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1. Introduction

The purpose of this paper is twofold: the first one is the study of an atypical bifur-
cation problem for a semilinear operator inclusion, the second one is the discussion
of some aspects of the construction of a topological degree for a class of multivalued
perturbations of Fredholm maps in Banach spaces.

The semilinear operator inclusion we consider is of the type

Lx+ λh(λ, x) ∈ λH(λ, x), (1.1)

where, given two real Banach spaces E and F and a simply connected open subset Ω
of R× E,

(1) L : E → F is a Fredholm linear operator of index zero,
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(2) h : Ω → F is a continuous map such that for any λ ∈ R the partial map
x 7→ Lx+λh(λ, x) is a nonlinear Fredholm map of index zero on the (possibly
empty) section

Ωλ = {x ∈ E : (λ, x) ∈ Ω}.
In addition we assume that

(λ, x) 7→ ∂2h(λ, x)

is continuous, where ∂2h(λ, x) stands for the Fréchet partial derivative of h
with respect to the second variable at the point (λ, x).

(3) H : Ω ( F is a CJ and locally compact multimap (see section 3 for the
notion of CJ multimap).

We call trivial solutions of (1.1) the pairs (0, x) of Ω such that x ∈ KerL. A point
p in KerL∩Ω0 is said to be an (atypical) bifurcation point if (0, p) lies in the closure
of the set of nontrivial solutions. One of the problems related to inclusion (1.1) is
to establish under what conditions the set of nontrivial solutions is not empty and
bifurcation points exist.

In the literature the expression “bifurcation problem” is often related to the case
when f(λ, 0) = 0 for every λ (as in the classical works of Krasnoselski, Rabinowitz,
Crandall and Rabinowitz, for instance) and the elements (λ, 0) are the trivial solutions.
To distinguish our different case, we used previously and in the title the term “atypical
bifurcation”, as in [26, 3] (while in [11] one can find the term “co-bifurcation”).
However, in order to simplify the language, throughout the paper we will use the
term “bifurcation”.

In [11, 21] the following semilinear equation

Lx+ λh(λ, x) = 0 (1.2)

is studied in the case when h is a compact function and is proved the existence of
a connected bifurcating branch of nontrivial solutions that either is unbounded or
contains in its closure at least two bifurcation points. In [3, 4] an analogous result is
obtained removing the compactness assumption on h. In this last case the proof is
based on a degree theory developed by Benevieri and Furi [1, 2, 4] for a special class
of locally compact perturbations of Fredholm maps of index zero in Banach spaces.

In this paper we prove an extension to the multivalued case of the results given
in [3] (and extended in [4]). The bifurcation results are here obtained following the
general spirit of the two above cited papers, i.e., applying a topological degree for
a special class of CJ and locally compact multivalued perturbations of nonlinear
Fredholm maps of index zero between Banach spaces. Such a topological degree we
refer to has been introduced by Obukhovskii, Zecca and Zvyagin in [24]. They found
the construction on a notion of orientation for Banach spaces given by Elworty and
Tromba in [9, 10] and defined the degree thanks to a finite-dimensional reduction
approach using the Brouwer degree for maps in Euclidean manifolds.

Recently, in very general setting, an extended version of this degree (including other
classes of multivalued perturbations of nonlinear Fredholm maps) has been given by
Vaeth in [27], where the reader can find a large number of references on the topic. In
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his construction, Vaeth uses a concept of orientation defined by Benevieri and Furi in
[1, 2], which is more recent and easier than that of Elworthy-Tromba.

In this paper, beside the bifurcation results, we redefine this topological degree
following part of the strategy in [24], but using the concept of orientation defined in
[1, 2]. In other words we give the definition of the degree for CJ locally compact
multivalued perturbations of Fredholm maps as a particular case of the more general
construction of Vaeth. In addition, some properties of the degree are discussed. More
precisely, we discuss some aspects of the notion of orientation in infinite dimension
which supports the construction of the degree.

2. Preliminaries

2.1. Remarks on the Brouwer degree. This subsection is devoted to a quick
review of the reduction property of the Brouwer degree that will be used later. Slightly
extending the approach of Nirenberg [23], the degree is an integer number assigned
to any triple (f, U, y), where f , U and y are as follows. Given two oriented C1

real manifolds M and N of the same finite dimension, U is an open subset of M ,
f : M → N is a continuous map and y is an element of N such that f−1(y) ∩ U
compact.

We stress that the construction of Nirenberg includes the two classical approaches
to the finite dimensional degree: one regarding maps defined on the closure of bounded
open subsets of Rn and the other one concerning maps between compact manifolds.

The classical properties of the Brouwer degree still hold in this extended version.
The proof can be easily obtained by a straightforward generalization of the same
properties given in [23].

We explicitly recall here some facts regarding the notions of orientation and
transversality. Consider a real manifold M , a real vector space F of the same fi-
nite dimension and a C1 map g : M → F . Let F1 be a subspace of F , transverse to
g. Thus M1 = g−1(F1) is a submanifold of M of the same dimension as F1. Assume
now that M and F are oriented. One can prove that any orientation of F1 induces
an orientation on M1. Let us sketch how this can be done. Suppose F1 oriented and
let x ∈ M1 be given. By the transversality assumption, the tangent space to M1 at
x, denoted by TxM1, coincides with Dg(x)−1(F1). Let E0 be any direct complement
of TxM1 in TxM and let F0 = Dg(x)(E0). Observe that Dg(x) maps isomorphically
E0 onto F0 and that F = F0 ⊕ F1. Let F0 be endowed with the orientation such
that a positively oriented basis of F0 and a positively oriented basis of F1, in this
order, form a positively oriented basis of F . Then, orient E0 in such a way that
Dg(x)|E0

: E0 → F0 is orientation preserving. Finally, orient TxM1 in such a way
that a positively oriented basis of E0 and a positively oriented basis of TxM1, in this
order, form a positively oriented basis of TxM . One can prove that this pointwise
choice induces a global orientation on M1 (see e.g. [16, pages 100-101] for the details).

Definition 2.1. We will call oriented g-preimage of F1 the submanifold M1, oriented
as above.
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Let now f : M → F be continuous and let y ∈ F be such that f−1(y) is compact.
Consider a C1 map g : M → F and a subspace F1 of F such that

(a) F1 contains y and (f − g)(M),

(b) g is transverse to F1.

Assumption (a) implies that f−1(y) coincides with f−1
1 (y), where f1 stands for the

restriction f |M1
: M1 → F1. Therefore, the Brouwer degree of the triple (f1,M1, y) is

well defined. We can now state the following reduction property of the degree. The
proof of this result can be obtained following the outline of the analogous result given
for maps between Euclidean spaces, where the rôle of g is played by the identity of
Rn (see e.g. [20, Lemma 4.2.3]).

