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1. Introduction

Fractional neutral differential systems are abstract formulation for many problems
arising in engineering and physics. The potential applications of fractional calculus
are in diffusion process, electrical science, electrochemistry, viscoelasticity, control
science, electro magnetic theory etc. (see [8], [2], [23], [6], [12]). There have been a
great deal of interest in the solutions of fractional differential systems in analytic and
numerical sense. One can see the monographs of Benchohra et al. [5], Podlubny [22],
Kilbas et al. [13], Miller et al. [19], Tarasov [30] and the survey of Agarwal et al.
[1] and the reference therein. In order to study the fractional systems in the infinite
dimensional space, the first important step is how to introduce a new concept of mild
solutions. A pioneering work has been reported by EI-Borai [9] and Zhou et al.[33].

In recent years, controllability problems for various types of nonlinear fractional
dynamical systems in infinite dimensional spaces have been considered in many publi-
cations. Exact controllability for fractional order systems have been proved by many
authors (see [7], [3], [23], [29], [31], [32]) and the boundary controllability problem
is proved by Ahmed [4]. In these papers, the main tool used by the authors is to
convert the controllability problem into a fixed point problem with the assumption
that the controllability operator has an induced inverse on a quotient space. In [29],
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[31], [32], [4] the authors made an assumption that the semigroup associated with
the linear part is compact in order to prove the controllability results. Although the
exact controllability of fractional differential systems in abstract space has been dis-
cussed, Sukavanam et al. [26], Hernández et al. [11] point out that some papers on
controllability of abstract control systems contain a similar technical error when the
compactness of semigroup and other hypotheses are satisfied, more precisely, in this
case the application of controllability results are restricted to the finite dimensional
space. Thus, the concept of exact controllability is too strong in infinite dimensional
spaces and the approximate controllability is more appropriate.

The approximate controllability of the systems with integer order has been proved
in [25]-[28] among others. However, there are only few papers which deal with the
approximate controllability of fractional order system. In [24] Sakthivel et al. proved
the approximate controllability by assumption that the C0 semigroup T (t) is compact
and nonlinear function is continuous and uniformly bounded. Recently, Sukavanam
et al. [26] have proved some sufficient conditions for the approximate controllability
of a fractional order system which the nonlinear term depends on both state and con-
trol variables. Kumar et al. [14], [15] prove the approximate controllability for some
semilinear delay control systems of fractional order under the natural assumption
that the corresponding linear system is approximately controllable. In [16], Kumar
et al. provided different sufficient conditions for the approximate controllability of
fractional order semilinear system with fixed delay. In [17], Kumar et al. also give
some sufficient conditions for the approximate controllability of fractional order neu-
tral control systems with unbounded delay in the phase space. In this paper, we use
the techniques similar to [16] with suitable modifications to prove the approximate
controllability of the fractional neutral differential systems. The fractional neutral
differential systems with bounded delay in the present paper generalize the fractional
semilinear system with fixed delay appeared in [16]. Compared to [17], we use the
different method and discuss the neutral fractional system in different space. So the
conclusions in the present paper is the continuations of the conclusions in [16] and
[17].

2. Preliminaries

Throughout this paper let V and V̂ be Hilbert space and Z = L2([0, τ ];V ), Zh =

L2([−h, τ ];V ) be the function spaces corresponding to V and Y = L2([0, τ ]; V̂ ) be

the function space corresponding to V̂ . Consider the fractional order delay control
system{

cDq
t (x(t) + F (t, x(t− h))) = Ax(t) +Bu(t) +G(t, x(t− h)), t ∈ [0, τ ],

x(t) = φ(t), t ∈ [−h, 0],
(2.1)

where cDq
t is the Caputo fractional of order 1

2 < q < 1. The state function x(t)
takes its value in the space V , the control function u(t) takes its value in the space

V̂ ; A : D(A) ⊆ V → V is a closed linear operator with dense domain D(A) and
generates a C0-semigroup T (t); B is a bounded linear operator from Y to Z; the
function F,G : [0, τ ]× V → V is nonlinear and φ ∈ C([−h, 0];V ).
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Definition 2.1. A function x(t) ∈ Zh is said to be the mild solution of (2.1) if it
satisfies

x(t) =



Sq(t)(φ(0) + F (0, φ(−h)))− F (t, x(t− h))

