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Abstract. In this paper the notion of random n-persons game is defined. The most important

problem of such games is the existence of Random Nash Equilibrium (RNE) which is defined in
section 4. Since not every random game has RNE, we will consider here a subclass of random games

called admissible random games. Finally, using a generalized version of Kakutani’s theorem it is

proved that for any admissible random game there exists a RNE.
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1. Introduction

The game theory is a wide part of the whole mathematics and it interacts with
all main currents. Certainly, J.Nash and his game equilibrium concept had a strong
impact on game theory development [13]. This concept had much progress over the
years and was modified in many ways f.e. see [2], [8], [11], [12].

As it is well known, equilibrium is a fixed point of a smart defined mapping (mul-
tivalued mapping). That is why, fixed point theorems are widely used in searching
for the equilibria (compare f.e. [6]).

In our paper we are focused on n-person random games which are strongly linked
with topology and fixed point theory. We improve the Nash Equilibrium by adding
some randomness implemented by the random space Ω. We prove that a subclass
of games have a Random Nash Equilibrium; however it does not have to be true
generally.

The notion of Random Nash Equilibrium was considered in [3] and [16] but this
equilibrium has nothing in common with that considered in this paper. Moreover, sto-
chastic games are connected with randomness; however, these problems are different
then studied in our paper, see [9],[14].

To the best of author’s knowledge, there were not considered any similar games
with Random Nash equilibrium.
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2. Topological background

If it is not indicated otherwise, we assume that all spaces are compact metric spaces
and all single-valued mappings are continuous. We would like to recall some needful
definitions.
Definition 2.1. A space X is called contractible, if it is homotopically equivalent to
the one-point space {p}; i.e. the following conditions are satisfied:

for the function f : X→ {p} and some function g : {p} → X

• g ◦ f ∼ idX,
• f ◦ g ∼ id{p},

where f ∼ g, if there exists the homotopy linking f and g.
Definition 2.2. We shall say X is an absolute retract space, provided for any space
Y and for any embedding h : X → Y, a set h(X) is a retract of Y. We shall write
X ∈ AR.

Note that every AR-space is contractible. The converse theorem is not true; for
example we propose the comb space (see [5]).

The following two facts are evident(see [5],[7]): the finite Cartesian product of
contractible sets (AR-sets) is a contractible set (AR-set respectively).

We shall consider the notion of multivalued (set-valued) mappings.
Definition 2.3. Let X and Y be two spaces. We say that ϕ is the multivalued
mapping (sign. ϕ : X( Y), if for every x ∈ X, the set ϕ(x) is a non-empty, compact
subset of Y. With any multivalued mapping ϕ, we associate the graph Γϕ ⊂ X × Y
which fulfils: (x, y) ∈ Γϕ, if and only if y ∈ ϕ(x).

In order to avoid misunderstandings we recall the definition of upper semicontinous
mapping:
Definition 2.4. A multivalued mapping ϕ : X( Y is called upper semicontinous,
if for every open subset U ⊂ Y, the set

ϕ−1(U) = {x ∈ X; ϕ(x) ⊂ U}

is an open subset of X (sign. usc.).
Notice that a multivalued mapping ϕ : X( Y is usc. if and only if the graph Γϕ

of ϕ is a closed subset of X× Y; however, it is not true for arbitrary metric spaces.
We define:

Definition 2.5. We shall say an usc. mapping ϕ : X( Y has contractible values, if
for every point x ∈ X the set ϕ(x) is contractible.
Proposition 2.6. Let X = X1 × . . . × Xn and assume that ϕi : X( Xi is usc. for
i ∈ {1, . . . , n}. Then the mapping ϕ : X( X defined by:

ϕ(x) := ϕ1(x)× . . .× ϕn(x)

is usc.
If ϕi, i = 1, . . . , n are mappings with contractible values, then ϕ has also con-

tractible values. In further considerations we will need the following generalization of
a Kakutani theorem:
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Theorem 2.7. (Kakutani) [7][10] If X ∈ AR and ϕ : X ( X is an usc. with
contractible values, then ϕ has a fixed point, i.e. there exists x ∈ X, such that x ∈
ϕ(x).

For more details, see [5] or [7].