Proposition 2.2 (reduction). Let M be an oriented manifold and F an oriented
vector space of the same finite dimension as M . Let f : M → F be continuous and
y ∈ F such that f−1(y) is compact. Consider an oriented subspace F1 of F and a C1

map g : M → F such that

(1) F1 contains y and (f − g)(M),

(2) g is transverse to F1.

Let M1 denote the oriented g-preimage of F1. Then,

degB(f,M, y) = degB(f1,M1, y),

where f1 is the restriction of f to M1 as domain and to F1 as codomain.

2.2. Orientability for Fredholm maps. In this subsection we summarize the no-
tion, introduced in [1, 2], of orientability and orientation for nonlinear Fredholm maps
of index zero between Banach spaces. The starting point is a concept of orientation
for Fredholm linear operators of index zero between real Banach spaces. Recall that,
given two real Banach spaces E and F , a continuous linear operator L : E → F is
said to be Fredholm if KerL and coKerL are finite-dimensional. The index of L is
defined as

indL = dim KerL− dim coKerL.

Given a Fredholm operator of index zero L : E → E, a continuous linear operator
A : E → F is called a corrector of L if the following conditions hold:

i) the image of A is finite-dimensional,
ii) L+A is an isomorphism.

On the set C(L) of correctors of L, which is nonempty, we define an equivalence
relation as follows. Let A,B ∈ C(L) be given and consider the following automorphism
of E:

T = (L+B)−1(L+A) = I − (L+B)−1(B −A).

The operator K = (L+B)−1(B −A) has clearly finite-dimensional image. Hence,
given any nontrivial finite dimensional subspace E0 of E containing the image of K,
the restriction of T to E0 is an automorphism. Therefore, its determinant is well
defined, nonzero and, as it is easy to check, independent of the choice of E0. Thus,
one can define the determinant of T as the determinant of the restriction of T to any
nontrivial finite-dimensional subspace of E containing the image of K.
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Remark 2.3. This extension to infinite dimension of the notion of determinant is
a well known concept in Functional Analysis. It can be found, for instance, in the
classical textbook of Kato (see [18, § III-4]).

We say that A is equivalent to B or, more precisely, A is L-equivalent to B if

det
(
(L+B)−1(L+A)

)
> 0.

As shown in [1], this is actually an equivalence relation on C(L) with two equivalence
classes. This provides a concept of orientation for Fredholm linear operators of index
zero.

Definition 2.4. Let L : E → F be a Fredholm linear operator of index zero. An
orientation of L is the choice of one of the two equivalence classes of C(L), and L
is oriented when an orientation is chosen. Any of the two orientations of L is called
opposite to the other. If L is oriented, the elements of its orientation are called positive
correctors of L.

Denote by L(E,F ) the Banach space of bounded linear operators of E into F and
by Φ0(E,F ) the open subset of L(E,F ) of the Fredholm operators of index zero.
The orientation of an operator of Φ0(E,F ) induces an orientation to any sufficiently
close operator. Precisely, consider an operator L ∈ Φ0(E,F ) and a corrector A
of L. Suppose that L is oriented with A positive corrector. Since the set of the
isomorphisms of E into F is open in L(E,F ), then A is a corrector of every T in a
suitable neighborhood W of L in Φ0(E,F ). Thus, any T ∈ W can be oriented by
taking A as a positive corrector. This fact allows us to give the following definition.

Definition 2.5. Let X be a topological space and h : X → Φ0(E,F ) a continuous
map. An orientation of h is a ‘continuous choice’ of an orientation α(x) of h(x) for
each x ∈ X, in the sense that, for any x ∈ X, there exists A ∈ α(x) which is a
positive corrector of h(x′) for any x′ in a neighborhood of x. A map is orientable
when it admits an orientation and oriented when an orientation is chosen.

An important property of the notion of orientation is its continuous transport along
a homotopy. Consider first an orientable map H : X × Λ → Φ0(E,F ), where Λ is
any topological space. It is immediate to see that any partial map Hλ := H(·, λ) is
orientable. If, in addition, H is oriented, Hλ inherits an orientation, induced from
that of H. We will say from now on that the orientations of H and any Hλ are
associated.

The following proposition, proven in [2] (see also [5]) by the use of the covering
theory, shows that the converse of the above argument is true in the case when Λ is
simply connected and locally path connected. Such a result is particularly interesting,
for our purposes, when Λ = [0, 1] and it can be seen as a sort of continuous transport
of an orientation along a homotopy.

Proposition 2.6. Consider two topological spaces X and Λ, with Λ simply connected
and locally path connected, and a continuous map H : X × Λ → Φ0(E,F ). Assume
that, for some λ ∈ Λ, the partial map Hλ := H(·, λ) is oriented. Then, there exists
and is unique the orientation of H which is associated with that of Hλ.
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Let us now give the notion of orientability for Fredholm maps of index zero between
Banach spaces. Recall that, given an open subset Ω of E, a map g : Ω → F is a
Fredholm map if it is C1 and its Fréchet derivative, Dg(x), is a Fredholm operator
for all x ∈ Ω. The index of g at x is the index of Dg(x) and g is said to be of index
n if it is of index n at any point of its domain.

Definition 2.7. An orientation of a Fredholm map of index zero g : Ω → F is an
orientation of the continuous map Dg : x 7→ Dg(x); g is orientable, or oriented, if so
is Dg according to Definition 2.5.

The notion of orientability of Fredholm maps of index zero is mainly discussed in
[1, 2], where the reader can find examples of orientable and nonorientable maps. It is
worthwhile here to recall the following result (see [1]).

Proposition 2.8. Let g : Ω→ F be a Fredholm map of index zero. If g is orientable
and Ω is connected, then g admits exactly two orientations. If Ω is simply connected,
then g is orientable.

Theorem 2.10 below is the analogue for nonlinear Fredholm maps between Banach
spaces of Proposition 2.6 above. We need first the following definition.

Definition 2.9. Let H : Ω × Λ → F be a continuous map verifying the following
conditions:

(1) any partial map Hλ := H(·, λ) is Fredholm of index zero;
(2) the partial derivative ∂1 : Ω× Λ→ Φ0(E,F ), given by ∂1(x, λ) = D(Hλ)(x),

is continuous.

H will be called a Fredholm homotopy. An orientation of H is an orientation of ∂1

according to Definition 2.5, and H is orientable, or oriented, if so is ∂1.

Theorem 2.10. Let H : Ω × Λ → F be a Fredholm homotopy, with Λ connected
and locally path connected. If a given Hλ is orientable, then H is orientable. If, in
addition, Hλ is oriented, there exists a unique orientation of H which is associated
with that of Hλ.

We conclude this section by showing that the orientation of a Fredholm map g is
related to the orientations of domain and codomain of suitable restrictions of g. This
argument will be crucial in the definition of the degree in section 5.

