
Fixed Point Theory, 17(2016), No. 2, 477-494

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

A CODE SPACE FOR A GENERALIZED IFS

FILIP STROBIN∗ AND JAROS LAW SWACZYNA∗∗

∗Institute of Mathematics, Jan Kochanowski University in Kielce, Kielce, Poland
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Abstract. We study the concept of a code (or shift) space for a generalized iterated function system

(GIFS in short). We prove that relations between GIFSs and their code spaces are analogous to the
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Key Words and Phrases: Fractal, iterated function system, generalized iterated function system,

fixed point, code space, shift space, connectedness.
2010 Mathematics Subject Classification: 28A80, 37C25, 37C70, 47H10.

1. Introduction

Let (X, d) be a metric space and m ∈ N. By Xm we denote the Cartesian product
of m copies of X. We consider it as a metric space with the maximum metric dm:

dm((x1, . . . , xm), (y1, . . . , ym)) := max{d(x1, y1), . . . , d(xm, ym)}.
If ϕ : [0,∞)→ [0,∞) is a function, then a function f : Xm → X is called a generalized
ϕ-contraction, if the following condition holds

∀x,y∈Xm d(f(x), f(y)) ≤ ϕ(dm(x, y)).

If f : Xm → X if a generalized ϕ-contraction for a nondecreasing function ϕ :
[0,∞) → [0,∞) such that ϕk(t) → 0 for each t > 0 (ϕk is k’th iteration of ϕ), then
we say that f is a generalized Matkowski contraction.
Note that if the Lipschitz constant Lip(f) < 1, then f is a generalized Matkowski
contraction. Also if m = 1, then a generalized Matkowski contraction is called a
Matkowski contraction (cf. [6], [5]).

Remark 1.1. It is easy to see that if ϕ : [0,∞) → [0,∞) is nondecreasing, upper
semicontinuous and such that ϕ(t) < t for t > 0, then ϕk(t) → 0 for each t ≥ 0. In
particular, ”generalized ϕ-contractions” in the sense of the paper [15] are generalized
Matkowski contractions. The converse is not true (cf. [5]).
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By K(X) we denote the metric space of all nonempty and compact subsets of X,
endowed with the Hausdorff metric H:

H(A,B) := max

{
sup
x∈B

(
inf
y∈A

d(x, y)

)
, sup
x∈A

(
inf
y∈B

d(x, y)

)}
Definition 1.2. If f1, . . . , fn : Xm → X are generalized Matkowski contractions,
then the finite sequence S = (f1, . . . , fn) is called a generalized iterated function
system of order m (GIFS in short).
If S = (f1, . . . , fn) is a GIFS of order m, then by FS we denote the mapping
FS : K(X)m → K(X) defined by:

FS(D1, . . . , Dm) := f1(D1 × . . .×Dm) ∪ . . . ∪ fn(D1 × . . .×Dm)

Remark 1.3. In view of Remark 1.1, the above definition of a GIFS is a bit more
general than the one given in [15].

Clearly, GIFSs of order 1 are classical iterated function systems (IFSs in short),
which have been deeply considered in the last 30 years (see, a.e., [1], [2], [3], [4]).

In the recent papers [7], [8], [9], [10],[11], [12], [14], [15] and [16], the theory of
GIFSs was developed. In particular, the following generalization of a classical result
holds ([8], [10], [11], [15]):

Theorem 1.4. Assume that (X, d) is a complete metric space and S is a GIFS of
order m. Then there exists a unique set AS ∈ K(X) such that

FS(AS , . . . , AS) = AS .

Moreover, for every D1, . . . , Dm ∈ K(X), the sequence of iterates (Dk) defined by

Dm+k := FS(Dk, . . . , Dk+m−1),

converges (with respect to the Hausdorff metric) to AS .

Remark 1.5. In fact, this result is a slight generalization of the first part of [15,
Theorem 3.11] (see Remarks 1.1 and 1.3). However the proof is the same so we skip
it.

Sets AS which are generated by GIFSs in the above sense will be called attractors
or fractals (generated by GIFS S). We will always denote by AS the attractor of a
GIFS S.

