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Abstract. Let K be a nonempty compact ∆-convex subset of a topological semilattice with path-
connected intervals. In this paper, under new assumptions, we establish some existence theorems of

x ∈ K such that F(A) ∩ V EP (f) 6= ∅, where F(A) is the set of all fixed points of the multifunction

A : K → 2K and V EP (f) is the set of all solutions for the vector equilibrium problems of the
multifunction f from K ×K to a topological vector space Y . These results generalize and improve

the recent ones in the literature. Some examples are given to illustrate our results.
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1. Introduction

Let K be a nonempty subset of a topological vector space, f : K ×K → R a real-
valued bifunction, where R denotes the set of real numbers. Consider the following
inequality which is known as an equilibrium problem (see Blum and Oettli [3]):

Find x∗ ∈ K such that f(x∗, y) ≥ 0 ∀y ∈ K. (1.1)

In 1972, Ky Fan [6] first established the existence of solutions of the inequality
(1.1) (here, we write its dual form).

Theorem 1.1. Let X be a Hausdorff topological vector space, and let K be a
nonempty compact convex subset of X. Suppose that f : K × K → R satisfies the
following conditions:

(1) f(x, x) ≥ 0 ∀x ∈ K;
(2) ∀x ∈ K, f(x, .) is quasiconvex;
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(3) ∀y ∈ K, f(., y) is upper semicontinuous.

Then there exists x∗ ∈ K such that f(x∗, y) ≥ 0 ∀y ∈ K.

The above result now has been called Ky Fan inequality. It plays a very impor-
tant role in many fields, such as variational inequalities, game theory, mathematical
economics, optimization theory, and fixed point theory. Because of wide applications,
this inequality has been generalized in a number ways (e.g., see Allen [1], Aubin and
Ekeland [2], Chang [4], Ding and Tan [5], Georgiev and Tanaka [7], Giannessi [8],
Hadjisavvas et al. [9], Horvath [12], Tian [20], Yen [25], Yuan [26], and Zhou and
Chen [27]). Topological vector spaces provide the usual mathematical framework in
the study of many problems. To avoid the linear feature, semilattices may be good
choices. In 1996, Horvath and Llinares Ciscar [13] first established an order theo-
retical version of the classical result of Knaster-Kuratowski-Mazurkiewicz, as well as
fixed point theorems for multivalued mappings in the framework of topological semi-
lattices.

In 2001, by using Horvath and Llinares Ciscar’s results, Luo [15] proved a similar
result to Theorem 1.1 in topological semilattices. In 2006, Luo [16] studied Ky Fan
inequalities for vector multivalued mappings in topological semilattices. Recently,
Song and Wang [18], Song [19] proved an extension of Ky Fan inequality but only for
vector single-valued mappings in topological semilattices.

Let M be a topological semilattice, K ⊂ M a nonempty ∆-convex subset, Y a
topological vector space, C a closed, pointed and convex cone in Y with intC 6= ∅,
A : K → 2K , f : K ×K → 2Y . The set of fixed points of A is denoted by F(A), i.e.,
F(A) = {x ∈ K : x ∈ A(x)}.

In 2006, Luo [16] studied some generalized vector quasi-equilibrium problems
(GVQEP): Find x∗ ∈ K such that

x∗ ∈ F(A), f(x∗, y)ρC ∀y ∈ A(x∗),

where f(x, y)ρC represents one of the following relations

f(x, y) ⊂ −C, f(x, y) ∩ intC = ∅, f(x, y) 6⊂ intC.

Luo proved the existence of solutions for these problems by using either upper
semicontinuous or lower semicontinuous multifunctions in the first argument. Since
in the scalar case, these functions are continuous, so his results are weaker than the
original form. In 2008, Vinh [22] improved Luo’s results and presented some genuine
generalizations of scalar Ky Fan minimax inequality in topological semilattices.

