxn(Txn)) for n ∈ N. (2.1)
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If there exists a n ∈ N with xn = xn+1 then (2.1) is trivially true for this n. It remains
to consider the case when xn 6= xn+1 for n ∈ N. Let n ∈ N, ε > 0 be given. Let
z ∈ Txn be arbitrary, and w ∈ Txn+1 be such that

d(z, w) ≤ H(Txn, Txn+1) + ε.

Then

d(xn, xn+1) ≤ max{d(xn, z), d(z, xn+1)}

≤ max{rxn(Txn), d(z, w), d(w, xn+1)}

≤ max{rxn(Txn), H(Txn, Txn+1) + ε, rxn+1
(Txn+1)}

≤ max{rxn(Txn), H(Txn, Txn+1) + ε}.

Since ε > 0 was arbitrary, we have

d(xn, xn+1) ≤ max{rxn(Txn), H(Txn, Txn+1)}. (2.2)

If rxn(Txn) ≤ H(Txn, Txn+1), then (note xn 6= xn+1),

d(xn, xn+1) ≤ H(Txn, Txn+1)

< d(xn, xn+1),

which is a contradiction. Therefore

H(Txn, Txn+1) < rxn(Txn),

so from (2.2), we get

d(xn, xn+1) ≤ rxn(Txn).

Thus
B(xn+1, rxn+1

(Txn+1)) ⊆ B(xn, rxn(Txn));

to see this let z ∈ B(xn+1, rxn+1
(Txn+1)) and note

d(z, xn+1) ≤ rxn+1
(Txn+1) ≤ rxn(Txn)

so
d(z, xn) ≤ max{d(z, xn+1), d(xn, xn+1)} ≤ rxn(Txn).

Thus (2.1) is true.
Therefore {B(xn, rxn(Txn))} is a shrinking collection of balls. From the spherically

completeness of X we get

∩n∈NB(xn, rxn(Txn)) 6= ∅.
Let z ∈ ∩n∈NB(xn, rxn(Txn)). For each n ∈ N note B(xn, rxn(Txn)) is T -invariant,
so

Tz ⊆ B(xn, rxn(Txn)).

This implies (note d(z, y) ≤ max{d(z, xn), d(xn, y)} ≤ rxn(Txn) for all y ∈ T z) that

rz(Tz) ≤ rxn(Txn), n ∈ N,
which leads to

rz(Tz) ≤ lim
n
rxn(Txn) = 0.
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Hence Tz = {z} and we are finished. �

As an immediate consequence of Theorem 1 we obtain an ultrametric version of
Theorem 2.1. in [1].

Corollary 2.1. ([1], Theorem 2.1) Let (X, d) be a spherically complete ultrametric
space. Let F : X → CB(X) be a set-valued map satisfying

H(Fx, Fy) ≤ ψ(d(x, y)) (x, y ∈ X),

where ψ : [0,∞) → [0,∞) is upper semicontinuous, ψ(t) < t for each t > 0 and
satisfies lim inft→∞(t− ψ(t)) > 0. Then F has a unique stationary point if and only
if F has the approximate stationary point property.

A slight modification of the argument in Theorem 2.1 will yield Theorem 1 in [5].

Corollary 2.2. ([5], Theorem 1) Let X be a spherically complete ultrametric space.
If T : X → X is a contractive mapping, then T has an unique fixed point.

Proof. Let T : X → X be a contractive mapping. We show that

α = inf
x∈X

d(x, Tx) = 0.

A slight modification of the argument in Theorem 2.1 establishes that for each x ∈ X
we have that B(x, d(x, Tx)) is T -invariant; note also since T is single-valued so

rx(Tx) = d(x, Tx).

Suppose, for contradiction, that α 6= 0. Let (xn) ⊆ X be such that

lim
n
d(xn, Txn) = α, and d(xn+1, Txn+1) ≤ d(xn, Txn), n = 1, 2, ...

Note for n ∈ N that

d(xn, xn+1) ≤ max{d(xn, Txn), d(Txn, Txn+1), d(xn+1, Txn+1)}

≤ max{d(xn, Txn), d(Txn, Txn+1)}.

Essentially the same reasoning as in the proof of Theorem 2.1 yields

B(xn+1, d(xn+1, Txn+1)) ⊆ B(xn, d(xn, Txn)) for n ∈ N;

note if xn 6= xn+1 we have that d(Txn, Txn+1) ≤ d(xn, Txn) and so

d(xn, xn+1) ≤ d(xn, Txn).

From the spherically completeness of X we have

∩n∈NB(xn, d(xn, Txn)) 6= ∅.
Let z ∈ ∩n∈NB(xn, d(xn, Txn)). For each n ∈ N note B(xn, d(xn, Txn)) is T -
invariant, so

Tz ∈ B(xn, d(xn, Txn)).