Also, in [16] it is shown that GIFSs give us a new class of fractals, but does not
give us everything:

Theorem 1.6. For any m > 1 and α < 1, there exists a Cantor set C(m,α) ⊂ R2

such that

(i) there exists a GIFS S = (f1, . . . , f4) on R2 of order m such that Lip(fi) ≤ α
and C(m,α) is the attractor of S;

(ii) C(m,α) is not an attractor of any GIFS S on R2 of order m− 1.

In particular, taking m = 2, we get a Cantor subset of a plane which is an attractor
of some GIFS and is not an attractor of any IFS.
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Theorem 1.7. There is a Cantor set C ⊂ R2 which is not an attractor of any GIFS
on R2.

In this paper we make a further study on GIFSs. We focus our attention on defining
a code space for GIFSs and on the problem of connectedness of attractors of GIFSs
(these topics were partially considered in [9] and [12]). More precisely:
In Section 2 we define and investigate a code (or shift) space for a GIFS. Note that
in [9] (and [12]) there is another definition of a code space for GIFSs given. Our
construction is a bit different (but equivalent) to that one but has the advantage that
some further considerations can be handled in a bit technically simpler ways than in
cited papers (at least, we believe that it is so). Also, in [9] there is only the case
m = 2 considered.
Section 3 is devoted to connections between GIFSs and their code spaces. Note that
many results can be considered as extended counterparts of that given in [9] (we do
not restrict to the case m = 2 and to GIFSs consisting of Lipschitzian mappings), but
some of them are completely new. In particular, we will prove a counterpart of the
following one ({1, . . . , n}N is the space of all sequences of elements from {1, . . . , n}):

Theorem 1.8. Assume that S = (f1, . . . , fn) is an IFS on a complete metric space
X. Then for every sequence α = (α1, α2, . . .) ∈ {1, . . . , n}N, there is xα ∈ X such
that ⋂

k∈N
fα1 ◦ . . . ◦ fαk(AS) = {xα}.

Moreover,

(i) the mapping {1, . . . , n}N 3 α→ xα ∈ X is continuous;
(ii) AS = {xα : α ∈ {1, . . . ., n}N};
(iii) for every α = (α1, α2, . . .) ∈ {1, . . . , n}N and D ∈ K(X), the sequence of

compact sets
(fα1◦. . .◦fαk(D))k∈N converges to {xα} (with respect to the Hausdorff metric).
In particular,

(iv) for every α = (α1, α2, . . .) ∈ {1, . . . , n}N and x ∈ X, lim
k→∞

fα1 ◦ . . . ◦ fαk(x) =

xα.

In Section 5 we use the concepts developed in previous sections to study the prob-
lem of connectedness of attractors. Again, some of our results are extensions of that
given in [12].

At the end of this section let us state some denotations concerned with sequences.
If α is a finite sequence, then by |α| we denote the length of α (i.e., if α = (α1, . . . , αk),
then |α| = k; also, we set |∅| = 0). If α = (α1, . . . , αk) and m ≤ k, then we denote
α|m = (α1, . . . , αm); also we set α|0 = ∅. If α is an infinite sequence, then α|m has
an analogous meaning. If α = (α1, . . . , αk), then we set α̂ β = (α1, . . . , αk, β), the
concatenation of α and β.

2. A generalized code space

In this section we assume that n,m ∈ N are fixed.
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At first, let us define Ω1,Ω2, . . . by the following inductive formula:

Ω1 := {1, . . . , n}

Ωk+1 := Ωk × . . .× Ωk︸ ︷︷ ︸
m times

for k ≥ 1

Then for every k ∈ N, let

kΩ := Ω1 × . . .× Ωk

and define

Ω< :=
⋃
k∈N

kΩ

and

Ω := Ω1 × Ω2 × Ω3 × . . .
Note that the above definitions depend on n and m, but we decided not to write it
so the notation remains more clear.
The space Ω is called a code space, and we consider it as a metric space with the
natural metric (here α = (α1, α2, . . .) and β = (β1, β2, . . .)):

d(α, β) :=
∑
i∈N

di(α
i, βi)

(m+ 1)i
,

where each di is a discrete metric on Ωi. Clearly, Ω is a compact space (in fact, it is
a Cantor space).

