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1. Introduction

There are two significant branches of methods in the fixed point theory (see [2]).
The first are called homological methods and the second are approximation methods.
Let us add that approximation methods are simpler then homological methods, but
they are sufficient for applications to nonlinear analysis and several others sections of
mathematics. In this paper we will use approximation methods.

Problem of fixed points was very popular and strongly developed. There is no
possibility to name essential publications taking this theme. We are study the problem
of fixed point property for:

(i) absolute approximative retracts in particular for absolute retracts;
(ii) absolute multiretracts;

both for singlevalued and multivalued mappings. Some of similar problems were
studied in [6], [4].

2. Preliminaries

In this paper, we assumed that all topological spaces are metric. Let (X, d) be a
space and let A be a subset of X.
Definition 2.1. We recall that a continuous mapping r : X→ A is called retraction
if d(r(a), a) = 0 for every a ∈ A, i.e. a retraction map is a continuous extension of
the identity map on A onto X.
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Definition 2.2. Let ε > 0, a continuous mapping rε : X→ A is called an ε-retraction,
provided for every x ∈ A we have d(x, rε(x)) ≤ ε. Obviously any retraction map
r : X→ A is an ε-retraction for every ε > 0.
Definition 2.3. A subset A ⊂ X is called an approximative retract of X (a retract of
X), if for every ε > 0 there exists an ε-retraction rε : X→ A (a retraction r : X→ A).

Evidently any retract A of the space X is a closed subset of X. The following
question is an open problem:
Problem 2.4. Is it true that any approximative retract A of a space X is a closed
subset of X?
Definition 2.5. A compact space X is called an absolute approximative retract (writ-
ten X ∈ AAR), provided for every homeomorphic embedding h : X→ Y the set h(X)
is an approximative retract of Y.
If h(X) is a retract of Y then we shall say that X is an absolute retract (written
X ∈ AR). Then we have:

AR ⊆ AAR.

Example 2.6. Consider the set:

B =

∞⋃
k=1

{
1

k

}
× [0, 1] ∪ [0, 1]× {0} ⊂ R2.

The set B is an approximative retract of R2 but it is not retract of R2. So the inclusion
AR ( AAR is proper (see [5]).

We will need this well known theorem:
Fact 2.7. Let E be a normed space and let C be any convex subset of E, then
C ∈ AR. For proof see [1].

In what follows we will use Uryshon embedding theorem (see [3]):
Theorem 2.8. For every compact metric space there exists a homeomorphic embed-
ding into the Hilbert Cube I∞ = [0, 1]∞. Note that I∞ can be regarded as a compact

convex subset of the Banach space l2 = {{xn} ⊂ R∞ |
+∞∑
n=1

xn
2 < +∞} because

I∞ = {{xn} ∈ l2 | |xn| ≤ 1
n , for every n = 1, 2, . . . }.

Using Definition 2.3, Corollary 2.7, and Theorem 2.8 we obtain:
Proposition 2.9.

(2.9.1) If X ∈ AAR, then X is homeomorphic to an approximative retract of I∞;
(2.9.2) If X ∈ AR, then X is homeomorphic to a retract of I∞.

We recall the Schauder approximation theorem in the following form:
Theorem 2.10. [3, p. 55] Let f : X→ C be a continuous mapping of a metric space
X to a compact convex subset C of some normed space E. Then for each ε > 0 there
exists a continuous mapping fε : X→ C such that ‖fε(x)− f(x)‖ < ε for each x ∈ X
and fε(X) ⊂ En(ε) ⊂ E, where En(ε) is a n(ε) dimensional subspace of E.

3. Fixed Point Property – the case of singlevalued mappings

Definition 3.1. We shall say that a compact space X has the Fixed Point Property
if any continuous mapping f : X → X has a fixed point (written X ∈ FPP ), i.e.,
there exists x0 ∈ X such that f(x0) = x0.
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The set of all fixed points of f we will denote by fix f .
We will prove the following proposition:

Proposition 3.2. If X ∈ FPP and X is homeomorphic to Y, then Y ∈ FPP .

Proof. Let g : Y → Y be a continuous map. By the assumption there exists a
homeomorphism h : X→ Y. Consider the following superposition

f = h−1 ◦ g ◦ h : X→ X,

then f is continuous so there exists a point x0 ∈ fix f . We have

f(x0) = h(g(h−1(x0))) = x0.

Thus g(h−1(x0)) = h−1(x0) so the proof is completed. �

Proposition 3.3. If X ∈ FPP and A ⊂ X is a closed approximative retract of X,
then A ∈ FPP .