+

∫ t

0

(t− s)q−1Tq(t− s)(Bu(s) +G(s, x(s− h)))ds

−
∫ t

0

(t− s)q−1Tq(t− s)AF (s, x(s− h))ds, t ∈ [0, τ ],

φ(t), t ∈ [−h, 0],

(2.2)

where Sq(t) and Tq(t) are called characteristic solution operators and given by

Sq(t) =

∫ ∞
0

ξq(θ)T (tqθ)dθ, Tq(t) = q

∫ ∞
0

θξq(θ)T (tqθ)dθ,

and for θ ∈ (0,∞), ξq(θ) = 1
q θ
−1− 1

q w̄q(θ
− 1

q ) ≥ 0,

w̄q(θ) =
1

π

∞∑
n=1

(−1)n−1ϑ−qn−1 Γ(nq + 1)

n!
sin(nπq).

Here, ξq is a probability density function defined on (0,∞), that is ξq(θ) ≥ 0, θ ∈
(0,∞), and

∫∞
0
ξq(θ)dθ = 1.

Let x(t) be the state value of system (2.1) at time t corresponding to the control
u. The system (2.1) is said to be approximately controllable in time interval [0, τ ], if

for every desired final state ζ and ε > 0, there exists a control function u ∈ V̂ such
that the solution of (2.1) satisfies ‖x(τ)− ζ‖ < ε.
Lemma 2.1. ([34]) For any fixed t ≥ 0, Sq(t) and Tq(t) are bounded linear operators.
Hence

‖Sq(t)x‖ ≤M‖x‖
and

‖Tq(t)x‖ ≤
Mq

Γ(1 + q)
‖x‖

for all x ∈ V, where M is a constant such that ‖T (t)‖ ≤M for all t ∈ [0, τ ].

3. Existence and uniqueness of mild solution

In this section we prove the existence and uniqueness of the mild solution of (2.1).
To prove the result let us assume the following conditions:

(H1) There exists a positive constant β ∈ (0, 1) and N,L > 0 such that F (t, x) ∈
D(Aβ) and

‖Aβ(F (t, x)− F (t, y))‖ ≤ L‖x− y‖Zh
,

‖AβF (t, x)‖ ≤ N(1 + ‖x‖Zh
).

(H2) For each t ∈ [0, τ ], G(t, ·) is continuous and G(t, x) satisfy the generalized

Lipschitz condition, i.e. there exists a function H(t) ∈ L 1
l ([0, τ ];V ), 0 < l < q, such

that

‖G(t, x)−G(t, y)‖ ≤ H(t)‖x− y‖Zh
.
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(H3) γC +
Mq

Γ(1 + q)
‖H‖ 1

l

(
1− l
q − l

)1−l

· τ q−l +
Γ(1 + β)C1−βγτ

qβ

βΓ(1 + qβ)
< 1,

where γ = max{N,L}, ‖H‖ 1
l

=

(∫ τ

0

(H(s))
1
l ds

)l
.

Lemma 3.1. ([21]) For all x ∈ V, β ∈ (0, 1) and η ∈ (0, 1), we have

ATq(t)x = A1−βTq(t)A
βx, 0 ≤ t ≤ τ,

and

‖AηTq(t)‖ ≤
qCη
tqη
· Γ(2− η)

Γ(1 + q(1− η))
, 0 < t ≤ τ.

Lemma 3.2. ([21]) For all β ∈ (0, 1), there exists a constant C such that

‖A−β‖ ≤ C.

Theorem 3.1. If the condition (H1)-(H3) hold, the system (2.1) admits a unique
mild solution in Zh for each control function u(·) ∈ Y.
Proof. Let

Hg = max
0≤t≤τ

‖G(t, 0)‖

and ‖B‖ ≤MB . Define the mapping Φ : L2([−h, τ ];V )→ L2([−h, τ ];V ) as

(Φx)(t) =



Sq(t)(φ(0) + F (0, φ(−h)))− F (t, x(t− h))

+

∫ t

0

(t− s)q−1Tq(t− s)(Bu(s) +G(s, x(s− h)))ds

−
∫ t

0

(t− s)q−1Tq(t− s)AF (s, x(s− h))ds, t ∈ [0, τ ],

φ(t), t ∈ [−h, 0],

(3.1)

Now, if we are able to show that Φ has a fixed point in the space L2([−h, τ ];V ), then
(2.2) is the mild solution on [−h, τ ].