Remark 2.1. Let us note that while defining metric on Ω, we could give it any of
the form d(α, β) =

∑
i∈N

qidi(α
i, βi), where q ∈ (0, 1). However, in view of Proposition

2.4, we need q such that q < 1
m . That is why we decided to choose q = 1

m+1 .

Remark 2.2. Note that in the case m = 1,

Ω = {1, . . . , n} × {1, . . . , n} × {1, . . . , n} × . . .

and it is the standard code space for IFS consisting of n mappings.

Remark 2.3. In [9], the code space is defined by:

Ω′ = {1, . . . , n1} × {1, . . . , n2} × {1, . . . , n3} × . . . ,

where nk = n2k−1

, k ≥ 1. Clearly, nk is the number of elements of Ωk in the case
when m = 2 (this is the only case considered in [9]). On one hand our notation is
more technically complicated, but on the other (we believe that) it is more natural in
dealing with some further problems.

For α ∈ Ω<, let us define V (α) := {β ∈ Ω : α ≺ β} (the notation α ≺ β means
that the sequence β is an extension of α). It is an easy and well-known fact that the
family {V (α) : α ∈ Ω<} is a base of the considered topology on Ω.

If k > 1 and

α = (α1, . . . , αk) = (α1, (α2
1, . . . , α

2
m), . . . , (αk1 , . . . , α

k
m)) ∈ kΩ
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then for any i ∈ {1, . . . ,m}, we set

α(i) := (α2
i , α

3
i , . . . , α

k−1
i ). (2.1)

Clearly, α(i) ∈ k−1Ω.
If α ∈ Ω, we define α(i) ∈ Ω in an analogous way.
Now we will define a particular family of mappings. At first, define τ1, . . . , τn : Ωm →
Ω in the following way (note that Ωm is the Cartesian product of m copies of Ω): if
α1 = (α1

1, α
2
1, α

3
1, . . .), . . . , αm = (α1

m, α
2
m, α

3
m, . . .), then set

τi(α1, . . . , αm) := (i, (α1
1, α

1
2, . . . , α

1
m), (α2

1, α
2
2, . . . , α

2
m), . . .).

The following result (which is an extended counterpart of [9, Lemma 3.2]) shows
that (τ1, . . . , τn) can be considered as a canonical GIFS on Ω.

Proposition 2.4. SΩ := (τ1, . . . , τn) is a GIFS on Ω such that Lip(τi) ≤ m
m+1 and

Ω is its attractor.

Proof. Take any i ∈ {1, . . . , n}, and, for simplicity, set τ = τi. Let

α = (α1, . . . , αm), β = (β1, . . . , βm) ∈ Ωm.

Then (we denote τ(α) = ((τ(α))1, (τ(α))2, . . . ))

d(τ(α), τ(β)) =
∑
j∈N

dj((τ(α))j , (τ(β))j)

(m+ 1)j

=
d1((τ(α))1, (τ(β))1)

m+ 1
+
∑
j≥2

dj((τ(α))j , (τ(β))j)

(m+ 1)j

=
d1(i, i)

m+ 1
+
∑
j∈N

dj+1((τ(α))j+1, (τ(β))j+1)

(m+ 1)j+1
=

1

m+ 1

∑
j∈N

dj+1((τ(α))j+1, (τ(β))j+1)

(m+ 1)j

=
1

m+ 1

∑
j∈N

dj+1((αj1, α
j
2, . . . , α

j
m), (βj1, β

j
2, . . . , β

j
m))

(m+ 1)j

=
1

m+ 1

∑
j∈N

max{dj(αj1, β
j
1), dj(α

j
2, β

j
2), . . . , dj(α

j
m, β

j
m)}

(m+ 1)j

≤ 1

m+ 1

∑
j∈N

dj(α
j
1, β

j
1)