3. Random operators

In further considerations we will assume that: X and Y are two compact spaces,
Ω is a measurable space and ϕ,ψ : Ω× X( Y are two multivalued mappings (these
assumptions are analogous to section 2).

We are able to recall basic definitions connected with random operators:
Definition 3.1. A mapping ϕ is called a random operator provided ϕ is product
measurable, i.e. for any open subset U ⊂ Y, the set

ϕ−1(U) = {(ω, x) ∈ Ω,X; F (ω, x) ⊂ U}

is a measurable subset of Ω × X (in X we consider σ-field of Borel’s sets). Where a
mapping ϕ is called a random usc. operator if ϕ is a random operator and ϕ(ω, ·) is
usc. for almost all parameters ω ∈ Ω.
Proposition 3.2. Let us assume that φ : Ω × X( Z and ϕ : Ω × X( Y are usc.,
random mappings. By product of two random mappings we understand a mapping
F : Ω × X( Y × Z given by F (ω, x) = ϕ(ω, x) × φ(ω, x). We claim the mapping F
is an usc. random mapping.

Proposition 3.2 is a consequence of the properties of a counterimage of multivalued
mappings and the definition of measurability (compare [7][19.3 and 14.8] for random-
ness and continuity respectively).
Definition 3.3. A measurable function ζ : Ω → X is called a random fixed point of
ψ : Ω× X( X if for almost all ω ∈ Ω, we have ζ(ω) ∈ ψ(ω, ζ(ω)).
Theorem 3.4. [1] Let ϕ : Ω×X( X be a random mapping. If for almost all ω ∈ Ω
the mapping ϕ(ω, ·) has a fixed point, then there exists a random fixed point of ϕ.

Note that for an arbitrary metric space the above theorem is an open problem
(comp. [1]).

The following theorem is indispensable to prove the existence of a random Nash
equilibrium:
Theorem 3.5. [7] If a space X ∈ AR and ϕ : Ω × X( X is random mapping with
contractible values, then ϕ has the random fixed point.

Since X is an AR-space by Theorem 2.7 we obtain that ϕ(ω, ·) : X( X has a fixed
point. Hence Theorem 3.5 follows from Theorem 3.4 immediately.

For more details concerning random operators see [1].

4. Random games

This section contains the definition of random Nash equilibrium, which is non-
trivial property in class of random n-person game. Moreover, we proof that any
admissible games has got Random Nash Equilibrium. Note that similar games were
considered in [15]; however, the concept of random games was an improvement of
games considered in [4].
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We shall assume that X1, . . . ,Xn are compact AR-spaces and a space (Ω, µ) is
measure space with µ as a measure. Moreover, we assume that for every i ∈ {1, . . . , n}
Fi, Gi : Ω× X( Xi are random multivalued mappings (we allow one exception, the
mapping Gi may have empty values).

We put X = X1 × . . .Xn. It is well known (see[5]), that X is an AR-space as well.
Definition 4.1. By the random n-players game we understand the set:

κ = {Ω,X, {Fi}ni=1, {Gi}ni=1}.

The random game is containing: the parameter space Ω - randomness of the game,
the strategy space X, the restriction of the strategy sets and the forbidden strategies
sets, for any player i, are given by Fi and Gi respectively. The mappings Fi, Gi

are dependent on random parameter ω ∈ Ω and strategy x ∈ X. Then mappings
Fi, Gi : Ω × X ( Xi describe some subsets of X for any ω and x we allow that
Gi(ω, x) can be an empty set. However, we demand that mapping F fulfills:
xi ∈ Fi(x) for every x = (x1, . . . , xi, . . . , xn) ∈ X
We interpret the game as follows: players are building ’some’ algorithm dependent

on random parameter ω, which is randomized as the game starts. So the strategy set
is given by measurable function ς : Ω→ X. For any ω ∈ Ω we shall write

ς(ω) = (ς1(ω), . . . , ςn(ω)),

where ςi is an i-th coordinate function associated with ς.
Definition 4.2. (Random Nash Equilibrium) A measurable function ζ : Ω → X is
called the Random Nash Equilibrium of the game κ if following conditions are satisfied
(sign. RNE):

4.2.1 ςi(ω) ∈ Fi(ω, ζ(ω)) for almost all ω ∈ Ω and i ∈ {1, . . . , n}
4.2.2 Fi(ω, ς(ω)) ∩Gi(ω, ς(ω)) = ∅ for almost all ω ∈ Ω and i ∈ {1, . . . , n}
Let us make an agreement for simplify notation: let x ∈ X, yi ∈ Xi, then (x−i, yi) :=

