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Key Words and Phrases: Implicit midpoint rule, nonexpansive mapping, fixed point, uniformly

convex Banach space, Opial’s property, Fréchet differentiable norm.
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1. Introduction

The implicit midpoint rule (IMR) for nonexpansive mappings in a Hilbert space
H, inspired by the IMR for ordinary differential equations [2, 3, 4, 6, 21, 22, 23], is
introduced in [1]. This rule generates a sequence {xn} via the semi-implicit procedure:

xn+1 = (1− tn)xn + tnT

(
xn + xn+1

2

)
, n ≥ 0, (1.1)

where the initial guess x0 ∈ H is arbitrarily chosen, tn ∈ (0, 1) for all n, and T is a
nonexpansive mapping (i.e., ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ H).

There are mainly in the literature two sorts of iteration methods for nonexpansive
mappings, namely, the Halpern method [8] and the Krasnoselskii-Mann method [9, 17]
which generate a sequence {xn} via the iteration procedures:

xn+1 = (1− tn)u+ tnTxn, n ≥ 0, (1.2)

and
xn+1 = (1− tn)xn + tnTxn, n ≥ 0. (1.3)
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where T is a nonexpansive mapping.
Under certain conditions (see [11, 16, 13, 20, 24, 26, 15, 29]), Halpern’s algorithm

(1.2) can be strongly convergent, while Krasnoselskii-Mann’s algorithm can have, in
general, weak convergence [19, 14, 27]. It is however unclear how to compare the
two algorithms (1.2) and (1.3) or how to identify the limit of the Krasnoselskii-Mann
algorithm (1.3).

The IMR (1.1) is proved to converge weakly [1] in the Hilbert space setting provided
the sequence {tn} satisfies the two conditions:

(C1) t2n+1 ≤ atn for all n ≥ 0 and some a > 0,
(C2) lim infn→∞ tn > 0.

It remains unclear if this algorithm can converge strongly.
The purpose of the present paper is to extend the IMR (1.1) to the setting of

Banach spaces that are uniformly convex with either Opial’s property or a Fréchet
differentiable norm.

The paper is organized as follows. In the next section we introduce uniformly con-
vex Banach spaces, Fréchet differentiability of a norm, and Opial’s property. Included
in this section is also the very powerful inequality tools [28] that characterize uniform
convexity. The main results of this paper, Theorems 3.6 and 3.8, that is, the weak
convergence of the algorithm (1.1) in a uniformly convex Banach space either with
Opial’s property or having a Fréchet differentiable norm, are proved in Section 3.

2. Preliminaries

Let X be a real Banach space. Recall that X is said to be uniformly convex if
δX(ε) > 0 for all 0 < ε ≤ 2, where δX is the modulus of convexity of X defined by

δX(ε) = inf

{
1− 1

2
‖x+ y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε

}
(2.1)

for all 0 < ε ≤ 2. Typical examples of uniformly convex spaces include `p and Lp

spaces for all 1 < p <∞.
Uniform convexity can be characterized by inequalities. As a matter of fact, we

have the following result which plays a key role in the proof to the main results,
Theorems 3.6 and 3.8.
Lemma 2.1. Suppose X is a uniformly convex Banach space and given ρ > 0. Then
there exists a continuous, convex, and strictly increasing function γ depending only
on ρ such that

‖tx+ (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)γ(‖x− y‖) (2.2)

for all x, y ∈ X such that ‖x‖ ≤ ρ, ‖y‖ ≤ ρ and all 0 ≤ t ≤ 1.
Recall that (the norm of) X is said to be Fréchet differentiable if, for each x ∈

SX := {x ∈ X : ‖x‖ = 1}, the unit sphere of X, the limit:

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.3)
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exists and is attained uniformly in y ∈ SX . The (normalized) duality map J : X →
X∗, the dual space of X, is defined as

J(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}. (2.4)

Furthermore, we say thatX is uniformly smooth if the limit (2.3) exists and is attained
uniformly in x, y ∈ SX . It is known that X is Fréchet differentiable if and only if J is
single-valued and is norm-to-norm continuous. It is also known that for 1 < p < ∞,
both `p and Lp are uniformly convex and uniformly smooth.

Recall also that a real Banach space X is said to satisfy Opial’s property [18] if,
for any sequence {xn} of X, there holds the implication:

xn → x weakly =⇒ lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖ for all y ∈ X, y 6= x.

It is known that for 1 < p < ∞, the space `p satisfies Opial’s property, while the
space Lp fails to satisfy Opial’s property unless p = 2. A profound result [5] is that
each separable Banach space can be renormed to satisfy Opial’s property.

Opial’s property has many applications in fixed point theory of nonlinear operators,
see, for instance, [10, 25].