Let

BR = {x(·) ∈ L2([−h, τ ];V ) : ‖x‖Zh
≤ R, x(0) = φ(0)}

which is bounded and closed subset of L2([−h, τ ];V ).
For any x(·) ∈ BR, we have

‖Sq(t)(φ(0) + F (0, φ(−h)))‖ ≤M(‖φ(0)‖+ ‖F (0, φ(−h))‖),

∥∥∥∥∥
∫ t

0

(t− s)q−1Tq(t− s)Bu(s)ds‖ ≤ MqMB

Γ(1 + q)

√
τ2q−1

2q − 1
‖u

∥∥∥∥∥
Y

,
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0

(t− s)q−1Tq(t− s)G(s, x(s− h))ds

∥∥∥∥
≤ Mq

Γ(1 + q)

∥∥∥∥∫ t

0

(t− s)q−1(G(s, x(s− h))−G(s, 0) +G(s, 0))ds

∥∥∥∥
≤ Mq

Γ(1 + q)

∫ t

0

(t− s)q−1H(s)‖x‖Zh
ds+

τ qM

Γ(1 + q)
Hg

≤ Mq

Γ(1 + q)
‖H‖ 1

l
‖x‖Zh

(∫ t

0

(
(t− s)q−1

) 1
1−l ds

)1−l

+
τ qM

Γ(1 + q)
Hg

≤ Mq

Γ(1 + q)
‖H‖ 1

l

(
1− l
q − l

)1−l

· τ q−lR+
τ qM

Γ(1 + q)
Hg,∥∥∥∥∫ t

0

(t− s)q−1Tq(t− s)AF (s, x(s− h))ds

∥∥∥∥
=

∥∥∥∥∫ t

0

(t− s)q−1A1−βTq(t− s)AβF (s, x(s− h))ds

∥∥∥∥
≤ Γ(1 + β)qC1−β

Γ(1 + qβ)

∫ t

0

(t− s)qβ−1N(1 + ‖x‖Zh
)ds

≤ Γ(1 + β)C1−βNτ
qβ

βΓ(1 + qβ)
+

Γ(1 + β)C1−βNτ
qβ

βΓ(1 + qβ)
R,

and

‖F (t, x(t− h))‖ = ‖A−βAβF (t, x(t− h))‖ ≤ CN(1 + ‖x‖Zh
) ≤ NC(1 +R).

So

‖(Φx)(t)‖ ≤M(‖φ(0)‖+ ‖F (0, φ(−h))‖

+NC(1 +R) +
MqMB

Γ(1 + q)

√
τ2q−1

2q − 1
‖u‖Y

+
Mq

Γ(1 + q)
‖H‖ 1

l
R

(
1− l
q − l

)1−l

· τ q−l +
τ qM

Γ(1 + q)
Hg

+
Γ(1 + β)C1−βNτ

qβ

βΓ(1 + qβ)
+

Γ(1 + β)C1−βNτ
qβ

βΓ(1 + qβ)
R.

Now let ‖(Φx)(t)‖ < R, then

M(‖φ(0)‖+ ‖F (0, φ(−h))‖

+NC(1 +R) +
MqMB

Γ(1 + q)

√
τ2q−1

2q − 1
‖u‖Y

+
Mq

Γ(1 + q)
‖H‖ 1

l
R

(
1− l
q − l

)1−l

· τ q−l +
τ qM

Γ(1 + q)
Hg

+
Γ(1 + β)C1−βNτ

qβ

βΓ(1 + qβ)
+

Γ(1 + β)C1−βNτ
qβ

βΓ(1 + qβ)
R < R.
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Since the condition (H3), we can obtain