Let g : Ω → F be a Fredholm map of index zero and Z a finite dimensional
subspace of F , transverse to g. We recall that Z is said to be transverse to g at x ∈ Ω
if ImDg(x) + Z = F . The space Z is transverse to g if it is transverse at any point
of the domain of g.

By classical transversality results, M = g−1(Z) is a differentiable manifold of the
same dimension as Z. Assume that g is orientable. It is possible to prove that M is
orientable. The proof can be found in [1, Remark 2.5 and Lemma 3.1]. Here, let us
show how, given any x ∈ M , an orientation of g and an orientation of Z induce an
orientation on the tangent space TxM of M at x.

Assume that g is oriented and let Z be oriented too. Consider x ∈M and a positive
corrector A of Dg(x) with image contained in Z (the existence of such a corrector is
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ensured by the transversality of Z to g). Then, orient TxM in such a way that the
isomorphism

(Dg(x) +A)|TxM : TxM → Z

is orientation preserving. As proved in [4], the orientation of TxM does not depend
on the choice of the positive corrector A, but only on the orientations of Z and Dg(x).
With this orientation, we call M the oriented Fredholm g-preimage of Z.

As pointed out in [4], this notion seems very similar to that of oriented preim-
age given in subsection 2.1. Actually, the two definitions of induced orientation are
formally different but strictly related, as the following lemma shows (see [4, Lemma
3.10] for the proof). This will be crucial for the construction of the degree of locally
compact multivalued perturbations of Fredholm maps of index zero.

Lemma 2.11. Let g : Ω→ F be an oriented map and let F1 and F2 be two oriented
finite dimensional subspaces of F , both transverse to g. Suppose that F2 contains F1.
Let M2 be the oriented Fredholm g-preimage of F2 and put

M1 = (g|M2
)−1(F1) = g−1(F1).

Then, M1 is the oriented g|M2-preimage of F1 if and only if it is the oriented Fredholm
g-preimage of F1.

Remark 2.12. The reader can also see the interesting and well written survey [28]
for a discussion on the finite-dimensional reduction approach to the construction of
degree (for one valued functions).

3. Multivalued maps

We describe in this section some known notions of the theory of multivalued maps
that will be used in the sequel (details can be found e.g. in [6, 7, 13, 19]). We start by
pointing out the following assumption we will carry on through the rest of the paper.

Standing assumption. Given two metric spacesX and Z, any multimap Σ : X ( Z
we will consider in this paper is such that Σ(x) is compact for any x ∈ X.

Let X be a metric space. Given a subset A of X and ε > 0, we denote by Oε(A) the
open ε-neighborhood of A, that is, the union of the open balls of radius ε, centered
at the points of X.

Definition 3.1. Let Σ : X ( Z be a given multimap. Given a positive ε, a contin-
uous map fε : X → Z is said to be an ε-approximation of Σ if for every x ∈ X there
exists x′ ∈ Oε (x) such that fε(x) ∈ Oε (Σ (x′)).

The reader can verify (we omit the details) that such a notion can be equivalently
expressed saying that

fε (x) ∈ Oε (Σ (Oε (x)))

for all x ∈ X, or

Γfε ⊆ Oε (ΓΣ) ,
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where Γfε and ΓΣ denote the graphs of fε and Σ respectively, and the distance in
X × Z is defined in a natural way as

d ((x, z) , (x′, z′)) = max {dX (x, x′) , dZ (z, z′)}
(dX and dZ stand for the distances in X and Z, respectively). The family of the
ε-approximations of a multimap Σ will be denoted a (Σ, ε).

Definition 3.2. A multimap Σ : X ( Z is said to be upper semicontinuous (u.s.c.
in symbols) if for every open set V ⊆ Z the set Σ−1

+ (V ) = {x ∈ X : Σ (x) ⊆ V } is
open in X.

In the following proposition we summarize some properties of ε-approximations of
u.s.c. multimaps (see e.g. [13]).

Proposition 3.3. Let Σ : X ( Z be an u.s.c. multimap. The following conditions
hold.

i) Let X1 be a compact subset of X. Then, for every ε > 0 there exists δ > 0
such that f ∈ a (Σ, δ) implies f|X1

∈ a
(
Σ|X1

, ε
)
.

ii) Suppose that X is compact. Consider a metric space Z1 and a continuos map
ϕ : Z → Z1. Then, for every ε > 0 there exists δ > 0 such that f ∈ a (Σ, δ)
implies ϕ ◦ f ∈ a (ϕ ◦ Σ, ε).

iii) Suppose that X is compact and consider an u.s.c. multimap Σ∗ : X× [0, 1](
Z. Then, for every λ ∈ [0, 1] and ε > 0, there exists δ > 0 such that f∗ ∈
a (Σ∗, δ) implies that f∗ (·, λ) ∈ a (Σ∗ (·, λ) , ε).

iv) Let Z1 be a metric space and Σ1 : X ( Z1 an u.s.c. multimap. Then, for
every ε > 0 there exists δ > 0 such that f ∈ a (Σ, δ) and f1 ∈ a (Σ1, δ) imply
that f × f1 ∈ a (Σ× Σ1, ε), where (f × f1) : X → Z × Z1 is given by

(f × f1) (x) = (f (x) , f1 (x)) ,

and analogously is defined Σ× Σ1.

To introduce the class of multimaps we will consider in the construction of the
degree, we recall some other facts. In the following definition, for any natural n, Sn

and Bn+1 stand respectively for the unit sphere and the closed unit ball in Rn+1.

Definition 3.4 (see e.g. [6, 13, 14, 22, 24]). A nonempty compact subset A of a
metric space Z is said to be aspheric (or UV∞, or ∞-proximally connected) if for
every ε > 0 there exists δ, with 0 < δ < ε, such that for each n ∈ N every continuous
map g : Sn → Oδ (A) can be extended to a continuous map g̃ : Bn+1 → Oε (A).

Definition 3.5 (see [13, 17]). A nonempty compact metric space is said to be an
Rδ-set if it can be represented as the intersection of a decreasing sequence of compact
and contractible spaces.

Remark 3.6. The reader can see [13, Example 2.12] for an example of a noncon-
tractible Rδ-set.

The following proposition shows a sufficient condition ensuring the equivalence of
the above concepts in the case of ANR-spaces (see e.g. [13, 17, 25]).
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Proposition 3.7. A compact subset of an ANR-space is aspheric if and only if is
an Rδ-set.

Definition 3.8 (see [13]). An u.s.c. multimap Σ : X ( Z is said to be a J-multimap
if, for every x ∈ X, Σ (x) is an aspheric set. The set of J-multimaps of X to Z will
be denoted by J(X,Z).

Proposition 3.9 (see [13, 24]). Let Z be an ANR-space and Σ : X ( Z an u.s.c.
multimap. Then, Σ is a J-multimap in each of the following cases: for every x ∈ X,
Σ(x) is

a) a convex set;
b) a contractible set;
c) an Rδ-set;
d) an AR-space.

