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1. Introduction

In this paper we present fixed point theory in topological vector spaces for mul-
timaps having weakly closed graph.

After some preliminaries, in Section 4 we state a multivalued version of the
Sadovskii fixed point theorem in Hausdorff locally convex topological vector spaces
satisfying the Krein-Smulian property (see (X1)). The key hypothesis of the Sadovskii
theorem is the condensivity of the operator. In our setting the definition of condens-
ing multimap is given in terms of an abstract measure of noncompactness which is
well defined thanks to property (X1), as we note in Section 3. Our Sadovskii theorem
improves some results in the literature (see, e.g. [7, Corollary 3.3.1], [2, Theorem 2.1],
[5, Theorem 5.1]).

In Section 5 we introduce the definition of a Mönch-set for a multimap (see Def-
inition 5.1) which leads to a Mönch type fixed point theorem where the Mönch hy-
pothesis is weaker than the others in the literature (see Remark 5.2). Moreover we
establish a sufficient condition for the existence of Mönch-sets (see Theorem 5.1) and
a proposition on their relative compactness (see Theorem 5.3).

As a consequence of this study we derive a Daher type fixed point theorem for
multimaps (see Theorem 5.4).
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2. Preliminaries

Let X be a Hausdorff locally convex topological vector space (HLCTVS, for short)
and P(X) be the family of all nonempty subsets of X. Following [3], we recall the
next notion

Definition 2.1. Let D be a nonempty subset of X. A map F : D → P(X) is said
to have weakly closed graph in D ×X if for every net (xδ)δ in D, xδ → x, x ∈ D,
and for every net (yδ)δ, yδ ∈ F (xδ), yδ → y, we have S(x, y) ∩ F (x) 6= ∅, where
S(x, y) = {x+ λ(y − x) : λ ∈ [0, 1]}.
We recall that in a locally convex topological vector space a set H is said to be bounded
if for every neighborhood U of 0X there exists a positive number ρ such that H ⊂ ρU .
We will use the following notations:
Pb(X) = {H ⊂ X : H 6= ∅ , H bounded }; Pk(X) = {H ⊂ X : H 6= ∅ , H compact };
Pkc(X) = {H ⊂ X : H 6= ∅ , H compact and convex };
Pfc(X) = {H ⊂ X : H 6= ∅ , H closed and convex }.

3. On the measure of noncompactness

Let X be a HLCTVS satisfying the Krein-Smulian property

(X1) if A is a compact subset of X, then co(A) is compact.

Remark 3.1. If X is a quasi-complete locally convex topological vector space, then
(X1) holds (cf. [8, §20.6 (3)]).

Definition 3.1. A function γ : Pb(X)→ IR+
0 is said to be a measure of noncompact-

ness (MNC, for short) if, for every Ω ∈ Pb(X), the following properties are satisfied:

(γ1) γ(Ω) = 0 if and only if Ω is compact;
(γ2) γ(co(Ω)) = γ(Ω).

In the sequel, we will need also the next property:

(γ3) set additivity: γ(Ω1 ∪ Ω2) = max{γ(Ω1), γ(Ω2)}, where Ω1,Ω2 ∈ Pb(X).

Note that a set additive MNC satisfies also the properties

(γ4) monotonicity: Ω1 ⊂ Ω2 implies γ(Ω1) ≤ γ(Ω2);
(γ5) nonsingularity: γ({x} ∪ Ω) = γ(Ω), for every x ∈ X;
(γ6) closure invariance: γ(Ω) = γ(Ω).

We observe that the above definition is well posed since X is a locally convex space
and satisfies property (X1).

Remark 3.2. Let E be a Banach space endowed with the weak topology Tw and take
X = (E, Tw). Thanks to the Krein-Smulian Theorem (see, e.g. [6, Theorem 3.5.15]),
X satisfies property (X1). Observe that an example of set additive MNC in X is the
De Blasi measure of weak noncompactness in E.

Definition 3.2. Let D be a nonempty subset of X. We say that a map F : D → P(X)
is (countably) condensing with respect to a MNC γ if

(I) F (D) is bounded;
(II) γ(F (B)) < γ(B) for all (countable) bounded subsets B of D with γ(B) > 0.
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4. Sadovskii type theorem

The first result (a Sadovskii type theorem) improves some theorems in the literature
(see, e.g. [7, Corollary 3.3.1], [2, Theorem 2.1], [5, Theorem 5.1]).