Al-Homidan et al. [10, 11] considered and studied the system of the generalized
vector quasi-equilibrium problems in topological semilattices. Their results extended
the ones of Luo [16] and Vinh [22]. Very recently, Vinh and Hoai [24] used the cone
semicontinuity and cone convexity of multivalued mappings to study the solvability of
the (GVQEP). However, the results in [10, 11, 16, 18, 22, 24] require that the set F(A)
is closed, since proof techniques in [10, 11, 16, 18, 22, 24] require this assumption.

Motivated and inspired by research works mentioned above, in this paper, we
will study the vector equilibrium problems (VEP1)-(VEP4) in which the set F(A) is
assumed to be open.
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(VEP1) Find x∗ ∈ K such that

x∗ ∈ A(x∗), f(x∗, y) 6⊂ intC ∀y ∈ K.
(VEP2) Find x∗ ∈ K such that

x∗ ∈ A(x∗), f(x∗, y) ∩ intC = ∅ ∀y ∈ K.
(VEP3) Find x∗ ∈ K such that

x∗ ∈ A(x∗), f(x∗, y) ∩ (−C) 6= ∅ ∀y ∈ K.
(VEP4) Find x∗ ∈ K such that

x∗ ∈ A(x∗), f(x∗, y) ⊂ −C ∀y ∈ K.
We remark that these problems include the corresponding generalized vector quasi-

equilibrium problems as special cases. The main purpose of this paper, we provide
sufficient conditions and prove the existence of solutions for the problems (VEP1)-
(VEP4). Our results and our proof techniques are different from those given in [10,
11, 16, 18, 22, 24].

The rest of the paper is organized as follows. In Section 2, we introduce about
topological semilattices and recall some concepts of cone semicontinuity and cone
convexity. In Section 3, under some new assumptions, we prove the existence of
solutions for vector equilibrium problems with multifunctions by using KKM lemma
in the setting of topological semilattices. Our results generalize and improve the ones
in [15, 18, 19, 21]. We also give some examples to illustrate our results.

2. Preliminaries

Definition 2.1. ([13]) A partially ordered set (M,6) is called a sup-semilattice if any
two elements x, y of M have a least upper bound, denoted by sup{x, y}. The partially
ordered set (M,6) is a topological semilattice if M is a sup-semilattice equipped with
a topology such that the mapping

M ×M →M

(x, y) 7→ sup{x, y}
is continuous.

We have given the definition of a sup-semilattice, we could obviously also consider
inf-semilattices. When no confusion can arise we will simply use the word semilattice.
It is also evident that each nonempty finite set A of M will have a least upper bound,
denoted by supA.

In a partially ordered set (M,≤), two arbitrary elements x and x′ do not have to
be comparable but, in the case where x ≤ x′, the set

[x, x′] = {y ∈M : x ≤ y ≤ x′}
is called an order interval or simply, an interval. Now assume that (M,≤) is a semi-
lattice and A is a nonempty finite subset; then the set

∆(A) =
⋃
a∈A

[a, supA]
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is well defined and it has the following properties:

(1) A ⊆ ∆(A);
(2) if A ⊂ A′, then ∆(A) ⊆ ∆(A′).

We say that a subset E ⊆ M is ∆-convex if for any nonempty finite subset A ⊆ E
we have ∆(A) ⊆ E.

Example 2.2. We consider R2 with usual order defined by

x1, x2 ∈ R2, x1 ≤ x2 ⇐⇒ x2 ∈ x1 + R2
+,

where R2
+ = {(y1, y2) ∈ R2 : y1 ≥ 0, y2 ≥ 0}.

It is obvious that (R2,≤) is a topological semilattice, in which

x1 ∨ x2 = (max(x1
1, x

2
1),max(x1

2, x
2
2)), ∀xi = (xi1, x

i
2) ∈ R2, i = 1, 2.

We see that

(1) The subset K = {(x, 1) : 0 ≤ x ≤ 1} ∪ {(1, y) : 0 ≤ y ≤ 1} is ∆-convex but
not convex in the usual sense.

(2) The subset K = {(x, y) : 0 ≤ x ≤ 1; y = 1 − x} is convex in the usual sense
but not ∆-convex.