3. The implicit midpoint rule

Let C be a closed convex subset of a real Banach space X. Recall that a a mapping
T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, x, y ∈ C.

A point x ∈ C such that Tx = x is said to be a fixed point of T . The set of all fixed
points of T is denoted by Fix(T ), namely,

Fix(T ) = {x ∈ C : Tx = x}.

Below we always assume Fix(T ) 6= ∅.
For each fixed u ∈ C and t ∈ (0, 1), define a self-mapping of C, Tut : C → C, by

Tut x := (1− t)u+ tT

(
u+ x

2

)
, x ∈ C. (3.1)

The following lemma is straightforward as T is nonexpansive.
Lemma 3.1. The mapping Tut is a contraction with coefficient t/2, that is,

‖Tut x− Tut y‖ ≤
t

2
‖x− y‖, x, y ∈ C. (3.2)

Hence, by Banach’s contraction mapping principle, Tut has a unique fixed point in C.
Lemma 3.1 guarantees that the following algorithm is well defined. Initializing with

x0 ∈ C, we define xn+1 by the iteration process which is referred to as the implicit
midpoint rule (IMR) for nonexpansive mappings:

xn+1 = (1− tn)xn + tnT

(
xn + xn+1

2

)
, n ≥ 0, (3.3)

where tn ∈ (0, 1) for all n, and T : C → C is a nonexpansive mapping.
We first discuss useful properties of the IMR (3.3).
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Lemma 3.2. Assume X is uniformly convex and let {xn} be the sequence generated
by the IMR (3.3). Then

(i) ‖xn+1 − p‖ ≤ ‖xn − p‖ for all n ≥ 0 and p ∈ Fix(T ). In particular, {xn} is
bounded and moreover, we have

lim
n→∞

‖xn − p‖ exists for every p ∈ Fix(T ). (3.4)

Let ρ > 0 satisfy ‖xn‖ ≤ ρ for all n and let γ satisfy the inequality (2.2). Then we
further have

(ii)
∑∞
n=1 tnγ(‖xn − xn+1‖) <∞.

(iii)
∑∞
n=1 tn(1− tn)γ

(∥∥∥xn − T (xn+xn+1

2

)∥∥∥) <∞.
Proof. To show (i), we take p ∈ Fix(T ) and deduce that

‖xn+1 − p‖ =

∥∥∥∥(1− tn)(xn − p) + tn

[
T

(
xn + xn+1

2

)
− p
]∥∥∥∥

≤ (1− tn)‖xn − p‖+ tn

∥∥∥∥T (xn + xn+1

2

)
− p
∥∥∥∥

≤ (1− tn)‖xn − p‖+ tn

∥∥∥∥xn + xn+1

2
− p
∥∥∥∥

≤ (1− tn)‖xn − p‖+
tn
2

(‖xn − p‖+ ‖xn+1 − p‖).

This straightforwardly implies that ‖xn+1 − p‖ ≤ ‖xn − p‖; consequently, {xn} is
bounded and (3.4) holds. That is, (i) has been proved.

To prove (ii), we employ Lemma 2.1 with ρ ≥ supn≥0 ‖xn‖. We then have

‖xn+1 − p‖2 =

∥∥∥∥(1− tn)(xn − p) + tn

[
T

(
xn + xn+1

2

)
− p
]∥∥∥∥2

≤ (1− tn)‖xn − p‖2 + tn

∥∥∥∥T (xn + xn+1

2

)
− p
∥∥∥∥2

− tn(1− tn)γ

(∥∥∥∥xn − T (xn + xn+1

2

)∥∥∥∥)
≤ (1− tn)‖xn − p‖2 + tn

∥∥∥∥xn + xn+1

2
− p
∥∥∥∥2

− tn(1− tn)γ

(∥∥∥∥xn − T (xn + xn+1

2

)∥∥∥∥)
≤ (1− tn)‖xn − p‖2

+ tn

(
1

2
‖xn − p‖2 +

1

2
‖xn+1 − p‖2 −

1

4
γ(‖xn − xn+1‖)

)
− tn(1− tn)γ

(∥∥∥∥xn − T (xn + xn+1

2

)∥∥∥∥) .
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It turns out that(
1− tn

2

)
‖xn+1 − p‖2 ≤

(
1− tn

2

)
‖xn − p‖2 −

tn
4
γ(‖xn − xn+1‖)

−tn(1− tn)γ

(∥∥∥∥xn − T (xn + xn+1

2

)∥∥∥∥)
and by dividing both sides by (1− tn/2) we get

‖xn+1 − p‖2 ≤ ‖xn − p‖2 −
tn

2(2− tn)
γ(‖xn − xn+1‖)

−2tn(1− tn)

2− tn
γ

(∥∥∥∥xn − T (xn + xn+1

2

)∥∥∥∥) . (3.5)