NC +
Mq

Γ(1 + q)
‖H‖ 1

l

(
1− l
q − l

)1−l

· τ q−l +
Γ(1 + β)C1−βNτ

qβ

βΓ(1 + qβ)
< 1,

then Φ maps the ball BR of radius R into itself.
Next we show that Φ is contraction on BR. For this, let us take x1, x2 ∈ BR, then

we get

‖Φx1(t)− Φx2(t)‖ ≤ ‖F (t, x1(t− s))− F (t, x2(t− s))‖

+

∫ t

0

(t− s)q−1Tq(t− s)‖G(s, x1(s− h))−G(s, x2(s− h))‖ds

+

∫ t

0

(t− s)q−1ATq(t− s)‖F (s, x1(s− h))− F (s, x2(s− h))‖ds

≤ ‖A−βAβF (t, x1(t− s)− F (s, x2(t− s))‖

+

∫ t

0

(t− s)q−1Tq(t− s)‖G(s, x1(s− h))−G(s, x2(s− h))‖ds

+

∫ t

0

‖(t− s)q−1A1−βTq(t− s)AβF (s, x1(s− h))− F (s, x2(s− h))‖ds

≤ LC‖x1 − x2‖Zh
+

∫ t

0

(t− s)q−1H(s)‖x1 − x2‖Zh
ds

+
Γ(1 + β)C1−βLτ

qβ

βΓ(1 + qβ)
‖x1 − x2‖Zh

≤ LC‖x1 − x2‖Zh
+

Mq

Γ(1 + q)
‖H‖ 1

l

(
1− l
q − l

)1−l

· τ q−l‖x1 − x2‖Zh

+
Γ(1 + β)C1−βLτ

qβ

βΓ(1 + qβ)
‖x1 − x2‖Zh

=

(
LC +

Mq

Γ(1 + q)
‖H‖ 1

l

(
1− l
q − l

)1−l

· τ q−l +
Γ(1 + β)C1−βLτ

qβ

βΓ(1 + qβ)

)
‖x1 − x2‖Zh

.

Since the condition (H3), we can obtain(
LC +

Mq

Γ(1 + q)
‖H‖ 1

l
R

(
1− l
q − l

)1−l

· τ q−l +
Γ(1 + β)C1−βLτ

qβ

βΓ(1 + qβ)

)
< 1,

then Φ has a unique fixed point in BR.

4. Controllability of system (2.1)

Define the linear operator L from Z to V by

Lp =

∫ τ

0

(τ − s)q−1Tq(τ − s)p(s)ds.
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Let N0(L) be the null space of the operator L, which is a closed subspace in Z and its
orthogonal space is N⊥0 (L). Denote the range of operator B by R(B) and its closure

by R(B).
Assumption. We impose the following condition to prove the results:

(H4) T(t) is compact for every t ≥ 0.

(H5) For each p ∈ Z there exists a function q ∈ R(B) such that Lp = Lq.
Clearly, assumption (H5) implies that for any p ∈ Z there exists a function q ∈

R(B) such that L(p − q) = 0. Hence p − q = n ∈ N0(L) which implies that Z =

N0(L) ⊕ R(B). Therefore, we can define a linear and continuous mapping P from

N⊥0 (L) into R(B) as Pu∗ = q∗, where q∗ is the unique minimum norm element in

{u∗ +N0(L)}
⋂
R(B), that is

‖Pu∗‖ = ‖q∗‖ = min{‖v‖ : v ∈ {u∗ +N0(L)}
⋂
R(B)}.

From (H5) it follows that for each u∗ ∈ N⊥0 (L), the set {u∗+N0(L)}
⋂
R(B) is not

empty. Moreover, for each constant C1 and z ∈ Z, there has a unique decomposition
z = n+q∗. Thus for each z ∈ Z and corresponding n ∈ N0(L), the following inequality
holds ‖n‖Z ≤ (1 + C1)‖z‖Z for some constant C1[20].

Define the operator K : Z → Z as

Kz(t) =

∫ t

0

(t− s)q−1Tq(t− s)z(s)ds.