In this paper, we will consider partial orders on vector spaces induced by cones.
We agree that any cone contains the origin, according to the following definition.

Definition 2.3. Let C be a nonempty subset of a vector space Y . The set C is called
a cone if λx ∈ C for all x ∈ C and λ ≥ 0. The cone C is pointed if C ∩ (−C) = {0}.
Lemma 2.4. ([24], Lemma 2.3) Let Y be a topological vector space and C a closed,
convex and pointed cone of Y with intC 6= ∅, where intC denotes the interior of C.
Then we have intC + C ⊂ intC.

We now recall some concepts of generalized convexity of multivalued mappings.
Let X be a nonempty convex subset of a vector space E, C be a convex cone of a
vector space Y , and F : X → 2Y be a multivalued mapping with nonempty values.

The mapping F is called C-quasiconvex if for all xi ∈ X, i = 1, 2 and x ∈
conv{x1, x2}, either F (x) ⊂ F (x1)− C or F (x) ⊂ F (x2)− C.

The mapping F is called C-quasiconcave if for all xi ∈ X, i = 1, 2, and
x ∈ conv{x1, x2}, either F (x1) ⊂ F (x) + C or F (x2) ⊂ F (x) + C.

Similarly, in the setting of topological semilattices, we introduce the following def-
inition.

Definition 2.5. Let K be a ∆-convex subset of a topological semilattice, Y be a
topological vector space, C ⊂ Y be a convex cone. Let F : K → 2Y be a multivalued
mapping with nonempty values.

(1) F is called C∆-quasiconvex mapping if, for any pair x1, x2 ∈ K and for any
x ∈ ∆({x1, x2}), we have either

F (x) ⊂ F (x1)− C

or

F (x) ⊂ F (x2)− C.
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(2) F is called C∆-quasiconcave mapping if, for any pair x1, x2 ∈ K and for any
x ∈ ∆({x1, x2}), we have either

F (x1) ⊂ F (x) + C,

or

F (x2) ⊂ F (x) + C.

We use ∈ instead of ⊂ when F is single-valued.

Remark 2.6. If Y = R = (−∞,+∞) and C = [0,+∞), and F is a real function, then
the C∆-quasiconvexity of F is equivalent to the ∆-quasiconvexity of F (see [15]).

Example 2.7. We consider topological semilattice (R2,≤) as in Example 2.2 and
K = [0, 1]× [0, 1] is a ∆-convex subset of (R2,≤).

(1) Let F : K → 2R and C = R+ such that

F (x) = [(1− x1)(1− x2),+∞), ∀x = (x1, x2) ∈ K.
It is clear that F is C∆-quasiconcave mapping but not C-quasiconcave. In-
deed, for x1 = (0, 1), x2 = (1, 0), x = 1

2x
1 + 1

2x
2 = ( 1

2 ,
1
2 ), we see that

F (x1) = F (x2) = [0,+∞), F (x) =

[
1

4
,+∞

)
while

F (x1) = F (x2) = [0,+∞) 6⊂ F (x) + C =

[
1

4
,+∞

)
.

(2) Let F : K → 2R and C = R+ such that

F (x) = {x2
1 + x2

2}, ∀x = (x1, x2) ∈ K.
It is easy to see that F is C-quasiconvex but not C∆-quasiconvex.

Now, we recall the semicontinuous properties of multivalued mappings (see [2]).
Let F : X → 2Y be a multivalued mapping between topological spaces X and Y . The
domain of F is defined to be the set domF = {x ∈ X : F (x) 6= ∅}.

The mapping F is upper semicontinuous (shortly, usc) at x0 ∈ domF if, for any
open set V of Y with F (x0) ⊂ V , there exists a neighborhood U of x0 such that
F (x) ⊂ V for all x ∈ U .

The mapping F is lower semicontinuous (shortly, lsc) at x0 ∈ domF if, for any
open set V of Y with F (x0) ∩ V 6= ∅, there exists a neighborhood U of x0 such that
F (x) ∩ V 6= ∅ for all x ∈ U .