Remark 3.10. Actually, one can observe that a) and b) are particular cases of c).

The next statement describes some approximation properties of J-multimaps.

Proposition 3.11 (see [13, 14, 22]). Let X be a compact ANR-space and Z a metric
space. Consider a J-multimap Σ : X ( Z. Then:

i) Σ is approximable, i.e. for every ε > 0 there exists fε ∈ a (Σ, ε);
ii) for each ε > 0 there exists δ0 > 0 such that for every δ (0 < δ < δ0) and for

every two δ-approximations fδ, f
′

δ ∈ a (Σ, δ) there exists a continuous homo-
topy f∗ : X × [0, 1]→ Z such that

(a) f∗ (·, 0) = fδ, f∗ (·, 1) = f
′

δ;
(b) f∗ (·, λ) ∈ a (Σ, ε) for all λ ∈ [0, 1].

Definition 3.12. Given X,X ′ metric spaces, by CJ (X,X ′) we denote the collection

of all multimaps Σ : X ( X ′ of the form Σ = ϕ ◦ Σ̃, where Σ̃ ∈ J (X,Z) for some

metric space Z and ϕ : Z → X ′ is a continuous map. The composition ϕ ◦ Σ̃ will be
called a representation (or decomposition, see [13]) of Σ.

4. Orientability for quasi-Fredholm multimaps

In this section we define the concepts of orientability and orientation for quasi-
Fredholm multimaps, i.e. locally compact CJ multivalued perturbations of Fredholm
maps of index zero in Banach spaces.

As in the final part of the above section, also in this one E and F will stand for real
Banach spaces, while Ω will denote an open subset of E. The notions of orientability
and orientation introduced in this section generalize the analogous notions for quasi-
Fredholm maps, introduced in [4].

Definition 4.1. A multimap f : Ω ( F is called a quasi-Fredholm multimap if it
can be written as f = g −K, where g : Ω→ F is a Fredholm map of index zero and
K : Ω( F is a locally compact CJ-multimap. We will call g a smoothing map of f .
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In what follows, unless otherwise stated, f will denote a quasi-Fredholm multimap
of an open subset Ω of E to F , and S(f) will stand for the family of smoothing maps
of f .

Remark 4.2. If g0 is a given smoothing map of quasi-Fredholm multimap f : Ω( F
and h : Ω→ F is an arbitrary C1 locally compact map, then g0 − h is in S(f) as it is
immediate to verify. The converse is also true. To see this, consider two smoothing
maps g1 and g2 of f , and write

f = g1 −K1 = g2 −K2,

where K1 and K2 are locally compact CJ-multimaps. One has

g1(x)− g2(x) ∈ K1(x)−K2(x), ∀x ∈ Ω,

where K1(x)−K2(x) is the set defined as

{z ∈ F : ∃ p ∈ K1(x) and q ∈ K2(x) with z = p− q}.
Let x ∈ Ω be given and O a neighborhood of x in Ω such that the two closed sets
K1(O) and K2(O) are compact. It is easy to see that K1(O)−K2(O) is compact. Thus

(g1 − g2)(O) turns out be compact, being contained in K1(O) − K2(O). Therefore,
g1 − g1 is locally compact (and clearly C1).

The following definition provides an extension to quasi-Fredholm multimaps of the
concept of orientability given in section 2.2.

Definition 4.3. A quasi-Fredholm multimap f : Ω ( F is orientable if it has an
orientable smoothing map.

If f is orientable, then any smoothing map of f is orientable. Indeed, given g0, g1 ∈
S(f), consider the homotopy H : Ω× [0, 1]→ F defined by

H(x, λ) = (1− λ)g0(x) + λg1(x). (4.1)

Since S(f) is a convex set (Remark 4.2), H is a Fredholm homotopy (recall Definition
2.9). Thus, because of Theorem 2.10, if g0 is orientable, then g1 is orientable as well.
Applying again Theorem 2.10, if g0 is oriented, g1 can be oriented by transporting the
orientation of g0 up to g1 along the line segment joining g0 with g1. By the convexity of
S(f), any other map g in S(f) can be oriented with the unique orientation transported
by g0.

Keeping in mind this argument, to define a notion of orientation of f consider the

set Ŝ(f) of the oriented smoothing maps of f . We introduce in Ŝ(f) the following

equivalence relation. Given g0, g1 in Ŝ(f), consider, as in formula (4.1), the straight-
line homotopy H joining g0 and g1. We say that g0 is equivalent to g1 if the unique
orientation of H which is associated with g0 (ensured by Theorem 2.10; recall also
the definition given after Definition 2.5) is associated with g1 too.

The proof of Proposition 4.4 below can be found in [5], where the result is used in
the construction of the orientation for locally compact single valued perturbations of
nonlinear Fredholm maps.

Proposition 4.4. The above is an equivalence relation in Ŝ(f).
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The following definition provides an extension to multivalued quasi-Fredholm maps
of the concept of orientation given in Definition 2.7.

Definition 4.5. Let f : Ω ( F be an orientable multivalued quasi-Fredholm map.

An orientation of f is an equivalence class of Ŝ(f).

In the sequel, if a multivalued quasi-Fredholm map f is oriented, any element in

the chosen class of Ŝ(f) will be called a positively oriented smoothing map of f .
Observe that, if two oriented smoothing maps of f : Ω( F are equivalent and V

is an open subset of Ω, then the oriented restrictions to V of these two smoothing

maps are equivalent in the set Ŝ(f |V ). Thus, an orientation of f induces in a natural
way an orientation of the restriction f |V , which will be called the oriented restriction
of f to V . Notice that, if V is empty, the oriented restriction of f to V is unique, and
this does not depend on the orientation of f .

Below, we have the analogue for multivalued quasi-Fredholm maps of Proposition
2.8.

Proposition 4.6. Let f : Ω ( F be a multivalued quasi-Fredholm map. If f is
orientable and Ω is nonempty, then f admits at least two orientations. If, in addition,
Ω is connected, then f admits exactly two orientations (one opposite to the other). If
Ω is simply connected, then f is orientable.

As for Fredholm maps of index zero, the orientability of multivalued quasi-Fredholm
maps verifies a property of continuous transport along homotopies, Theorem 4.11
below states. The following construction extends to multivalued maps the analogous
one given in [4] (see also [5]). We need first some definitions.

Definition 4.7. Let H : Ω× [0, 1]( F be a multimap of the form

H(x, λ) = G(x, λ)−K(x, λ),

where G is continuous and verifies the following condition:

i) for any λ ∈ [0, 1] the partial map x 7→ G(x, λ) is a nonlinear Fredholm map
of index zero in Ω,

ii) (x, λ) 7→ ∂1G(x, λ) is continuous, ∂1G(x, λ) stands for the Fréchet partial
derivative of G with respect to the first variable at the point (x, λ);

in addition K is assumed to be a locally compact CJ-multimap. We call H a multi-
valued quasi-Fredholm homotopy and G a smoothing homotopy of H.