Let M0 be the subspace of Zh such that

M0 =

{
m ∈ Zh : m(t) = (Kn)(t), n ∈ N0(L), 0 ≤ t ≤ τ ;

m(t) = 0, −h ≤ t ≤ 0,

}
. (4.1)

Note that m(τ) = 0, for all m ∈M0.
For each mild solution x(·) of system (2.1) with control u, we can define an operator

fx : M0 →M0 as

fx(m) =

{
Kn, 0 ≤ t ≤ τ ;
0, −h ≤ t ≤ 0,

(4.2)

where n is given by the unique decomposition

z = n+ q∗, z ∈ Z, n ∈ N0(L), q ∈ R(B). (4.3)

Theorem 4.1. Under assumption (H5) the fractional order system

x(t) = Sq(t)(φ(0)+F (0, φ(−h)))−F (t, x(t−h))+

∫ t

0

(t−s)q−1Tq(t−s)Bu(s)ds (4.4)

is approximately controllable.
Proof. Let x(t) be the state value of system (4.4) at time t corresponding to the
control u. The system (4.4) is said to be approximately controllable in time interval
[0, τ ], if for every desired final state ζ and ε > 0 there exists a control function u ∈ Y
such that the solution of (4.4) satisfies ‖x(τ)− ζ‖ < ε.

Since the domain D(A) of the operator A is dense in V [21], to prove this, let us
take ζ ∈ D(A), then ζ − Sq(τ)(φ(0) + F (0, φ(−h))) + F (τ, x(τ − h)) ∈ D(A). It can
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be seen that there exists some p ∈ C1([0, τ ];V ) such that

η =

∫ τ

0

(τ − s)q−1Tq(τ − s)p(s)ds,

where

η = ζ − Sq(τ)(φ(0) + F (0, φ(−h))) + F (τ, x(τ − h)).

The assumption (H5) implies that there exists a function q ∈ R(B) such that the
following equality holds

η =

∫ τ

0

(τ − s)q−1Tq(τ − s)p(s)ds =

∫ τ

0

(τ − s)q−1Tq(τ − s)q(s)ds.

Since q ∈ R(B), for a given ε > 0 there exists a control function uε in Y such that

‖Buε − q‖ <
(

Mτ q

Γ(1 + q)

)−1

ε.

Put

ηε =

∫ τ

0

(τ − s)q−1Tq(τ − s)Buε(s)ds,

ζε = ηε − Sq(τ)(φ(0) + F (0, φ(−h))) + F (τ, x(τ − h)).

Then

‖ζ − ζε‖ = ‖η − ηε‖

= ‖
∫ τ

0

(τ − s)q−1Tq(τ − s)p(s)ds−
∫ τ

0

(τ − s)q−1Tq(τ − s)Buε(s)ds‖

≤
∫ τ

0

(τ − s)q−1Tq(τ − s)‖Buε(s)− q(s)‖ds

< ε.

Since ε is arbitrary, we can obtain that for every desired final state ζ and ε > 0 there
exists a control function uε ∈ Y such that solution of (4.4) satisfies

‖x(τ)− ζ‖ < ε.

Lemma 4.1. Under the assumption (H1), (H2) and (H4), the operator fx has a fixed
point m0 in the set M0 if

Mq(1 + C1)‖H‖ 1
l

Γ(1 + q)

(
1− l
q − l

)1−l

τ q−l < 1. (4.5)

Proof. Let Br = {z ∈ M0 : ‖z‖Zh
≤ r} for some positive number r. First, we show

that fx maps Br to Br itself. If this is not true, then for each positive number r, there
exists a function m ∈ Br, such that fx(m) is not the element of Br, i.e. ‖fx(m)‖ > r.
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On the other hand, from (H1), (H2), Lemma 3.1, Lemma 3.2 and (4.3), we have

r < ‖fx(m)‖ = ‖Kn‖ ≤
∫ t

0

(t− s)q−1‖Tq(t− s)‖‖n(s)‖ds

=

∫ t

0

(t− s)q−1‖Tq(t− s)‖(1 + C1)

‖G(s, (x+m)(s− h))−AF (s, (x+m)(s− h))‖ds

≤ (1 + C1)

∫ t

0

(t− s)q−1‖Tq(t− s)‖(‖G(s, (x+m)(s− h))

−G(s, 0) +G(s, 0)‖+ ‖A1−βAβF (s, (x+m)(s− h))‖)ds

≤ Mq(1 + C1)

Γ(1 + q)

∫ t

0

(t− s)q−1H(s)‖x+m‖Zh
ds+

Mq(1 + C1)

Γ(1 + q)

∫ t

0

(t− s)q−1Hgds

+
Mq(1 + C1)

Γ(1 + q)