The mapping F is continuous at x0 ∈ domF if it is both usc and lsc at x0. The
mapping F is continuous (resp. usc, lsc) if domF = X and if F is continuous (resp.
usc, lsc) at each point x ∈ X.

If Y is a partially ordered topological vector space, then the above definitions of
semicontinuous can be weakened. More precisely, we can introduce the following
definitions taken from [14, 17].

Definition 2.8. Let X be a topological space, Y be a topological vector space with
a cone C. Let F : X → 2Y . We say that
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(1) F is C-upper semicontinuous (shortly, C-usc) at x0 ∈ domF if for any open
set V of Y with F (x0) ⊂ V there exists a neighborhood U of x0 such that

F (x) ⊂ V + C for each x ∈ domF ∩ U.

(2) F is C-lower semicontinuous (shortly, C-lsc) at x0 ∈ domF if for any open
set V of Y with F (x0)∩V 6= ∅ there exists a neighborhood U of x0 such that

F (x) ∩ [V − C] 6= ∅ for each x ∈ domF ∩ U.

(3) F is C-usc (resp. C-lsc) if domF = X and if F is C-usc (resp. C-lsc) at each
point of domF .

Remark 2.9. If Y = R and C = R+ = {x ∈ R : x ≥ 0} (resp. C = −R+),
F is single-valued and C-usc at x0, then F is lower semicontinuous (resp. upper
semicontinuous) at x0 in the usual sense.

Remark 2.10. The upper (resp. lower) semicontinuity of F implies the C-upper
(resp. C-lower) semicontinuity of F . Example 3.5 in Section 3 will show that the
converse statement is no longer true.

It is interesting to note that the following KKM lemma plays a crucial role to prove
existence results for equilibrium problems.

Lemma 2.11. (Horvath and Ciscar [13]) Let X be a topological semilattice with
path-connected intervals, C ⊂ X a nonempty subset of X, and T : C → 2X be such
that:

(1) T has closed values;
(2) T is a KKM mapping, i.e., for each nonempty finite subset A of X,

∆(A) ⊂
⋃
x∈A

T (x);

(3) There exists x0 ∈ C such that the set T (x0) is compact.

Then we have the set ∩x∈CT (x) is not empty.

Definition 2.12. Let X be a topological space and M be a topological semilattice.
A mapping F : X → 2M is called a Browder-Fan mapping if the following conditions
are satisfied:

(1) For each x ∈ X, F (x) is nonempty and ∆-convex;
(2) For each y ∈M , F−1(y) is open in X.

The following lemma is a special case of [13, Corollary 1, pp. 298].

Lemma 2.13. (Browder-Fan fixed point theorem) Let K be a nonempty compact
∆-convex subset of a topological semilattice with path-connected intervals M and F :
K → 2K be a Browder-Fan mapping. Then F has a fixed point.
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3. Vector equilibrium problems for vector-valued multifunctions

In this section, under some new assumptions, we prove the existence of solutions for
vector equilibrium problems with multifunctions by using KKM lemma in the setting
of topological semilattices. Any of our Theorems 3.1-3.4 is a genuine generalization
of scalar Ky Fan inequality in topological semilattices. Our results generalize and
improve the ones in [15, 18, 19, 21].

Theorem 3.1. Let K be a nonempty compact ∆-convex subset of a topological semi-
lattice with path-connected intervals M , Y a topological vector space, f : K×K → 2Y

a multifunction with nonempty values, C a pointed closed convex cone in Y with
intC 6= ∅ and let A : K → 2K be a Browder-Fan mapping and the set

F(A) = {x ∈ K : x ∈ A(x)}

is open in K. Assume that

(1) f(x, x) 6⊂ intC, ∀x ∈ K;
(2) ∀x ∈ K, f(x, .) is −C∆-quasiconvex;
(3) ∀y ∈ K, f(., y) is C-upper semicontinuous;
(4) ∀x ∈ K \ F(A), A(x) ∩ {y ∈ K : f(x, y) ⊂ intC} 6= ∅.

Then there exists x∗ ∈ K such that x∗ ∈ A(x∗) and f(x∗, y) 6⊂ intC for all y ∈ K.