Remark 4.8. This last term can be taken with pinch of salt: G is not necessarily
smooth (with respect to λ), but any G(·, λ) is a smoothing map of H(·, λ).

Remark 4.9. The definition of orientability for multivalued quasi-Fredholm ho-
motopies is analogous to that given for multivalued quasi-Fredholm maps. Let

H : Ω × [0, 1] ( F be a multivalued quasi-Fredholm homotopy. Let Ŝ(H) be the

set of oriented smoothing homotopies of H. Assume that Ŝ(H) is nonempty and de-

fine on this set an equivalence relation as follows. Given G0 and G1 in Ŝ(H), consider
the map

G : Ω× [0, 1]× [0, 1]→ F,
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defined as
G(x, λ, µ) = (1− µ)G0(x, λ) + µG1(x, λ).

We say that G0 is equivalent to G1 if their orientations are associated with an
orientation of the map

(x, λ, µ) 7→ ∂1G(x, λ, µ).

As in Proposition 4.4, it is possible to prove (we omit the details) that this is

actually an equivalence relation on Ŝ(H).

Definition 4.10. A multivalued quasi-Fredholm homotopy H : Ω× [0, 1]( F is said

to be orientable if Ŝ(H) is nonempty. An orientation of H is an equivalence class of

Ŝ(H).

Theorem 4.11 (Orientation transport for quasi-Fredholm multimaps). Let H : Ω×
[0, 1] ( F be a multivalued quasi-Fredholm homotopy. If a partial multimap Hλ is
oriented, then there exists and is unique an orientation of H which is associated with
Hλ.

We conclude the section by showing an example of multivalued quasi-Fredholm
homotopy.

Example 4.12. Let φ : [0, T ]×Rn ×Rn → Rn and ψ : [0, T ]×Rn → Rn be C1 and
continuous, respectively. Denote by C1 and C0 the Banach spaces C1([0, T ],Rn) and
C([0, T ],Rn), then consider

G̃ : C1 × R→ C0, G̃(x, λ)(t) = x′(t) + λφ(t, x(t), x′(t)),

K̃ : C1 × R→ C0, K̃(x, λ)(t) = λψ(t, x(t)).

Since φ is C1, so is G̃ and the Fréchet derivative DG̃λ(x) : C1 → C0 of any partial

map G̃λ at any x ∈ C1 is given by(
DG̃λ(x)q

)
(t) = q′(t) + λ∂2φ(t, x(t), x′(t))q(t) + λ∂3φ(t, x(t), x′(t))q′(t), (4.2)

where ∂2φ and ∂3φ denote the jacobian matrices of φ with respect to the second and
third variable. Formula (4.2) can be rewritten as(

DG̃λ(x)q
)
(t) = (I + λMx(t))q′(t) + λNx(t)q(t)

where I is the n×n identity matrix and, given x ∈ C1, Mx and Nx are n×n matrices
of continuous real functions defined in [0, T ]. Clearly, if x and λ are such that

det(I + λMx(t)) 6= 0, ∀t ∈ [0, T ], (4.3)

then DG̃λ(x) : C1 → C0 is a first order linear differential operator and, consequently,
it is onto with n-dimensional kernel.

Consider now the boundary operator

B : C1 → Rn, B(x) = x(T )− x(0).

Set E = KerB and F = C0, and let G,K : E × R → F denote the restrictions of G̃

and K̃ to the space E × R. Observe that, as B is surjective, E is a closed subspace
of C1 of codimension n and thus, for each x ∈ E and λ ∈ R such that (4.3) is verified,
DGλ(x) is Fredholm of index zero. In fact, DGλ(x) is the composition of the inclusion
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E ↪→ C1, which is Fredholm of index −n, with DG̃λ(x). Since the inclusion C1 ↪→ C0

is compact, the map K is locally compact (completely continuous, actually).
Consider a CJ-multimap γ : R× Rn( Rn and

Γ : E × R( F, Γ(x, λ)(t) = λ

∫ t

0

γ(s, x(s)) ds,

recalling that
∫ t

0
γ(s, x(s)) ds is defined as

{∫ t
0
f(s) ds

}
, where f is a measurable

selection, i.e., f(s) ∈ γ(s, x(s)) a.e. s ∈ [0, T ]. The multimap Γ is actually a locally
compact CJ-multimap (see [19, Chapter 1] for the details).

Thus, if condition (4.3) is satisfied for any x ∈ E and λ ≥ 0,

H : E × [0,+∞)( F, H(x, λ) = G(x, λ) +K(x, λ) + Γ(x, λ)

turns out to be a homotopy of quasi-Fredholm multimaps, which is orientable since
E × [0,+∞) is simply connected. This is the case if (and only if) for every

(t, a, b) ∈ [0, T ]× Rn × Rn,
the jacobian matrix ∂3φ(t, a, b) has no negative eigenvalues. The reader can see [3, 4]
for analogous examples with single valued maps.

5. Degree for multivalued maps

In this section we recall the construction of the degree for the class of the oriented
multivalued quasi-Fredholm maps in Banach spaces.

Definition 5.1. Let Ω be an open subset of E and consider an oriented quasi-
Fredholm multimap f : Ω ( F . Given an open subset U of Ω, the pair (f, U) is
called an admissible pair if the coincidence set

C(f, U) = {x ∈ U : 0 ∈ f(x)}
is compact.

The construction is divided in two steps. In the first one we consider pairs (f, U)
such that f has a smoothing map g with (f − g)(U) contained in a finite dimensional
subspace of F . In the second step we remove this assumption, defining the degree for
general admissible pairs.

Step 1. Let (f, U) be an admissible pair and let g be a positively oriented smoothing
map of f such that (f−g)(U) is contained in a finite dimensional subspace of F . Being
C(f, U) compact, by classical transversality results, there exist a finite dimensional
subspace Z of F and an open neighborhood W of C(f, U) in U , such that

i) g is transverse to Z in W ;
ii) Z contains (g − f)(U).

Let M = g−1(Z) ∩W . One can easily verify that M contains C(f, U). As seen in
subsection 2.2, M is an orientable C1 manifold of the same dimension as Z. Then,
let Z be oriented and orient M in such a way that it is the oriented Fredholm g|W -
preimage of Z.
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By the compactness of C(f, U) (also as a subset of M) it follows that there exists
a finite number of bounded open subsets V1, ..., Vk of M such that:

(1) the closure of Vj in E, V j , is contained in M , j = 1, ..., k;
(2) V := ∪kj=1Vj contains C(f, U);

(3) every V j is diffeomorphic to a closed convex subset of Rm, where m is the
dimension of Z (and hence of M).