(m+ 1)j
+
∑
j∈N

dj(α
j
2, β

j
2)

(m+ 1)j
+ . . .+

∑
j∈N

dj(α
j
m, β

j
m)

(m+ 1)j


≤ m

m+ 1
max

∑
j∈N

dj(α
j
1, β

j
1)

(m+ 1)j
,
∑
j∈N

dj(α
j
2, β

j
2)

(m+ 1)j
, . . . ,

∑
j∈N

dj(α
j
m, β

j
m)

(m+ 1)j


=

m

m+ 1
max{d(α1, β1), d(α2, β2), . . . , d(αm, βm)} =

m

m+ 1
dm(α, β).

We proved the first part of the proposition. Now we will show that ASΩ = Ω. Clearly,⋃
i∈{1,...,m}

τi(Ω) ⊂ Ω. Take any α = (α1, α2, . . .) ∈ Ω. It can be easily seen that

α = τα1(α(1), α(2), . . . , α(m)), hence α ∈ τα1(Ω×. . .×Ω) ⊂
⋃

i∈{1,...n}
τi(Ω×. . .×Ω). �
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Now we will define a certain family of mappings (we will use them in next parts
of the paper). At first, let Π1,Π2, . . . be a family of sets defined by the following
inductive formula:

Π1 := Ω× . . .× Ω︸ ︷︷ ︸
m times

Πk+1 := Πk × . . .×Πk︸ ︷︷ ︸
m times

, for k ≥ 1

For every k ∈ N, we will define a family of mappings {τα : Πk → Ω : α ∈ kΩ} by
induction with respect to k. For k = 1 we have already defined this family - this is
just {τ1, . . . , τn}. For α = (α1, α2, . . . αk+1) ∈ k+1Ω, we set τα : Πk+1 → Ω by

τα(β1, . . . , βm) := τα1(τα(1)(β1), . . . , τα(m)(βm)).

3. Generalized code space and GIFSs

In this section we assume that we work with some fixed GIFS S = (f1, . . . , fn) of
order m, on a complete metric space (X, d).
Symbols Ωk, kΩ, Ω<, Ω keep their meaning from previous section.

At first, we define the family of spaces Xk, k ∈ N, by the following inductive
formula:

X1 := X × . . .×X︸ ︷︷ ︸
m times

Xk+1 := Xk × . . .×Xk︸ ︷︷ ︸
m times

, for k ≥ 1

We consider each Xk as a metric space with maximum metric. It is easy to see that

for any k ∈ N, the space Xk is isometric to Xmk

, endowed with the maximum metric.
We will define the family of functions {fα : Xk → X : α ∈ kΩ} for each k ∈ N

inductively (the induction is with respect to k). For k = 1 this is just the family
{f1, . . . , fn}. Assume that we have defined the functions fα for α ∈ kΩ. Then for
every α = (α1, . . . , αk, αk+1) ∈ k+1Ω, set

fα(x1, . . . , xm) := fα1(fα(1)(x1), . . . , fα(m)(xm)),

where (x1, . . . , xm) ∈ Xk × . . .×Xk = Xk+1.

Remark 3.1. Note that the family {τα : α ∈ <Ω} from previous section is constructed
in the same way.

Remark 3.2. Clearly, in the case of IFSs (i.e., in the case when m = 1), kΩ =
{1, . . . , n}k and if α = (α1, . . . , αk) ∈ kΩ, then fα = fα1 ◦ . . . ◦ fαk , hence introduced
families of mappings are natural generalizations of such compositions. In the rest
of this section we will show that, using this families, we can prove a counterpart of
Theorem 1.8.
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Now we switch our attention to the attractor AS of S. At first, we will define the
family of sets Ak, k ∈ N, by the following inductive formula:

AS1 := AS × . . .×AS︸ ︷︷ ︸
m times

ASk+1 := ASk × . . .×ASk︸ ︷︷ ︸
m times

, for k ≥ 1.

By an easy induction one can show that for each i ∈ N, ASi ⊂ Xi, and diam(ASi ) =
diam(AS).