(x1, . . . , xi−1, yi, xi+1, . . . , xn).
The existence of Random Nash Equilibrium for given random game is most impor-

tant question. It is easy to observe there are random games for which RNE do not
exists (it is enough to construct the game in which Fi(ω, ς(ω)) ∩ Gi(ω, ς(ω)) 6= ∅).
That is why the assumption of game admissibility looks reasonable:

Admissible games
Let fi : Ω× X → R+ = [0,+∞) for every i = {1, . . . , n}. We say that fi is payoff

function if only it fulfills:

a. Let x ∈ X, for every yi ∈ Gi(x) ⊂ Xi, for almost all ω ∈ Ω, we have

fi(ω, (x−i, yi)) > fi(ω, x).

b. Let i ∈ {1, . . . , n}, we put Hi : Ω× X( Xi, such that

Hi(ω, x) = {yi ∈ Xi | for all zi ∈ Fi(ω, x), fi(ω, (x−i, yi)) ≥ fi(ω, (x−i, zi))}

and we shall assume that Hi is random usc. mapping with contractible values
for every i ∈ {1, . . . , n}.
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Definition 4.4. Any game κ, with payoff functions as above, we shall call admissible
game.

Finally we are able to prove the existence of RNE:
Theorem 4.5. Any admissible game κ has a Random Nash Equilibrium.

Proof. Firstly, observe that if the game κ is admissible, then the mapping H =
H1 × . . .×Hn : Ω×X( X is a random usc. mapping with contractible-values so H
fulfils assumptions of Theorem 3.4.

By Theorem 3.4 we claim that there exists a random fixed point ζ : Ω → X of
mapping H, i.e., ζ(ω) ∈ H(ω, ζ(ω)) for almost all ω ∈ Ω.

Then for every i ∈ {1, . . . , n} and almost all ω ∈ Ω, ζi(ω) ∈ Hi(ω, ζ(ω)) and

fi(ω, ζ(ω))) ≥ fi(ω, (ζ(ω)−i, xi),

for any xi ∈ Fi(ω, ζ(ω)) (compare condition b for payoff function).
To complete the proof it is enough to show that: Gi(ω, ζ(ω))∩ Fi(ω, ζ(ω)) = ∅ for

almost all ω ∈ Ω and i ∈ {1, . . . , n}.
We assume to the contrary that:

yi ∈ Gi(ω, ζ(ω)) ∩ Fi(ω, ζ(ω)),

for some ω ∈ Ω and i ∈ {1, . . . , n}.
Then by the first condition of payoff function, we get:

fi(x, (ζ(ω)−i, yi)) > fi(ω, ζ(ω)).

However, from the following inequalities:

fi(ω, ζ(ω)) ≥ fi(x, (ζ(ω)−i, yi)) > fi(ω, ζ(ω)),

we obtain a contradiction, so Gi(ω, ζ(ω)) ∩ Fi(ω, ζ(ω)) = ∅.
Finally we checked that both conditions of RNE are fulfilled by ζ so the mapping

ζ is a RNE of game κ. �

5. Concluding remarks

We owe several remarks to the reader:
Remark 5.1. In a deterministic game usually the strategy sets are assumed to be
compact convex (respectively multivalued mappings are usc. with compact convex
values). The reason for considering this kind of games is the original Ky Fan fixed
point theorem, proved in 1941 which was formulated for compact convex subsets of
the n-dimensional Euclidean space.
Remark 5.2. All results presented in section 4 remains true if we change strategy
sets to arbitrary separable absolute retracts and usc. mappings with compact values
to compact acyclic mappings (comp. [1],[7]).
Remark 5.3. Moreover, it is possible to consider arbitrary separable absolute neigh-
borhood retracts as the strategy sets, provided for almost all ω ∈ Ω the Lefschetz
number of the mapping Hi : Ω×X→ Xi is different from zero for every i ∈ {1, . . . , n}.
For proof compare [7].
Open problem 5.4. Is Theorem 3.5 true if strategy space is not separable metric
spaces ([7])?
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We will continue working on this theme in the near future.
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