Theorem 4.1. Let D be a closed convex subset of a HLCTVS X satisfying property
(X1) and F : D → Pfc(D) be a map such that

(F1) F has weakly closed graph in D ×X;
(F2) F is condensing with respect to a nonsingular MNC .

Then there exists x ∈ D with x ∈ F (x).

Proof. Let us fix an arbitrary x̄ ∈ D and take the family {Hα}α of all the subsets of
X each of them satisfying the following properties:

(p1) x̄ ∈ Hα ;
(p2) Hα is closed and convex ;
(p3) F (D ∩Hα) ⊂ Hα ;
(p4) x ∈ co(F (x) ∪Hα) ⇒ x ∈ Hα .

Then, we consider the nonempty set H = ∩αHα, which is well-defined, belongs to
the family {Hα}α and satisfies the identity

H = co(F (H) ∪ {x̄}) . (4.1)

Note that the above properties of H were proved in Step 1 of the proof of [5, Theorem
5.1] (in that part of the proof it did not matter that the space was a Banach space,
but just that it was a HLCTVS).

The set H is compact. First, F (H) is bounded; in fact, D ∈ {Hα}α so that H ⊂ D
and F (H) is contained in the bounded set F (D) (see (F2)). Moreover, by (4.1), we
obtain that H ⊂ co(F (D) ∪ {x̄}), therefore H is bounded too.
Now, suppose that γ(H) > 0. By means of (F2), (4.1) and properties (γ2) and (γ5)
of MNC, we deduce that

γ(F (H)) < γ(H) = γ(co(F (H) ∪ {x̄})) = γ(F (H))

which is a contradiction. Therefore we must have γ(H) = 0. Hence, from property
(γ1), the closed set H is compact.

Next, let x ∈ H. By (4.1) we have that F (x) ⊂ H, so F (x) ∩H 6= ∅.
Finally, since all the hypotheses of [3, Theorem III] are satisfied, we deduce the

existence of a fixed point for F . �

5. Mönch-sets and fixed point theorems

Let X be a HLCTVS satisfying (X1) and the further property

(X2) for any relatively compact subset A of X, there exists a countable set B ⊂ A
such that B = A.

Definition 5.1. Let D be a convex subset of X and F : D → P(X) be a given map.
We say that a set M ⊂ D is a Mönch-set for F if there exists x0 ∈ D such that
M = co({x0} ∪ F (M)) and there exists a countable set C ⊂M with M = C .
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Theorem 5.1. Let X be a HLCTVS satisfying (X1) and (X2). Let D be a closed
convex subset of X and F : D → Pk(D) be a map such that

(F3) F maps compact sets into relatively compact sets.

Then, there exists a Mönch-set for F .

Proof. Fix x0 ∈ D and consider the iterative sequence (Mn)n∈IN of sets:

M0 = {x0} ; Mn = co({x0} ∪ F (Mn−1)) , n ∈ IN+ .

Clearly,

Mn ⊂ D , n ∈ IN . (5.1)

Let us prove by induction that Mn, n ∈ IN+, is relatively compact.
First, assumption (X1) implies that co({x0} ∪ F (M0)) is compact. Thus, M1 is
relatively compact.
Now, suppose that Mn−1 is relatively compact, n ≥ 2. Of course Mn ⊂ co({x0} ∪
F (Mn−1)) (see (5.1)). By (F3) and (X1), we can also see that Mn is relatively
compact.
By induction again, we see that

Mn−1 ⊂Mn , n ∈ IN+ . (5.2)

Now, for every n ∈ IN , by (X2) we have that there exists a countable set Cn ⊂ Mn

such that

Cn = Mn . (5.3)

If we consider the subset of D defined as

M = ∪n∈INMn (5.4)

and its countable subset

C = ∪n∈INCn , (5.5)

then we have

M = ∪n∈INMn = ∪n∈INCn = C . (5.6)

Furthermore using (5.2) and (5.4) we have

M = co({x0} ∪ F (M)) , (5.7)

so M is a Mönch-set. �

Theorem 5.2. Let D be a closed convex subset of a HLCTVS X satisfying properties
(X1) and (X2). Suppose that F : D → Pkc(D) is a map such that

(F1) F has weakly closed graph;
(F3) F maps compact sets into relatively compact sets;
(F4) there exists a Mönch-set for F which is relatively compact.

Then there exists x ∈ D such that x ∈ F (x).