Now for every k ∈ N and every α ∈ kΩ, define

Aα := fα(ASk ). (3.1)

By definition, AS = f1(AS × . . .×AS) ∪ . . . ∪ fn(AS × . . .×AS) = A1 ∪ . . . ∪An.
It turns out that the following (extended counterpart of [9, Theorem 3.1 (1) and (4)])
also holds (the case m = 1 is easy and well known):

Proposition 3.3. For every k ∈ N and every α ∈ kΩ,

Aα =
⋃

β∈Ωk+1

Aαˆβ .

Proof. We will proceed inductively. At first, fix any i = 1, . . . , n. We have⋃
β∈Ω2

Aiˆβ =
⋃
β∈Ω2

A(i,β) =
⋃
β∈Ω2

f(i,β)(A
S
2 )

=
⋃

(β1,...,βm)∈Ω2

fi
(
fβ1(AS1 )× . . .× fβm(AS1 )

)

= fi

 ⋃
(β1,...,βm)∈Ω2

(
fβ1

(AS1 )× . . .× fβm
(AS1 )

)
= fi

 ⋃
β1∈Ω1

⋃
β2∈Ω1

. . .
⋃

βm∈Ω1

(
fβ1(AS1 )× . . .× fβm(AS1 )

)
= fi

 ⋃
β1∈Ω1

fβ1
(AS1 )

×
 ⋃
β2∈Ω1

fβ2
(AS1 )

× . . .×
 ⋃
βm∈Ω1

fβm
(AS1 )


= fi(AS × . . .×AS) = fi(A

S
1 ) = Ai.

Now assume that thesis holds for some k ∈ N.
Take any α = (α1, . . . , αk+1) ∈ k+1Ω. We have⋃

β∈Ωk+2

Aαˆβ =
⋃

β∈Ωk+2

A(α1,...,αk+1,β) =
⋃

β∈Ωk+2

f(α1,...,αk+1,β)(A
S
k+2)

=
⋃

β∈Ωk+2

fα1

(
f(α1,...,αk+1,β)(1)(A

S
k+1)× . . .× f(α1,...,αk+1,β)(m)(A

S
k+1)

)
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=
⋃

(β1,...,βm)∈Ωk+2

fα1

(
f(α2

1,...,α
k+1
1 ,β1)(A

S
k+1)× . . .× f(α2

m,...,α
k+1
m ,βm)(A

S
k+1)

)

= fα1

 ⋃
(β1,...,βm)∈Ωk+2

(
f(α2

1,...,α
k+1
1 ,β1)(A

S
k+1)× . . .× f(α2

m,...,α
k+1
m ,βm)(A

S
k+1)

)
= fα1

 ⋃
β1∈Ωk+1

. . .
⋃

βm∈Ωk+1

(
f(α2

1,...,α
k+1
1 ,β1)(A

S
k+1)× . . .× f(α2

m,...,α
k+1
m ,βm)(A

S
k+1)

)
= fα1

 ⋃
β1∈Ωk+1

f(α2
1,...,α

k+1
1 ,β1)(A

S
k+1)

× . . .×
 ⋃
βm∈Ωk+1

f(α2
m,...,α

k+1
m ,βm)(A

S
k+1)


= fα1

 ⋃
β1∈Ωk+1

f(α2
1,...,α

k+1
1 )ˆβ1

(ASk+1)

× . . .×
 ⋃
βm∈Ωk+1

f(α2
m,...,α

k+1
m )ˆβm

(ASk+1)


= fα1

 ⋃
β1∈Ωk+1

A(α2
1,...,α

k+1
1 )ˆβ1

× . . .×
 ⋃
βm∈Ωk+1

A(α2
m,...,α

k+1
m )ˆβm


= fα1

(
A(α2

1,...,α
k+1
1 ) × . . .×A(α2

m,...,α
k+1
m )

)
= fα1

(
Aα(1) × . . .×Aα(m)

)
= fα1

(
fα(1)(A

S
k )× . . .× fα(m)(A

S
k )
)

= fα(ASk+1) = Aα. �

The following lemma will be useful in further considerations.