Thus for each n ∈ N we have d(z, Tz) ≤ max{d(z, xn), d(xn, T z)} ≤ d(xn, Txn) so
(note α = limn d(xn, Txn)) we have

d(z, Tz) ≤ α.
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Now T is contractive so (note z 6= Tz since α 6= 0) we have

d(T 2z, Tz) < d(z, Tz) ≤ α = lim
n
d(xn, Txn),

which is a contradiction because α = infx∈X d(x, Tx). Thus α = 0 and the result
follows from Theorem 1. �

3. Stationary points of nonexpansive mappings

A ball B(x, r) is said to be T -invariant if for each z ∈ B(x, r) we have Tz ⊆ B(x, r).
A T -invariant ball is said to be minimal T -invariant if it is T -invariant and does not
contain any T -invariant ball except itself.

Theorem 3.1. ([4], Theorem 4) Suppose (X, d) is a spherically complete ultrametric
space and T : X → X is a (single-valued) nonexpansive mapping. Then every ball of
the form

B(x, d(x, T (x))

contains either a fixed point of T or a minimal T -invariant ball.

In the following we extend this result to set-valued mappings.

Theorem 3.2. Let (X, d) be a spherically complete ultrametric space and T : X →
CB(X) be a nonexpansive mapping. Then every ball of the form

B(x, rx(Tx))

contains either a stationary point of T or a minimal T -invariant ball.

Proof. Essentially the same reasoning as in the proof of Theorem 2.1 establishes that
for each x ∈ X we have that Bx = B(x, rx(Tx)) is T -invariant.

Let z ∈ X and let
Σ = {Bx : x ∈ Bz}.

We order Σ, by
Bx � By ⇐⇒ By ⊆ Bx.

Let {Bxα} be an arbitrary chain in Σ. The spherically completeness of X implies that

∩Bxα 6= ∅.
Suppose that z ∈ ∩Bxα . For each α we have Tz ⊆ Bxα , since Bxα is T -invariant.
Thus (note d(z, y) ≤ max{d(z, xα), d(xα, y)} ≤ rxα(Txα) for all y ∈ Tz) we have

rz(Tz) ≤ rxα(Txα).

As a result we have that
Bz ⊆ Bxα ;

to see this let w ∈ Bz = B(z, rz(Tz)) and note d(w, z) ≤ rz(Tz) ≤ rxα(Txα) and so

d(w, xα) ≤ max{d(w, z), d(z, xα)} ≤ rxα(Txα).

Thus
Bxα � Bz,

which means Bz is an upper bound of the chain {Bxα}. By Zorn’s Lemma, Σ possesses
a maximal element, say Bw. If rw(Tw) = 0, then w is a stationary point of T and
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we are finished. Suppose rw(Tw) 6= 0. We claim that Bw is a minimal T -invariant
ball. To see this, let x ∈ X and B(x, r) be an arbitrary T -invariant ball such that
B(x, r) ⊆ Bw. Since x ∈ Bw it follows from the T -invariancy of Bw that (note
d(x, y) ≤ max{d(x,w), d(w, y)} ≤ rw(Tw) for all y ∈ Tx) rx(Tx) ≤ rw(Tw). Thus we
have

Bx ⊆ Bw;

to see this let z ∈ Bx = B(x, rx(Tx)) and note d(z, x) ≤ rx(Tx) ≤ rw(Tw) and so

d(z, w) ≤ max{d(z, x), d(x,w)} ≤ rw(Tw).

This means Bw � Bx. Since Bx ∈ Σ it follows from the maximality of Bw that

Bx = Bw.

Since B(x, r) is T -invariant (note d(x, y) ≤ r for all y ∈ Tx) it follows that rx(Tx) ≤ r.
Thus Bx ⊆ B(x, r) since if z ∈ Bx = B(x, rx(Tx)) then d(z, x) ≤ rx(Tx) ≤ r. Thus

Bw = Bx ⊆ B(x, r) ⊆ Bw,

which means B(x, r) = Bw. Since B(x, r) ⊆ Bw was an arbitrary T -invariant ball,
we conclude that, Bw is a minimal T -invariant ball. �

The following result shows that there exists an equivalency between the strong
approximate stationary point property and the existence of a stationary point for
nonexpansive set-valued mappings.

Corollary 3.1. Let (X, d) be a spherically complete ultrametric space and T : X →
CB(X) be a nonexpansive mapping. Then every ball of the form

B(x, rx(Tx))

contains a stationary point of T if and only if T has the strong approximate stationary
point property.

Proof. The ’if’ part is obvious, so we just prove the ’only if’ part. Let T have the
strong approximate stationary point property and fix z ∈ X. Suppose, for contradic-
tion, that T is stationary point free. Theorem 3.2 implies that Bz contains a minimal
T -invariant ball, say B(x, r). Now for each w ∈ B(x, r), Bw = B(w, rw(Tw)) is
T -invariant so it follows from minimality of B(x, r) that B(x, r) = Bw. Thus

r = rw(Tw) for w ∈ B(x, r).

As a result

inf
w∈B(x,r)

rw(Tw) 6= 0,

which contradicts the strong approximate stationary point property of T , since for
each w ∈ B(x, r), Bw = B(w, rw(Tw)) = B(x, r). �
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