∫ t

0

(t− s)q−1‖A1−βTq(t− s)AβF (s, (x+m)(s− h))‖ds

≤ Mq(1 + C1)

Γ(1 + q)

∫ t

0

(t− s)q−1H(s)(‖x‖Zh
+ ‖m‖Zh

)ds+
Mq(1 + C1)Hg

Γ(1 + q)

τ q

q

+
Γ(1 + β)qC1−β(1 + C1)

Γ(1 + qβ)

∫ t

0

(t− s)−q(1−β)(t− s)q−1N(1 + ‖x‖Zh
)ds

≤ Mq(1 + C1)τ q−l

Γ(1 + q)
‖H‖ 1

l
‖x‖Zh

(
1− l
q − l

)1−l

+
Mq(1 + C1)τ q−l

Γ(1 + q)
‖H‖ 1

l
‖m‖Zh

(
1− l
q − l

)1−l

+
Mq(1 + C1)Hgτ

q

Γ(1 + q)
+
C1−βΓ(1 + β)Nτ qβ(1 + C1)

βΓ(1 + qβ)

+
C1−βΓ(1 + β)Nτ qβ(1 + C1)

βΓ(1 + qβ)
‖x‖Zh

≤ Mq(1 + C1)τ q−l

Γ(1 + q)
‖H‖ 1

l

(
1− l
q − l

)1−l

‖x‖Zh
+
Mq(1 + C1)τ q−l

Γ(1 + q)
‖H‖ 1

l

(
1− l
q − l

)1−l

r

+
Mq(1 + C1)Hgτ

q

Γ(1 + q)
+
C1−βΓ(1 + β)Nτ qβ(1 + C1)

βΓ(1 + qβ)

+
C1−βΓ(1 + β)Nτ qβ(1 + C1)

βΓ(1 + qβ)
‖x‖Zh

.

Dividing both side by r and taking limit as r → +∞, we get

Mq(1 + C1)‖H‖ 1
l

Γ(1 + q)

(
1− l
q − l

)1−l

τ q−l ≥ 1, (4.6)

which is a contradiction to (4.5). Hence fx maps Br into itself.
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Next we show that fx is a compact operator. By assumption (H4) the semigroup
is compact. Hence Tq(t) is also compact (see lemma 3.4 [20]). This implies that the
integral operator K and hence fx are compact.

Then by the Schauder fixed point theorem fx has fixed pointm0 such that fx(m0) =
Kn = m0. This completes the proof of Lemma 4.1.
Theorem 4.2. The fractional neutral differential control system (2.1) is approxi-
mately controllable under the conditions (H1)-(H5) and (4.5).
Proof. Let x(·) be the mild solution of the following system given by

x(t) =


Sq(t)(φ(0) + F (0, φ(−h)))− F (t, x(t− h))

+

∫ t

0

(t− s)q−1Tq(t− s)Bu(s)ds, t ∈ [0, τ ];

φ(t), t ∈ [−h, 0].

(4.7)

Now, we have to prove that y = x + m0 is the mild solution of the following system
given by{

Dq
t (y(t) + F (t, y(t− h)) = Ay(t) + (Bu− q)(t) +G(t, y(t− h)) t ∈ [0, τ ];

y(t) = φ(t), t ∈ [−h, 0].

(4.8)
From (4.3), we have

G(t, (x+m)(t− h))−AF (t, (x+m)(t− h)) = n(t) + q(t).

Operating K on both sides at m = m0 (a fixed point of fx) and using the definition
of M0, we get

K(G(t, (x+m0)(t− h))−AF (t, (x+m0)(t− h))) = K(n(t) + q(t)) = m0(t) +Kq(t),

adding x(·) on both sides, we get

x(t) +K(G(t, (x+m0)(t− h))−AF (t, (x+m0)(t− h))) = m0(t) +Kq(t) + x(t),

then

x(t) +

∫ t

0

(t− s)q−1Tq(t− s)(G(s, (x+m0)(s− h))−AF (s, (x+m0)(s− h)))ds

= x(t) +m0(t) +

∫ t

0

(t− s)q−1Tq(t− s)q(s)ds.