Proof. By Lemma 2.13, F(A) is a nonempty set. For x, y ∈ K, we define three
multivalued mappings from K to K as follows.

P (x) = {y ∈ K : f(x, y) ⊂ intC},

S(x) =

{
P (x), if x ∈ F(A),

P (x) ∩A(x), if x ∈ K \ F(A),

T (y) = K \ S−1(y).

We split the proof into several steps.

Step 1. We show that for any x ∈ K, P (x) is ∆-convex.

Suppose that there exists x′ ∈ K such that P (x′) is not ∆-convex; then there exist
y1, y2 ∈ P (x′) such that ∆({y1, y2}) 6⊂ P (x′), i.e., there exists z ∈ ∆({y1, y2}) and
z 6∈ P (x′); hence f(x′, z) 6⊂ intC. By (2), we have either

f(x′, z) ⊂ f(x′, y1) + C

or

f(x′, z) ⊂ f(x′, y2) + C.

By Lemma 2.4, we have either

f(x′, z) ⊂ f(x′, y1) + C ⊂ intC + C ⊂ intC

or

f(x′, z) ⊂ f(x′, y2) + C ⊂ intC + C ⊂ intC

which is a contradiction. Therefore, for any x ∈ K, P (x) is ∆-convex.

Step 2. We prove that P−1(y) is open for each y ∈ K.
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We have

P−1(y) = {x ∈ K : f(x, y) ⊂ intC}.

For each y ∈ K and each x ∈ P−1(y), we have f(x, y) ⊂ intC. By (3), there exists
a neighborhood U(x) of x such that f(x′, y) ⊂ intC+C ⊂ intC whenever x′ ∈ U(x),
which implies that U(x) ⊂ P−1(y), i.e., P−1(y) is open.

Step 3. We verify the closedness of T (y), for every y ∈ K.

One has

S−1(y) = (P−1(y) ∩ F(A)) ∪ (P−1(y) ∩A−1(y) ∩ (K \ F(A)))

= [P−1(y) ∪ (P−1(y) ∩A−1(y) ∩ (K \ F(A)))]∩
∩ [F(A) ∪ (P−1(y) ∩A−1(y) ∩ (K \ F(A)))]

= {P−1(y) ∩ [P−1(y) ∪ (K \ F(A))]} ∩ {[F(A) ∪ (P−1(y) ∩A−1(y))] ∩K}
= P−1(y) ∩ [F(A) ∪ (P−1(y) ∩A−1(y))].

Since for any y ∈ K, A−1(y), P−1(y) and F(A) are open in K, we have S−1(y) is
also open in K. It follows that T (y) is closed in K for each y ∈ K.

Step 4. We show T is a KKM mapping in K.

Suppose that T is not a KKM mapping. Hence, there exists A = {y1, y2, ..., yn} ⊂
K such that ∆(A) 6⊂ ∪y∈AT (y). We infer that there exists x̄ ∈ ∆(A) such that
x̄ 6∈ T (yi) for all i = 1, 2, ..., n, namely yi ∈ S(x̄) for all i = 1, 2, ..., n. If x̄ ∈ F(A),
then yi ∈ P (x̄). That is x̄ ∈ ∆(A) ⊂ P (x̄) because P (x̄) is ∆-convex, which is a
contradiction to (1). On the other hand if x̄ ∈ K \ F(A) then yj ∈ P (x̄) ∩ A(x̄) for
i = 1, 2, ..., n. So x̄ ∈ ∆(A) ⊂ P (x̄)∩A(x̄), which is another contradiction. Thus T is
KKM.

Step 5. We show that there exists a point x∗ ∈ K such that S(x∗) = ∅.
Indeed, by Lemma 2.11, we obtain a point x∗ ∈ K such that

x∗ ∈
⋂
y∈K

T (y) = K \
⋃
y∈K

S−1(y).