This clearly implies that (noticing that tn ∈ (0, 1))
∞∑
n=1

tnγ(‖xn − xn+1‖) <∞ (3.6)

and
∞∑
n=1

tn(1− tn)γ

(∥∥∥∥xn − T (xn + xn+1

2

)∥∥∥∥) <∞. (3.7)

Namely, (ii) and (iii) are proved.
Lemma 3.3. Let X be uniformly convex and let the sequence {xn} be generated by
the IMR (3.3). Assume lim infn→∞ tn > 0. Then we have

lim
n→∞

‖xn − Txn‖ = 0 (3.8)

and

lim
n→∞

∥∥∥∥xn − T (xn + xn+1

2

)∥∥∥∥ = 0. (3.9)

Proof. By Lemma 3.2(ii) together with the assumption that lim infn→∞ tn > 0, we
immediately find that

∞∑
n=0

γ(‖xn+1 − xn‖) <∞.

This implies that
lim
n→∞

‖xn+1 − xn‖ = 0. (3.10)

Since the definition of IMR (3.3) yields that

‖xn+1 − xn‖ = tn

∥∥∥∥xn − T (xn + xn+1

2

)∥∥∥∥ ,
(3.9) follows from (3.10) and the assumption that lim infn→∞ tn > 0.

Finally, (3.8) follows from (3.10) and (3.9). Indeed we have the following estimates:

‖xn − Txn‖ ≤
∥∥∥∥xn − T (xn + xn+1

2

)∥∥∥∥+

∥∥∥∥Txn − T (xn + xn+1

2

)∥∥∥∥
≤
∥∥∥∥xn − T (xn + xn+1

2

)∥∥∥∥+
1

2
‖xn − xn+1‖ → 0.
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To prove the weak convergence of the IMR (3.3), we need the so-called demiclosed-
ness principle for nonexpansive mappings.
Lemma 3.4. [7] Let C be a nonempty closed convex subset of a uniformly convex
Banach space X and let T : C → C be a nonexpansive mapping with fixed points.
Assume {un} is a sequence in C such that un → u weakly and (I − T )un → 0
strongly. Then (I − T )x = 0 (i.e., Tx = x).

We use the notation: ωw(un) to denote the set of all weak cluster points of the
sequence {un}.

3.1. Convergence in Banach Spaces with Opial’s Property. We now prove in
a uniformly convex Banach satisfying Opial’s property, the IMR (3.3) generates a
weakly convergent sequence.
Theorem 3.5. Let X be a uniformly convex Banach space with Opial’s property
and let T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅. Assume {xn}
is generated by the IMR (3.3) where the sequence {tn} of parameters satisfies the
condition that lim infn→∞ tn > 0. Then {xn} converges weakly to a fixed point of T .
Proof. By Lemmas 3.3 and 3.4, we have ωw(xn) ⊂ Fix(T ). Furthermore, by Lemma
3.2, limn→∞ ‖xn − p‖ exists for all p ∈ Fix(T ). Now assume pi ∈ ωw(xn) and let
{x

n
(i)
k

} be subsequences of {xn} weakly convergent to pi, respectively, for i = 1, 2.

Since pi ∈ Fix(T ) and limn→∞ ‖xn − pi‖ exists for i = 1, 2, if p1 6= p2, we deduce by
Opial’s property that

lim
n→∞

‖xn − p1‖ = lim
k→∞

‖x
n
(1)
k

− p1‖

< lim
k→∞

‖x
n
(1)
k

− p2‖ = lim
k→∞

‖x
n
(2)
k

− p2‖

< lim
k→∞

‖x
n
(2)
k

− p1‖ = lim
n→∞

‖xn − p1‖.

This is an obvious contradiction. We therefore must have p1 = p2. This means that
ωw(xn) consists of exactly one point which is equivalent to saying that {xn} is weakly
convergent.

3.2. Convergence in Banach Spaces with Fréchet Differentiable Norm. One
of the key ingredients of the weak convergence of the IMR (3.3) is that it can be
equivalently rewritten as an explicit scheme via the resolvent [20] of the accretive
operator I − T .
Lemma 3.6. The IMR (3.3) can equivalently be rewritten as

xn+1 = Tnxn, Tn := 2JI−Tsn − I, (3.11)

where sn = tn
2−tn and JI−Ts denotes the resolvent of I − T of index s > 0, that is,

JI−Ts = (I + s(I − T ))−1.
We also have Fix(Tn) = Fix(T ) for all n.

Proof. Set U = I−T . Observe that U is accretive for T being nonexpansive; thus the
resolvent JUs := (I + sU)−1 is well defined and moreover, 2JUs − I is nonexpansive.