Therefore, by Proposition 3.11, the restriction of K := g−f to V is approximable.
In particular there exists a positive ε such that any ε-approximation k : V → Z of
the restriction of K to V verifies the condition

dist(0, (g − k)(∂V )) > 0.

Therefore, the triple (g|V −k, V, 0) is admissible for the Brouwer degree, and we define

deg(f, U) = degB(g|V − k, V, 0), (5.1)

where the right hand side denotes the Brouwer degree of the triple (g|V −k, V, 0), and
k : V → Z is an ε-approximation of the restriction of K to V , where ε is sufficiently
small.

In order to prove that the degree is well-defined, we have to check that the right
hand side of (5.1) is independent of the choice of the smoothing map g, the open set
W , the subspace Z, the open set V and the approximation k.

Concerning the independence of k, fix a positively oriented smoothing map g of f
such that (f − g)(U) is contained in a finite dimensional subspace of F . Let W,Z, V
be given as in the above construction. As proven is [24, Lemma 3.4], if ε is sufficiently
small and k1, k2 : V → Z of K are two ε-approximations of K|V , we have the equality

degB(g|V − k1, V, 0) = degB(g|V − k2, V, 0),

which is obtained by the homotopy invariance property of the Bouwer degree.
Now, if Z and W are given as above, and V1, V2 are two ANR and compact

neighborhoods of C(f, U) inM , we can assume without loss of generality that V1 ⊆ V2.
Hence, item i) of Proposition 3.3 ensures that, if ε is suffciently small, we can find
an ε-approximation k : V2 → Z of the restriction of K to V2 such that k|V1

is an

ε-approximation of K|V1
and that

(g|V1
− k, V1, 0) and (g|V2

− k, V2, 0)

are admissible for the Brouwer degree. Finally,

degB(g|V1
− k, V1, 0) = degB(g|V2

− k, V2, 0)

by the excision property of the Brouwer degree.
To conclude, the independence of the definition of the degree of W and Z is a

straightforward application of the reduction property of the Brouwer degree (Propo-
sition 2.2).

It remains to show the independence of the smoothing map g. To this purpose,
consider two positively oriented smoothing maps g0 and g1 of f such that (f −g0)(U)
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and (f − g1)(U) are contained in a finite dimensional subspace of F . Consider the
homotopy G : Ω× [0, 1]→ F , defined by

G(x, λ) = (1− λ)g0(x) + λg1(x).

By the compactness of C(f, U), there exist an open subsetW of U , containing C(f, U),
and a finite dimensional subspace Z of F , containing (f − g0)(U) and (f − g1)(U),
such that, for each λ ∈ [0, 1], the partial map Gλ is transverse to Z in W . Hence, Z is
transverse to G in W × [0, 1] and to the restriction of G to the boundary of W × [0, 1].
Thus G−1(Z) ∩ (W × [0, 1]) is a C1 manifold with boundary of dimension equal to
1 + dimZ.

Since (f − g0)(U) and (f − g1)(U) are contained in Z, we get G−1
λ (Z) ∩ W =

G−1
s (Z) ∩ W , for any λ, s ∈ [0, 1]. Therefore G−1(Z) ∩ (W × [0, 1]) is actually a

product manifold, denoted by M × [0, 1], where M = G−1
λ (Z)∩W , for any λ ∈ [0, 1].

Let now Z be oriented and, for any λ ∈ [0, 1], denote by Mλ the manifold M , which
is oriented in such a way that it becomes the oriented Fredholm Gλ|W -preimage of
Z. The reader can imagine each Mλ as the set of pairs (x, α(x, λ)), where x ∈M and
α(x, λ) is the orientation of M at x induced by Gλ|W and Z.

We can prove that, for any s, λ ∈ [0, 1], Ms = Mλ (in other words, we can
prove that the orientations of Ms and Mλ coincide). To see this, let λ0 ∈ [0, 1] and
(x, α(x, λ0)) ∈ Mλ0

be given. Since G is clearly oriented (with an orientation such
that the orientations of g0 and g1 are inherited from that of G), a positive corrector A
of G′λ0

(x) remains a positive corrector for G′λ(x), with λ in a suitable neighborhood of
λ0. Then, recalling the definition of oriented Fredholm preimage, α(x, λ0) = α(x, λ).
By the connectedness of [0, 1], the claim follows. Therefore,

deg(f |M0
,M0) = deg(f |M1

,M1), (5.2)

and thus we can say that deg(f, U) is indeed well defined.

Step 2. Let us now extend the definition of degree to general admissible pairs.

Definition 5.2 (general definition of degree). Let (f, U) be an admissible pair. Con-
sider:

(1) a positively oriented smoothing map g of f ;
(2) an open neighborhood V of the coincidence set C(f, U) such that V ⊆ U , g

is proper on V and (f − g)|V is compact;

(3) a CJ-multimap Ξ : V ( F having bounded finite dimensional image and
such that

‖g(x)− f(x)− Ξ(x)‖ < ρ, ∀x ∈ ∂V,
where ρ is the distance in F between 0 and f(∂V ) and the norm of a subset
B of a normed space is defined as ‖B‖ = sup{‖x‖, x ∈ B}.

Then, we define

deg(f, U) = deg(g − Ξ, V ), (5.3)

where the right hand side of the equality is the degree following the above step 1.

First of all observe that the right hand side of (5.3) is well defined since the pair
(g − Ξ, V ) is admissible. Indeed, g − ξ is proper on V and thus the coincidence set
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C(g−Ξ, U) is a compact subset of V which is actually contained in V by assumption
(3).

We have to show that deg(f, U) is well-defined, in the sense that formula (5.3) does
not depend on g, Ξ and V . Consider two positively oriented smoothing maps g0 and
g1. For i = 0, 1, let Vi be an open neighborhood of the coincidence set C(f, U) such
that V i ⊆ U , gi is proper on V i and (f − gi)|V i is compact. Moreover, consider a

CJ-multimap Ξi : V i( F with bounded finite dimensional image and such that

‖gi(x)− f(x)− Ξi(x)‖ < ρ, ∀x ∈ ∂Vi, (5.4)

where ρ is the distance in F between 0 and the closed set f((V 0 ∪ V 1)\(V0 ∩ V1)).
For i = 0, 1, the map fi : V i( F , defined by

fi(x) = gi(x)− ξi(x),

is oriented having gi as positively oriented smoothing map. In addition, since gi is
proper on V i, fi turns out to be proper as well. By (5.4), C(f1, U) is a compact
subset of V0∩V1. In particular, (f0, V0) and (f1, V1) are admissible. We need to show
that

deg(f0, V0) = deg(f1, V1). (5.5)

To see this, denoting V = V0 ∩ V1, define H : V × [0, 1]( F by

H(x, λ) = (1− λ)f0(x) + λf1(x),

and G : V × [0, 1]→ F by

G(x, λ) = (1− λ)g0(x) + λg1(x).