So, x∗ 6∈ S−1(y) for every y ∈ K, that is S(x∗) = ∅. Since P (x)∩A(x) is nonempty
for all x ∈ K \ F(A), hence x∗ ∈ F(A), S(x∗) = P (x∗) = ∅, i.e., x∗ ∈ A(x∗) and we
have

x∗ ∈ A(x∗), f(x∗, y) 6⊂ intC, for all y ∈ K.
This completes the proof. �

Remark 3.2. Let us underline the following items.

(1) The set F(A) = {x ∈ K : x ∈ A(x)} is assumed to be open in K while
in most of article appeared in the literature, the set F(A) is assumed to be
closed in K (see [10, 11, 16, 18, 22, 24] and references therein). So, our
existence results are obtained under new assumptions different from those of
[10, 11, 16, 18, 22, 24].
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(2) In the proof of Theorem 3.1 we used KKM lemma, while the authors of
[10, 11, 16, 18, 22, 24] used Browder-Fan fixed point theorem. Hence, our
proof techniques are different.

(3) This theorem improve and extend Corrolary 3.1 in [18], Corrolary 16 in [19].

In Theorem 3.1, when f is single-valued, we have the following corollary.

Corollary 3.3. Let K be a nonempty compact ∆-convex subset of a topological
semilattice with path-connected intervals M , Y a topological vector space, f : K×K →
Y , C a pointed closed convex cone in Y with intC 6= ∅ and let A : K → 2K be a
Browder-Fan mapping and the set

F(A) = {x ∈ K : x ∈ A(x)}

is open in K. Assume that

(1) f(x, x) 6∈ intC, ∀x ∈ K;
(2) ∀x ∈ K, f(x, .) is −C∆-quasiconvex;
(3) ∀y ∈ K, f(., y) is C-upper semicontinuous;
(4) ∀x ∈ K \ F(A), A(x) ∩ {y ∈ K : f(x, y) ∈ intC} 6= ∅.

Then there exists x∗ ∈ K such that x∗ ∈ A(x∗) and f(x∗, y) 6∈ intC for all y ∈ K.

Remark 3.4. Corollary 3.3 improve and extend Theorem 5.2 in [21], Theorem 3.1
in [15].

Now we give an example to explain that Corollary 3.3 is applicable.

Example 3.5. Let M = R2. Arguing as in Example 2.2, (M,≤) is a topological
semilattice. Then K = [0, 1] × [0, 1] is a nonempty compact ∆-convex subset of
(M,≤). Let Y = R with C = R+. Define A : K → 2K by

A(x) = 1× (0, 1] ∪ (0, 1]× 1 for each x ∈ K.

Denote by L1 the set 1× (0, 1] ∪ (0, 1]× 1. Then we have:

(1) for each x ∈ K, A(x) is nonempty and ∆-convex;

(2) for y = (y1, y2) ∈ K,

A−1(y) =

{
K if y ∈ L1,

∅ if y ∈ K \ L1.

Therefore, for each y ∈ K, A−1(y) is open in K. It means that A is a
Browder-Fan mapping.

(3) The set F(A) = {x ∈ K : x ∈ A(x)} = 1× (0, 1] ∪ (0, 1]× 1 is open in K.
For any x = (x1, x2), y = (y1, y2) ∈ K, we define f : K ×K → Y by

f(x, y) =

{
−(1− y1)(1− y2) + 1− 1

2x1 − 1
2x2 if (x, y) 6= (0, 0),

−2 if (x, y) = (0, 0).

Then all the assumptions of Corollary 3.3 are satisfied. So Corollary 3.3 is appli-
cable. We can see that x∗ = (1, 1) is the unique solution of (VEP1).
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Remark 3.6. For every fixed x, arguing as in Example 2.1 of [18], we see that f(x, .)
is not a usual quasiconcave function. Indeed, for x̄ = (1, 1), we have

f(x̄, y) =

{
−(1− y1)(1− y2) if (y1, y2) 6= (0, 0),

−2 if (y1, y2) = (0, 0).

Clearly, for y1 = (1, 0), y2 = (0, 1), y = 1
2y

1 + 1
2y

2 = ( 1
2 ,

1
2 ), we see that f(x̄, y1) = 0,

f(x̄, y2) = 0, while f(x̄, y) = − 1
4 .