Now upon some manipulations, it is not hard to reformulate the IMR (3.3) equiv-
alently as (3.11).
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The next lemma points out that the weak ω-limit of the sequence {xn} and the
fixed point set of T are of certain ‘orthogonality’ in some sense via the duality map
J .
Lemma 3.7. Assume X is uniformly convex and has a Fréchet differentiable norm.
Let {xn} be the sequence generated by the IMR (3.3). Then there holds the relation

〈w1 − w2, J(p1 − p2)〉 = 0, w1, w2 ∈ ωw(xn), p1, p2 ∈ Fix(T ). (3.12)

Proof. Set

Sn,m = Tn+m−1 · · ·Tn+1Tn,

an = ‖λxn + (1− λ)p1 − p2‖,
dn,m = ‖Sn,m(λxn + (1− λ)p1)− (λxn+m + (1− λ)p1)‖.

Then Sn,mxn = xn+m. (Recall xn+1 = Tnxn.)
By Lemma 2.1, we have a continuous, convex, strictly increasing function γ : R+ →

R+, γ(0) = 0, such that

dn,m ≤ γ−1 (‖xn − p1‖ − ‖xn+m − p1‖)

for all m,n. It follows immediately that lim
n,m→∞

dn,m = 0. Now since an+m ≤ dn,m +

an, we get that lim
n→∞

an exists, which implies that lim
n→∞

〈xn − p1, J(p1 − p2)〉 exists

(see [19] for more details) and (3.12) follows.

Theorem 3.8. Let X be a uniformly convex Banach space with a Frechet differen-
tiable norm and let T : X → X be a nonexpansive mapping with Fix(T ) 6= ∅. Assume
{xn} is generated by the IMR (3.3) where the sequence {tn} of parameters satisfies
the condition that lim infn→∞ tn > 0. Then {xn} converges weakly to a fixed point of
T .
Proof. It suffices to show that the weak ω-limit set of {xn}, ωw(xn), consists of exactly
one point. To see this, we take w1, w2 ∈ ωw(xn). By Lemmas 3.3 and 3.4, we get
w1, w2 ∈ Fix(T ). Consequently, upon setting p1 = w1 and p2 = w2 in Lemma 3.7
immediately yields ‖w1 − w2‖2 = 〈w1 − w2, J(w1 − w2)〉 = 0 and w1 = w2.
Remark 3.9. In the setting of a Hilbert space H, the operator 2JAλ − I, where A is
a maximal monotone in H with a zero and JAλ is the resolvent of index λ > 0, is a
reflection. Hence, the sequence {vn} defined by the iteration process:

vn+1 = (2JAλ − I)vn, n ≥ 0 (3.13)

may fail to converge even if H is finite-dimensional, see a counterexample in [12]. As
a consequence of our Theorems 3.6 and 3.8, we can, however, confirm the convergence
of the algorithm (3.13) for the class of those maximal monotone operators A such that
A = I − T with T being nonexpansive and with a fixed point.
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[16] G. López, V. Mart́ın-Márquez, H.K. Xu, Halpern’s iteration for nonexpansive mappings, in
“Nonlinear Anal. and Optimization I: Nonlinear Analysis” Contemporary Math., 513(2010),

211-230.
[17] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4(1953), 506-510.

[18] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive

mappings, Bull. Amer. Math. Soc., 73(1967), 591-597.
[19] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math.

Anal. Appl., 67(1979), 274-276.

[20] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach Spaces,
J. Math. Anal. Appl., 75(1980), 287-292.

[21] C. Schneider, Analysis of the linearly implicit mid-point rule for differential-algebra equations,

Electronic Trans. on Numerical Anal., 1(1993), 1-10.
[22] S. Somalia, Implicit midpoint rule to the nonlinear degenerate boundary value problems, Inter-

national J. Computer Math., 79(2002), no. 3, 327-332.

[23] S. Somalia, S. Davulcua, Implicit midpoint rule and extrapolation to singularly perturbed bound-
ary value problems, International J. Computer Math., 75(2000), no. 1, 117-127.

[24] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math., 58(1992),
486–491.

[25] H.K. Xu, Banach spaces properties of Opial’s type and fixed point theorems of nonlinear map-

pings, Ann. Univ. Marie Curie-Sklodowska Sect. A, 51(1997), no. 2, 293-303.



IMPLICIT MIDPOINT RULE 517

[26] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66(2002), 240-256.
[27] H.K. Xu, A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility prob-

lem, Inverse Problems, 22(2006), 2021-2034.

[28] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 18(1991), 1127-1136.
[29] H.K. Xu, R.G. Ori, An implicit iteration process for nonexpansive mappings, Numerical Func-

tional Anal. and Optimization, 22(2001), 767-773.

Received: October 17, 2014; Accepted: February 28, 2015.



518 HONG-KUN XU, MARYAM A. ALGHAMDI AND NASEER SHAHZAD