Lemma 3.4. Let D ⊂ X be a bounded set and define sequence (Dk)k∈N by the
following inductive formula:

D1 := D × . . .×D︸ ︷︷ ︸
m times

Dk+1 := Dk × . . .×Dk︸ ︷︷ ︸
m times

, for k ≥ 1.

Then for any α = (α1, α2, . . .) ∈ Ω, diam(fα|k(Dk))→ 0.

Proof. Let ϕ be a function which witnesses to the fact that f1, . . . , fn are generalized
Matkowski contractions. We will show, by induction, that for any k ∈ N, and any
α ∈ kΩ, diam(fα(Dk)) ≤ ϕ(k)(diam(D)). For i = 1, . . . , n, we have

diam(fi(D1)) ≤ ϕ(diam(D1)) = ϕ(diam(D)).

Now let us assume that for some k ∈ N and every α ∈ kΩ,

diam(fα(Dk)) ≤ ϕ(k)(diam(D)).

Then for α ∈ k+1Ω,

diam(fα(Dk+1)) = diam
(
fα1

(
fα(1)(Dk)× . . .× fα(m)(Dk)

))
≤ ϕ

(
diam

(
fα(1)(Dk)× . . .× fα(m)(Dk)

))
= ϕ

(
max

{
diam

(
fα(1)(Dk)

)
, . . . ,diam

(
fα(m)(Dk)

)})
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≤ ϕ
(

max
{
ϕ(k)(diam(D)), . . . , ϕ(k)(diam(D))

})
= ϕ(k+1)(diam(D)).

In particular, for every α ∈ Ω, diam(fα|k(Dk)) ≤ ϕ(k)(diam(D)). As ϕ(k)(t) → 0 for
any t ≥ 0, our proof is complete. �

The above results show that first part of a generalization of Theorem 1.8 (which is
also an extended counterpart of [9, Theorem 3.1 (2) and (3)]) holds:

Proposition 3.5. For every α ∈ Ω, the sequence (Aα|k)k∈N is decreasing and
diam(Aα|k)→ 0. In particular, there exists xα ∈ X such that

⋂
k∈N

Aα|k = {xα}.

Proof. By Proposition 3.3, the sequence (Aα|k) is decreasing. Hence it is enough to
show that diam(Aα|k)→ 0, but this follows from Lemma 3.4 by setting D = AS . �

By the above result, we can define the mapping g : Ω→ X by

g(α) := xα,

where xα is the unique point of
⋂
k∈N

Aα|k .

Lemma 3.6. Let (Kk) be a decreasing sequence of compact subsets of X such that⋂
k∈NKk = {x} for some x ∈ X. Then for every open set U with x ∈ U , there is

k ∈ N such that Kk ⊂ U .

Proof. Since for every y /∈ U there exists k ∈ N such that y /∈ Kk, we have that

K1 \ U ⊂
⋃
k∈N

K1 \Kk.

Since sets K1 \Kk are open in K1 and K1 \ U is compact, there are k1, . . . , kr ∈ N
such that

K1 \ U ⊂
r⋃
i=1

K1 \Kki .

It is enough to take k = max{k1, . . . , kr}. �

The next result shows that a counterpart of (i) and (ii) of Theorem 1.8 holds (this
is also an extension of [9, Theorem 3.1 (7)]).

Theorem 3.7. The following conditions hold

(i) The mapping g is continuous;
(ii) g(Ω) = AS .

Proof. (i) Let α ∈ Ω and U ⊂ Ω be open, such that g(α) ∈ U . As {g(α)} =
⋂
k∈N

Aα|k

and (Aα|k)k, is decreasing sequence of compact sets, Lemma 3.6 implies that there is
k0 ∈ N such that Aα|k0

⊂ U . Hence for β ∈ V (α|k0
), we have that g(β) ∈ Aβ|k0

=

Aα|k0
⊂ U . This ends the proof of (i).

(ii) Take any α ∈ Ω. Then g(α) ∈
⋂
k∈N

Aα|k ⊂ Aα1 ⊂ AS . We proved that g(Ω) ⊂ AS .