Remark 3.7. Observe that Corrolary 3.3 fails to hold if the assumption that the set
F(A) is open in K is violated.

This remark is illustrated by the following example.

Example 3.8. Let M , K, Y , C be given in Example 3.5 and L2 = 1×[0, 1]∪[0, 1]×1.

(1) For any x = (x1, x2), y = (y1, y2) ∈ K, the function f is defined by

f(x, y) =

{
1− x2

1 − x2
2 + y2

1 + y2
2 if (x, y) 6= (0, 0),

−1 if (x, y) = (0, 0).

It can be easily checked that for each x ∈ K, f(x, .) is C∆-quasiconcave but
not a usual quasiconcave function.

(2) We define the multivalued mapping A : K → 2K as in Example 17 of [19]:

A(x) =

{
(x1, 1]× [0, 1] ∪ [0, 1]× (x2, 1] if x ∈ K \ L2,

(1, 1) if x ∈ L2.

for each x = (x1, x2) ∈ K.

Then, A is a Browder-Fan mapping. Obviously, in this example, the set F(A) is
not open in K, because F(A) = {(1, 1)}. It is easy to see that each of conditions (1),
(2), (3), (4) of Corrolary 3.3 is satisfied. However, (VEP1) has no solution. Indeed,
if x∗ is a solution of (VEP1) then x∗ = (1, 1) and

f(x∗, y) = −1 + y2
1 + y2

2 ≤ 0 for all y ∈ K.

That means that y2
1 + y2

2 ≤ 1 for all y ∈ K, which is impossible.

When Y = (−∞,+∞), C = [0,+∞) and A(x) = K, ∀x ∈ K, from Corollary 3.3,
we get scalar Ky Fan inequality for real-valued functions in topological semilattices
(see, for instance, [15, 21]).

Corollary 3.9. Let K be a nonempty compact ∆-convex subset of a topological
semilattice with path-connected intervals M and let f : K ×K → R be such that

(1) f(x, x) ≤ 0, ∀x ∈ K;
(2) ∀x ∈ K, f(x, .) is ∆-quasiconcave;
(3) ∀y ∈ K, f(., y) is lower semicontinuous.

Then there exists x∗ ∈ K such that f(x∗, y) ≤ 0 ∀y ∈ K.

Theorem 3.10. Let K be a nonempty compact ∆-convex subset of a topological
semilattice with path-connected intervals M , Y a topological vector space, f : K×K →
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2Y a multifunction with nonempty values, C a pointed closed convex cone in Y with
intC 6= ∅ and let A : K → 2K be a Browder-Fan mapping and the set

F(A) = {x ∈ K : x ∈ A(x)}

is open in K. Assume that

(1) f(x, x) ∩ intC = ∅, ∀x ∈ K;
(2) ∀x ∈ K, f(x, .) is C∆-quasiconvex;
(3) ∀y ∈ K, f(., y) is −C-lower semicontinuous;
(4) ∀x ∈ K \ F(A), A(x) ∩ {y ∈ K : f(x, y) ∩ intC 6= ∅} 6= ∅.

Then there exists x∗ ∈ K such that x∗ ∈ A(x∗) and f(x∗, y)∩intC = ∅ for all y ∈ K.

Proof. By Lemma 2.13, F(A) is a nonempty set. For x, y ∈ K, we define three
multivalued mappings from K to K as follows.

P (x) = {y ∈ K : f(x, y) ∩ intC 6= ∅},

S(x) =

{
P (x), if x ∈ F(A),

P (x) ∩A(x), if x ∈ K \ F(A),

T (y) = K \ S−1(y).