Proof. Let f : A → A is a continuous mapping. Put εn = 1
n and consider superpo-

sition gn = i ◦ f ◦ rn : X → X, where rn : X → A is an approximative retraction
for εn. By assumption for each n, there exists a point xn ∈ fix gn ⊂ A. Without
loosing of generality we can assume that lim

n→+∞
xn = x0 (A is compact). Obviously

lim
n→∞

rn(xn) = x0. Then we have:

f(rn(xn)) f(x0) => f(rn(xn)) f(x0)

rn(xn) x0 rn(xn) x0

So the proof is completed. �

We shall recall the Brouwer fixed point theorem:
Theorem 3.4. [Brouwer] If K = {x ∈ Rn | ‖x‖ ≤ r} then K ∈ FPP .

Thus we are ready to prove the main result of this section:
Theorem 3.5. If X is a compact AAR, then X ∈ FPP .

Proof of Theorem 3.5 will be given in 4 steps.

Step 1. If K(x0, r) = {x ∈ Rn | ‖x− x0‖ ≤ r} then K(x0, r) ∈ FPP .
This is immediate consequence of Proposition 3.1.1.

Step 2. A compact convex subset C ⊂ Rn has the FPP.
Because C is a retract of some ball K(x0, r) so it follows from Step 1 and
Proposition 3.3.

Step 3. If C ⊂ E is a compact convex subset of some normed space E, then C ∈ FPP .

Proof. Let f : C → C be a continuous map. Put εn = 1
n , by Theorem 2.10,

there exists fn : C ∩ En(ε) → En(ε) such that |fn(x) − f(x)| < ε. Since
Cε = C ∩En(ε) ⊂ C is a convex compact subset of En(ε) we can apply Step 2.
So for every n there exist xn such that fn(xn) = xn. We can assume that

lim
n→+∞

xn = x0 (because of the compactness of set C).
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fn(xn) f(x0) => fn(xn) f(x0)

xn x0 xn x0

So x0 is a fixed point of the mapping f what ends proof. �

Step 4. If X ∈ AAR, then X ∈ FPP .

Proof. The Hilbert Cube I∞ is compact convex set so it has the fixed point
property by [Step 3.]. Moreover if X ∈ AAR then it is an approximative
retract of I∞. So by Proposition 3.1.2 any compact AAR has the fixed point
property. �

4. Fixed Point Property for some class
of multivalued mappings of AAR-s

First we recall the notion of Rδ sets:
Definition 4.1. A subset A ⊂ X is called an Rδ-set if it is a countable intersection
of contractible compact subsets of X.

We shall formulate an obvious fact about Rδ sets:
Fact 4.2. Let h : X → Y be a homeomorphism and A ⊂ X, if A is an Rδ set then
h(A) is Rδ set too.

We shall use the concept of ε-neighbourhood of a set:
Definition 4.3. Let U be a subset of X, ε > 0. We put

Oε(U) = {x ∈ X | ∃ u ∈ U such that d((x, u)) < ε}.
We shall consider the following class of multivalued mappings:

M(X,Y) = {ϕ : X( Y | ϕ is u.s.c. and for each x ∈ X, the set ϕ(x) is Rδ}.
The following theorem is well known:

Proposition 4.4. If ϕ ∈M(X,Y), then the graph, Γϕ = {(x, y) ∈ X×Y | y ∈ ϕ(x)}
of ϕ, is a closed subset of X× Y; where in X× Y we consider the max-metric.

Note that if X is compact then we can formulate:
Proposition 4.4.1. A mapping ϕ : X ( Y is u.s.c. if and only if Γϕ is a closed
subset of X× Y.

To prove main result of this section we need the following approximation theorem:
Theorem 4.5. [2, p. 114] If ϕ ∈M(X,X) and C is a compact convex subset of some
normed space E, then for each ε > 0 there exists a continuous mapping fε : C → C
such that Γf ⊂ Oε(Γϕ).

We define:
Definition 4.6. We shall say that a compact space X has the multi fixed point
property (written X ∈ MFPP ) if for every ϕ ∈ M(X,X) there exists x0 ∈ fix ϕ =
{x ∈ X | x ∈ ϕ(x)}.

We prove:
Proposition 4.7.

(4.7.1) If X ∈MFPP and Y is homeomorphic to X, then Y ∈MFPP .
(4.7.2) If X ∈ MFPP and A is a closed approximative retract of X, then A ∈

MFPP .
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Proof. (4.7.1) For the proof of this proposition it is sufficient to observe that for any
ϕ ∈M(Y, Y ) and given homeomorphism h : X→ Y we get Ψ = h−1◦ϕ◦h ∈M(X,X)
(compare Proposition 4.2).