The map H is proper, being a compact perturbation of g0. Hence, H−1(0) is
compact and, by (5.4), contained in V × [0, 1]. Thus there exist an open subset W of
V × [0, 1] containing the coincidence set C(H,V × [0, 1]), and a subspace Z of F of
finite dimension, say n, containing Ξ0(V ) and Ξ1(V ) such that every partial map Gλ
is transverse to Z on

Wλ = {x ∈ V : (x, λ) ∈W}.
Consequently, the set M = G−1(Z)∩W is an (n+ 1)-manifold with boundary (M0×
{0})∪ (M1×{1}). In addition, the transversality of Gλ to Z implies that any section
Mλ is a boundaryless n-manifold.

Let Z be oriented and orient M in such a way that any Mλ is the oriented Fredholm
Gλ-preimage of Z. By the definition of degree in the step 1 (formula (5.1)), one has

deg(f0, V0) = degB(f0|M0
,M0, 0),

deg(f1, V1) = degB(f1|M1 ,M1, 0).

The homotopy invariance property of the Brouwer degree implies

degB(f0|M0
,M0, 0) = degB(f1|M1

,M1, 0).

Therefore,

deg(f0, V0) = deg(f1, V1),

and we can conclude that deg(f, U) is well-defined by (5.3).
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Remark 5.3. Of course, a Fredholm map of index zero is also a quasi-Fredholm
multimap, and Definition 5.2 can be applied to an admissible pair (f, U) with f of
class C1. In this case a definition of degree is given in [1] - for triples (f, U, y) - by
a different approach. The reduction property proved in [1, section 3] shows that the
two degrees coincide when both are defined (i.e., in the C1 case).

We conclude by listing in the following theorem the main properties of the degree.
The proof of the first two properties is a straightforward consequence of the definition
of the degree and is omitted.

Theorem 5.4. The following properties of the degree hold:

1. (Normalization) Let U be an open neighborhood of 0 in E and let the identity
I of E be naturally oriented. Then,

deg(I, U) = 1.

2. (Additivity) Let (f, U) be an admissible pair and U1, U2 two disjoint open
subsets of U such that the coincidence set C(f, U) is contained in U1 ∪ U2.
Then (f, U1) and (f, U2) are admissible and

deg(f, U) = deg(f, U1) + deg(f, U2).

3. (Homotopy invariance) Let G : U × [0, 1] → F be an oriented homotopy of
Fredholm maps and K : U × [0, 1] ( F a locally compact CJ-multimap.
Assume that the set C := {(x, λ) ∈ U × [0, 1] : G(x, λ) ∈ K(x, λ)} is compact.
Then deg(Gλ −Kλ, U) is well defined and does not depend on λ ∈ [0, 1].

The proof of the homotopy invariance property is not a simple consequence of
the definition. For a detailed proof the reader can see the text of Väth [27], em
particular Theorems 12.23, 13.5 and 13.19. Let us give here some remarks concerning
the difficulties in the proof. Since the set C is compact, its projection on E, say S,
is a compact subset of U . Consequently, there exists an open neighborhood V of S,
with V ⊆ U , such that G is proper and K is compact on V × [0, 1].

Recalling Definition 5.2, let Ξ : V ×[0, 1]( F be a a CJ-multimap having bounded
finite dimensional image and such that ‖K(x, λ) − Ξ(x, λ)‖ < ρ, for each (x, λ) ∈
∂V × [0, 1], where ρ is the distance in F between 0 and (G−K)(∂V × [0, 1]). Then,
we have

deg(Gλ −Kλ, U) = deg(Gλ − Ξλ, V ), ∀λ ∈ [0, 1].

By the compactness of C, there exist an open subset W of V × [0, 1] containing
C, and a subspace Z of F of finite dimension, say n, containing Ξ(V × [0, 1]) such
that every partial map Gλ is transverse to Z on Wλ. Proceeding analogously to the
previous step 1 (of the construction of the degree), we observe that M contains the
set D := {(x, λ) ∈ V × [0, 1] : G(x, λ) ∈ Ξ(x, λ)}. In addition, still recalling the above
step 1, there exists an open subset V of M , containing D and such that the restriction
of Ξ to V is approximable.

Now, an important point is: if G is C1, the set M := G−1(Z) ∩W is an (n + 1)-
manifold with boundary (M0 × {0}) ∪ (M1 × {1}). Thus, orienting Z and M in
such a way that any Mλ is the oriented Fredholm Gλ-preimage of Z, given ε > 0
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sufficiently small and ξ : V → Z an ε-aproximation of the restriction of Ξ to V, we
have, analogously to formula (5.1),

deg(Gλ − Ξλ,Vλ) = degB((Gλ)|Vλ − ξλ, Vλ, 0).

Unfortunately, M is not necessarily a C1 manifold, since G is not assumed to be
C1, even if any Mλ is an orientable C1 manifold of the same dimension of Z. This
problem is overcome in [27] analyzing the topological structure of M , see sections 7.3
e 8.8, and the homotopy invariance property is obtained.

6. Atypical bifurcation results

In this section we come back to problem (1.1) presenting some atypical bifurcation
results (see the Introduction for the definition of bifurcation point). We assume that

(λ, x) 7→ Lx+ λ (h(λ, x)−H(λ, x))

is an oriented multivalued quasi-Fredholm homotopy (recall Remark 4.9). Let π :
F → F/ ImL denote the canonical projection, while R : F → ImL stands for a
bounded linear retraction, i.e. such that Ry = y for every y ∈ ImL. Problem (1.1) is
clearly equivalent to the system{

Lx+ λRh(λ, x) ∈ λRH(λ, x)
λπh(λ, x) ∈ λπH(λ, x)

(6.1)

and, if λ 6= 0, to {
Lx+ λRh(λ, x) ∈ λRH(λ, x)
πh(λ, x) ∈ πH(λ, x).

(6.2)

Theorem 6.1 (necessary condition). Assume that p is a bifurcation point for the
equation (1.1). Then, (h(0, p)−H(0, p)) ∩ ImL 6= ∅ or, equivalently, π(h(0, p) −
H(0, p)) 3 0.

Proof. Since p is a bifurcation point, there exists a sequence {(λn, pn)} of solutions
of (6.2) converging to (0, p). The result easily follows from the upper semicontinuity
of (λ, x) 7→ λ (h(λ, x)−H(λ, x)). �

Theorem 6.3 below gives a sufficient condition for the existence of a bifurcation
point. The proof is a straightforward extension of [3, Theorem 3.2] and it is given
here for a sake of completeness. It uses the degree of a suitable finite-dimensional
multimap between KerL and F/ ImL. Even though these spaces must be oriented
(and so we consider), the result is independent of the chosen orientations. Let us first
recall the following result (see Lemma 1.4 of [12]) which plays a crucial role in the
proof of Theorem 6.3. We point out that the degree in the statement of Theorem
6.3 is a finite-dimensional multivalued degree, which can be seen as a multivalued
extension of the classical Brouwer degree or, equivalently, as the finite-dimensional
particular case of the degree defined in section 5.