The rest of the proof can be done as in proving Theorem 3.1, so it is omitted. �

Theorem 3.11. Let K be a nonempty compact ∆-convex subset of a topological
semilattice with path-connected intervals M , Y a topological vector space, f : K×K →
2Y a multifunction with nonempty values, C a pointed closed convex cone in Y with
intC 6= ∅ and let A : K → 2K be a Browder-Fan mapping and the set

F(A) = {x ∈ K : x ∈ A(x)}

is open in K. Assume that

(1) f(x, x) ∩ (−C) 6= ∅, ∀x ∈ K;
(2) ∀x ∈ K, f(x, .) is −C∆-quasiconvex;
(3) ∀y ∈ K, f(., y) is C-upper semicontinuous;
(4) ∀x ∈ K \ F(A), A(x) ∩ {y ∈ K : f(x, y) ∩ (−C) = ∅} 6= ∅.

Then there exists x∗ ∈ K such that x∗ ∈ A(x∗) and f(x∗, y)∩(−C) 6= ∅ for all y ∈ K.

Proof. By Lemma 2.13, F(A) is a nonempty set. For x, y ∈ K, we define three
multivalued mappings from K to K as follows.

P (x) = {y ∈ K : f(x, y) ∩ (−C) = ∅},

S(x) =

{
P (x), if x ∈ F(A),

P (x) ∩A(x), if x ∈ K \ F(A),

T (y) = K \ S−1(y).

The rest of the proof can be proceeded exactly as the one of Theorem 3.1, so it is
omitted. �

Theorem 3.12 Let K be a nonempty compact ∆-convex subset of a topological semi-
lattice with path-connected intervals M , Y a topological vector space, f : K×K → 2Y
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a multifunction with nonempty values, C a closed, pointed and convex cone in Y with
intC 6= ∅ and let A : K → 2K be a Browder-Fan mapping and the set

F(A) = {x ∈ K : x ∈ A(x)}

is open in K. Assume that

(1) f(x, x) ⊂ −C, ∀x ∈ K;
(2) ∀x ∈ K, f(x, .) is −C∆-quasiconcave;
(3) ∀y ∈ K, f(., y) is −C-lower semicontinuous;
(4) ∀x ∈ K \ F(A), A(x) ∩ {y ∈ K : f(x, y) 6⊂ −C} 6= ∅.

Then there exists x∗ ∈ K such that x∗ ∈ A(x∗) and f(x∗, y) ⊂ −C for all y ∈ K.

Proof. By Lemma 2.13, F(A) is a nonempty set. For x, y ∈ K, we define three
multivalued mappings from K to K as follows.

P (x) = {y ∈ K : f(x, y) 6⊂ −C},

S(x) =

{
P (x), if x ∈ F(A),

P (x) ∩A(x), if x ∈ K \ F(A),

T (y) = K \ S−1(y).

The rest of the proof is similar to that of Theorem 3.1, so it is omitted. �

Remark 3.13. Other interesting results on topological semilattices and vector equi-
librium problems can be found in [13, 15, 16, 18, 19, 21, 22, 23, 24].

Acknowledgments. This research was partially supported by UTC under Grant
No. T2017- KHCB-60.

References

[1] G. Allen, Variational inequalities, complementarity problems, and duality theorems, J. Math.

Anal. Appl., 58(1977), 1-10.
[2] J.P. Aubin, I. Ekeland, Applied Nonlinear Analysis, John Wiley, New York, 1984.

[3] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems,

Math. Student, 63(1994), 123-145.
[4] S.S. Chang, Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal.

Appl., 159(1991), 208-223.

[5] X.P. Ding, K.K. Tan, A minimax inequality with applications to existence of equilibrium point
and fixed point theorems, Colloq. Math., 63(1992), 233-247.

[6] K. Fan, A minimax inequality and applications, In: Inequalities, III (Proc. Third Sympos.,
Univ. California, Los Angeles, Calif., 1969; Dedicated to the memory of Theodore S. Motzkin,

O. Shisha- Ed.), Academic Press, New York, 1972, 103-113.

[7] P.G. Georgiev, T. Tanaka, Fan’s inequality for set-valued maps, Nonlinear Anal., 47(2001),
607-618.

[8] F. Giannessi, Vector Variational Inequalities and Vector Equilibria, Mathematical Theories,

Nonconvex Optimization and its Applications, 38, Kluwer Academic Publ., Dordrecht, 2000.
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