According to (4.7), so we have

x(t) +m0(t) = Sq(t)(φ(0) + F (0, φ(−h)))− F (t, x(t− h))

+

∫ t

0

(t− s)q−1Tq(t− s)(G(s, (x+m0)(s− h))−AF (s, (x+m0)(s− h)))ds

+

∫ t

0

(t− s)q−1Tq(t− s)(Bu(s)− q(s))ds.

This implies that y(t) = x(t)+m0(t) is the mild solution of (4.7) with control Bu−q.
Moreover, since m0(0) = m0(τ) = 0, we have

y(0) = x(0) +m0(0) = x(0) = φ(0),
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y(τ) = x(τ) +m0(τ) = x(τ).

Further, since q ∈ R(B) there exists a v ∈ Y such that ‖Bv − q‖ ≤ ε for any given
ε > 0.

Let xw(·) be the mild solution of the control system (2.1) corresponding to the
control w = u− v. Then we can easily prove that

‖y(τ)− xw(τ)‖ = ‖x(τ)− xw(τ)‖ =

‖Sq(τ)(φ(0) + F (0, φ(−h)))− F (τ, x(τ − h)) +

∫ τ

0

(τ − s)q−1Tq(τ − s)(Bu(s)− q(s))ds

+

∫ τ

0

(τ − s)q−1Tq(τ − s)(G(s, (x+m0)(s− h))−AF (s, (x+m0)(s− h)))ds

− Sq(τ)(φ(0) + F (0, φ(−h)) + F (τ, x(τ − h))−
∫ τ

0

(τ − s)q−1Tq(τ − s)(Bu(s)−Bv(s))ds

−
∫ τ

0

(τ − s)q−1Tq(τ − s)(G(s, (x+m0)(s− h))−AF (s, (x+m0)(s− h)))ds‖

= ‖
∫ τ

0

(τ − s)q−1Tq(τ − s)(Bv(s)− q(s))ds‖ < Mτ q

Γ(1 + q)
ε.

This implies that for every desired final state ζ and ε > 0 there exists a control
function u− v ∈ Y such that the solution of (2.1) xw(·) satisfies

‖xw(τ)− ζ‖ = ‖xw(τ)− x(τ)− ζ + x(τ)‖ < ‖xw(τ)− x(τ)‖+ ‖x(τ)− ζ‖

≤ qτ q

Γ(1 + q)
ε+ ε <

(
qτ q

Γ(1 + q)
+ 1

)
ε.

Hence, the control system (2.1) is approximately controllable.
Remark 4.1. If the system is without F (t, x(t − h)), then the main results of [16]

are obtained under the condition Mlτq(1+C)
Γ(1+q) < 1 as a corollary to Theorem 4.2.

5. Example

As an application of Theorem 4.2, we consider the following system:

∂
2
3

∂t
2
3

[z(t, x) + F (t, z(t− h, x))] =
∂2

∂x2
z(t, x)

+Bu(t) +G(t, z(t− h, x)),

0 ≤ t ≤ τ, 0 ≤ x ≤ π,
z(t, 0) = z(t, π) = 0,

z(t, x) = φ(t, x),−h ≤ t ≤ 0.

(5.1)

To write system (5.1) to the form of (2.1), let V = L2(0, π) and A defined by Af = f
′′

with domain

D(A) = {f(·) ∈ V : f, f
′

absolutely continuous, f
′′ ∈ V, f(0) = f(π) = 0}.
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Then A generates a uniformly bounded analytic semigroup which satisfies the con-
dition (H4). Furthermore, A has a discrete spectrum, the eigenvalues are −n2, n ∈ N,
with the corresponding normalized eigenvectors zn(x) = (2/π)1/2sin(nx). Then the
following properties hold.

(i) If f ∈ D(A), then Af =

∞∑
n=1

n2〈f, zn〉zn.

(ii) For each f ∈ X, A− 1
2 f =

∞∑
n=1

1

n
〈f, zn〉zn.

In particular, ‖A− 1
2 ‖ = 1.

(iii) The operator A
1
2 is given by A

1
2 f =

∞∑
n=1

n〈f, zn〉zn on the space

D(A
1
2 ) = {f(·) ∈ X,A 1

2 f ∈ X}.

If the conditions (H1)− (H5) and (4.5) are satisfied, then the approximate control-
lability of the system (5.1) follows from Theorem 4.2.
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