Remark 5.1. We underline that hypothesis (F4) is well posed since the Theorem
works in the setting of Theorem 5.1.
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Proof. Let M be a relatively compact Mönch-set for F (see (F4)).
We prove that F (x) ∩M 6= ∅ , x ∈M . Fix x ∈M . Then there exists a net (xδ)δ

in M such that xδ → x. Let us consider a net (yδ)δ with yδ ∈ F (xδ). By (5.7), {yδ}δ
is included in the compact set M .

By proceeding as in the end of the proof of Theorem 4.1 (in this paper), w.l.o.g.
we may assume that yδ → y ∈M and therefore F (x) ∩M 6= ∅.
Now from [3, Theorem III] we deduce that there exists x ∈ D such that x ∈ F (x). �

Remark 5.2. Theorem 5.2 improves all the theorems in the literature (see, e.g. [9,
Theorem 3.1], [4, Theorem 3.1], [5, Theorem 3.1]) where the following Mönch hypoth-
esis is assumed:

(M) there exists x0 ∈ D such that
M ⊂ D, M = co({x0} ∪ F (M))
and M = C with C ⊂M countable

}
⇒ M is compact,

that is every Mönch-set for F must be relatively compact.
To see this consider the following example.

Example 5.1. Let X be a separable Banach space with dimX = +∞ and denote by
B(0, 1) the closed unit ball in X. Let F : B(0, 1)→ P(B(0, 1)) be the map defined by

F (x) = {x} , x ∈ B(0, 1) .

The map F satisfies hypothesis (F4); just take {0} as the Mönch-set for F . Moreover,
of course, also all the other assumptions of Theorem 5.2 hold.
On the other hand, F does not satisfy property (M). Indeed, for every x0 ∈ B(0, 1)
there exists a set M with M = co({x0} ∪ F (M)) and for which there exists C ⊂
M countable such that M = C which is not relatively compact. It is enough to take
M = B(0, 1).

Theorem 5.3. Let D be a closed convex subset of a HLCTVS X satisfying properties
(X1) and (X2). Suppose that F : D → Pkc(D) is a map such that

(F3) F maps compact sets into relatively compact sets;
(F5) F is countably condensing with respect to a set additive MNC .

Then every Mönch-set for F is relatively compact.

Proof. Fix M a Mönch-set for F , which exists thanks to Theorem 5.1. We recall that
there exists x0 ∈ D such that M = co({x0} ∪ F (M)) and

M = C , (5.8)

with C a countable subset of M .
Since C ⊂ co({x0} ∪ F (M)), every point of C can be written as a finite combination
of points belonging to the set {x0} ∪ F (M). Therefore, there exists a countable set
M⊂M such that

C ⊂ co({x0} ∪ F (M)) . (5.9)

Note that, since F (D) is bounded (see hypothesis (F5)) then the sets M , C, M are
bounded.
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Let us prove that γ(C) = 0. First of all, by using (5.9) and properties (γ4), (γ2), (γ5)
of γ, we have

γ(C) ≤ γ(co({x0} ∪ F (M))) = γ({x0} ∪ F (M)) = γ(F (M)) . (5.10)

Now, suppose that γ(M) > 0. Then, hypothesis (F5) yields

γ(F (M)) < γ(M) . (5.11)

Combining (5.10) and (5.11), by properties (γ4) and (γ6) of γ and (5.8), we obtain

γ(C) < γ(M) ≤ γ(M) = γ(M) = γ(C) = γ(C) ,

and this is a contradiction.
Hence γ(M) = 0. So, by (γ1),M is compact. Thus, assumption (F3) and (γ1) imply

γ(F (M)) = 0 ;

then, since F (M) ⊂ F (M), by (γ4) we have

γ(F (M)) = 0 . (5.12)

Therefore, by (5.10) and (5.12), we can conclude

γ(C) = 0 .

Hence, thanks to (γ6) and (5.8), we have

γ(M) = γ(M) = γ(C) = γ(C) = 0 ,

therefore, the set M is compact (see (γ1)). �

From Theorem 5.3 and Theorem 5.2, we can deduce the following fixed point
theorem.

Theorem 5.4. Let D be a closed convex subset of a HLCTVS X satisfying properties
(X1) and (X2). Suppose that F : D → Pkc(D) is a map such that

(F1) F has weakly closed graph in D ×X;
(F3) F maps compact sets into relatively compact sets;
(F5) F is countably condensing with respect to a set additive MNC .

Then there exists x ∈ D with x ∈ F (x).
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