Lemma 6.2. Let K be a compact subset of a locally compact metric space X. Assume
that any compact subset of X that contains K has nonempty boundary. Then X\K
contains a not relatively compact component whose closure in X intersects K.
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Before stating Theorem 6.3, let us recall that, given any subset Ω of R × E, for
any real λ we denote by Ωλ the set {x ∈ E : (λ, x) ∈ Ω}. The notation is analogous
for any subset of R× E. See the presentation of problem (1.1) in the Introduction.

Theorem 6.3 (sufficient condition). Let v : KerL ∩ Ω0 ( F/ImL be defined by
v(p) = π(h(0, p)−H(0, p)). Given an open subset U of Ω, assume deg(v, U0 ∩KerL)
is well defined and different from 0. Then there exists a connected set of nontrivial
solutions of (1.1) whose closure in U is not compact and intersects {0} ×KerL.

Proof. We denote by Σ : Ω( ImL× F/ ImL the multimap

(λ, x) 7→ (Lx+ λR(h(λ, x)−H(λ, x)), π(h(λ, x)−H(λ, x))) ,

which is clearly a quasi-Fredholm homotopy, and it is orientable since Ω is simply
connected. Assume Σ oriented. This gives an orientation of any partial multimap
Σλ : Ωλ( ImL× F/ ImL. Consider the set

Y = {(λ, x) ∈ U : Σ(λ, x) 3 0}

and observe that the zero section Y0 is compact since deg(v, U0 ∩ KerL) is assumed
to be defined. In addition it is possible to prove that Y is locally compact since

(λ, x) 7→ (Lx+ λRh(λ, x), πh(λ, x)) is locally proper

(λ, x) 7→ (λRH(λ, x), πH(λ, x)) is locally compact

(we omit the details). We apply Lemma 6.2 to the pair (Y, {0} × Y0). Assume, by
contradiction, there exists a compact set C ⊆ Y containing {0} × Y0 that is open
in Y . This implies the existence of an open subset W of R × E such that W ⊆ U
and W ∩ Y = C. Since C is compact, the homotopy invariance property implies that
deg(Σλ,Wλ) does not depend on λ ∈ R. Moreover, Wλ ∩ Cλ is empty for some λ.
Hence, we obtain deg(Σ0,W0) = 0. The inclusions Y0 ⊆ W0 ⊆ U0 imply, using the
excision property of the degree, deg(Σ0, U0) = 0.

Now, observe that the subspace F0 = {0} × F/ ImL is transverse to Σ0 and
(Σ0)−1

+ (F0) = KerL ∩ Ω0. Thus, we have

deg(Σ0, U0) = deg(v, U0 ∩KerL),

which can be seen as a reduction property for the degree for multivalued quasi-
Fredholm maps and is a straightforward consequence of the definition. The above
equality contradicts the assumption of the theorem and the assertion holds. �

The following corollary extends to the multivalued case an analogous result for
single valued problem (see [3]).

Corollary 6.4. Let the assumptions of Theorem 6.3 be satisfied. In addition, assume
that

(1) (λ, x) 7→ Lx+ λh(λ, x) is proper
(2) (λ, x) 7→ H(λ, x) is compact

on bounded and closed subsets of U . Then (1.1) admits a connected set S of nontrivial
solutions such that its closure in R×E intersects {0}×KerL and is either unbounded
or reaches the boundary of U . In particular, if U = R× E, S is unbounded.
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Proof. Call S the closure in R × E of a connected branch S as in Theorem 6.3.
Suppose S ∩ ∂U = ∅. Thus, the closure of S in U coincides with S and cannot be
bounded according to (1) and (2) above. �

We conclude by studying the following boundary value problem depending on a
parameter λ ≥ 0:{

x′(t) + λφ(t, x(t), x′(t)) + λψ(t, x(t)) ∈ λ
∫ t

0
γ(s, x(s)) ds

x(0) = x(T ),
(6.3)

where φ : R × Rn × Rn → Rn, ψ : R × Rn → Rn and γ : R × Rn ( Rn are as
in Example 4.12. We assume that φ and ψ are T -periodic with respect to the first
variable, while γ : R × Rn ( Rn is an u.s.c. CJ-multimap, T -periodic in the first
variable and such that

‖γ(t, c)‖ ≤ ν(t)

for any c ∈ Rn and a.e. t ∈ [0, T ], with ν ∈ L1([0, T ]).

Given E and F as in the Example 4.12, for technical reasons define

L : E → F, Lx(t) = x′(t),

h : E → F, h(x)(t) = φ(t, x(t), x′(t)),

k : E → F, k(x)(t) = ψ(t, x(t)),

G : E ( F, G(x)(t) =
∫ t

0
γ(s, x(s)) ds.

The Banach spaces E and F are as in Example 4.12. Thus, problem (6.3) is equivalent
to the semilinear operator inclusion

Lx ∈ λ(h(x) + k(x) + G(x)) (6.4)

in E × [0,+∞). We assume that, for any (t, a, b) ∈ [0, T ] × Rn × Rn, the jacobian
matrix ∂3φ(t, a, b) has no negative eigenvalues; so that, as in Example 4.12,

H(x, λ) = Lx+ λ(h(x) + k(x) + G(x)),

is an orientable multivalued quasi-Fredholm homotopy.
By a solution of (6.4) we mean a pair (x, λ) such that H(x, λ) 3 0 and we regard

the distinguished subset KerL×{0} of the set of solutions as the set of trivial solutions
of (6.4).

The following is a particular case of Theorem 6.3. To avoid cumbersome notation,
any point p ∈ Rn is identified with the constant function t 7→ p, so that Rn can be
regarded as the set of trivial solutions of (6.4).

Theorem 6.5. Let v : Rn( Rn be the vector field defined by

v(p) =
1

T

∫ T

0

(
φ(t, p, 0) + ψ(t, p) +

∫ t

0

γ(s, p) ds

)
dt.

Let U be an open subset of E × [0,+∞) and let U0 = {p ∈ Rn : (p, 0) ∈ U}. Assume
that the degree deg(v, U0) is defined and nonzero. Then U contains a connected set of
nontrivial solutions of problem (6.3) whose closure in U is not compact and intersects
KerL × {0} ∼= Rn in the compact set {p ∈ U0 : v(p) 3 0}. In particular U0 contains
at least one bifurcation point.



TOPOLOGICAL DEGREE AND BIFURCATION RESULTS 105

References

[1] P. Benevieri, M. Furi, A simple notion of orientability for Fredholm maps of index zero between

Banach manifolds and degree theory, Ann. Sci. Math. Québec, 22(1998), 131-148.
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