(4.7.2) Let ϕ ∈M(A,A) and rε : X→ A be an approximative retraction for every
ε > 0. We put εn = 1

n and define the following mappings:

Ψn = i ◦ ϕ ◦ rn : X( X, n = 1, 2, . . .

Evidently Ψn ∈ M(X,X) for every n = 1, 2, . . .. By assumption fixΨn 6= ∅ so for
every n there exists xn ∈ Ψn. Consequently:

xn ∈ i ◦ ϕ ◦ rn(xn).

Since rn is a 1
n -retraction we have: d(xn, rn(xn)) < 1

n . Without loss of generality we
can assume that limn→+∞xn = x0 (because of compactness of A). But that implies
limn→+∞rn(xn) = x0. We know that:

(xn, rn(xn)) ∈ Γϕ, for every n = 1, 2, . . . and lim
∞n→+∞

(xn, rn(xn)) = (x0, x0).

Moreover by Proposition 4.4 we know that graph of ϕ is closed so (x0, x0) ∈ Γϕ. �

Using Theorems 2.8, 3.3 and 4.5 we are able to prove:
Theorem 4.8. If X ∈ AAR, then X ∈MFPP .

Step 1. X = I∞

Proof. Let ϕ ∈M(I∞, I∞). From Theorem 4.5 we know that for every ε > 0,
there exists a mapping fε : I∞ → I∞, such that Γf ε ⊂ Oε(Γϕ).

Put εn = 1
n . Because I∞ has FPP (see Theorem 3.3) then there exist xn =

fn(xn) for every n. Since (xn, fn(xn)) ∈ Γf there exists (x̃n, ỹn) ∈ Γϕ such
that d((xn, fn(xn)), (x̃n, ỹn)) < 1

n , for every n. Consequently d(xn, x̃n) <
1
n and d(fn(xn), ỹn) < 1

n . But we can assume, without loss of generality
that lim

n→+∞
xn = x0. Hence we get: lim

n→+∞
x̃n = x0 and lim

n→+∞
fn(xn) =

lim
n→+∞

xn = x0.

Finally we obtain that lim
n→+∞

(x̃n, ỹn) = (x0, y0) ∈ Γϕ. Because Γϕ is a closed

subset of I∞ × I∞, see 4.4. So x0 ∈ fixϕ and the proof is complete. �

Step 2. Proof. By Proposition 2.9.1 there exists homeomorphism h : X → A ⊂ I∞,
where subset A is a closed approximative retract of I∞ (so it is a compact
subset of I∞). Thus our claim follows from Step 1 and Proposition 4.1.2. �

5. Some applications

The notion of multiretracts first were studied in [7]. We will apply Theorem 4.8
in order to prove that any multiretract of a space having MFP property has FPP
property.
Definition 5.1. Let A be a subset of a space X. A continuous mapping r : X→ A is
called multiretraction if there exists a multivalued mapping ϕ ∈ M(A,X), such that
r ◦ ϕ = IdA. Moreover the set A is called a multiretract of X.
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Definition 5.2. The compact space X is called an absolute multiretract provided it
is homeomorphic to a compact subset A ⊂ I∞ which is a multiretract of I∞ (written
X ∈ AMR).
For more details and examples concerning AMR-spaces see [7].

First we prove:
Proposition 5.3. If X ∈MFPP and A is multiretract of X, then A ∈ FPP .

Proof. Let f : A → A be a continuous map. According to (5.1), let r : X → A be a
multiretraction and ϕ ∈ M(A,X) such that r ◦ ϕ = IdA. For the proof we define a
multivalued map Ψ : X( X given by the formula: Ψ = ϕ ◦ f ◦ r.

Evidently Ψ is an u.s.c. mapping with Rδ values. Since X ∈ MFPP , we know
there exists a point x0 ∈ X such that x0 ∈ Ψ(x0).

We have:
x0 ∈ Ψ(x0) = ϕ(f(r(x0))),

it implies that: r(x0) ∈ (r ◦ ϕ)(f(r(x0))).
Since (r ◦ ϕ) = IdA we have r(x0) ∈ fixf . �

Problem 5.4. Is it true that assumptions of (5.3) imply that A ∈MFPP?
Using Propositions 5.3, 3.2 and Theorem 4.8 we obtain:

Theorem 5.5. If X ∈ AMR, then X ∈ FPP .
There are many further questions connected with the notion of fixed point theory

for multivalued mappings of AMR-spaces. Some of them we shall present in next
works.
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