Now let x ∈ AS . We have to construct proper α ∈ Ω such that g(α) = x. By
Proposition 3.5, it is enough to prove x ∈ Aα|k for any k ∈ N. We will proceed
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inductively. Since AS =
⋃

i=1,...,n

Ai, there exists some α1 ∈ {1, . . . , n} = Ω1 such that

x ∈ Aα1 .
Now let us assume that for some k ∈ N we defined α1 ∈ Ω1, . . . , α

k ∈ Ωk such that
for any l ≤ k, we have x ∈ A(α1,...,αl). By Proposition 3.3, there exists αk+1 ∈ Ωk+1

such that x ∈ A(α1,...,αk+1). Finally set α = (α1, α2, . . .). Then x ∈ Aα|k for any
k ∈ N and our proof is finished. �

Finally, we show that counterparts of (iii) and (iv) of Theorem 1.8 holds.

Theorem 3.8. For every α ∈ Ω and every closed and bounded set D ⊂ X,

fα|k(Dk)
H→ {g(α)}, where the sequence (Dk) is defined as in Lemma 3.4 (let us

note that Hausdorff metric may be used for closed and bounded sets).

Proof. Define

D′ := D ∪AS , D′1 = D′ × . . .×D′︸ ︷︷ ︸
m times

,

D′k+1 := D′k × . . .×D′k︸ ︷︷ ︸
m times

, for k ≥ 1.

Then for every k ∈ N,

g(α) ∈ Aα|k = fα|k(Ak) ⊂ fα|k(D′k).

On the other hand, by Lemma 3.4, diam(fα|k(D′k)) → 0 and
⋂
k∈N

fα|k(D′k) = {g(α)}.

In particular, for every r > 0 there is k0 ∈ N such that for k ≥ k0, diam(fα|k(D′k) < r.
In particular, fα|k(Dk) ⊂ fα|k(D′k) ⊂ B(g(α), r), where B(g(α), r) states for the open
ball. �

If x = (x1, . . . , xm) ∈ Xm, then we define the sequence (xk) by the following
inductive way:

x1 := x

xk+1 := (xk, . . . ,xk), for k ≥ 1

Clearly, xk ∈ Xk for every k ∈ N.

Corollary 3.9. For every x ∈ Xm and α ∈ Ω, we have that limk→∞ fα|k(xk) = g(α).

Proof. It simply follows from Theorem 3.8. Take D := {x1, . . . , xm}. Then for each
k ∈ N, xk ∈ Dk, where Dk is as in this Theorem. In particular, fα|k(xk) ∈ fα|k(Dk)
and the result follows. �

For the next result we need some further notation. If k ≥ 1 and

x = (x1, . . . , xmk , xmk+1, . . . , x2mk , . . . , x(m−1)mk+1, . . . , xmk+1) ∈ Xmk+1

,

then for every i ∈ {1, . . . ,m}, we set x(i) := (x(i−1)mk+1, . . . , ximk), the i-th block of

x. For every k ∈ N, let hk : Xmk → Xk be the ”most natural” bijection, i.e.,

h1(x1, . . . , xm) := (x1, . . . , xm)
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and, for x ∈ Xmk+1

,

hk+1(x) := (hk(x(1)), hk(x(2)), . . . , hk(x(m))).

Clearly, each hk is an isometry.
The next result is an extended counterpart of [9, Theorem 3.1 (5)] and a part of

[9, Theorem 3.1 (6)].

Proposition 3.10. For every k ∈ N and every α ∈ kΩ, there exists a unique
xα ∈ X such that fα(hk(xα, . . . , xα)) = xα. Moreover, xα ∈ Aα for every α ∈ Ω<
and {xα : α ∈ Ω<} is dense in AS .

Proof. We first show the existence and uniqueness of xα. For every k ∈ N and ev-

ery α ∈ kΩ, let f̃α := fα ◦ hk. Then f̃α : Xmk → X. Recall that we consider

Xmk

as metric space with maximum metric. It is enough to show that each f̃α is
a generalized Matkowski contraction - then we can use the fixed point theorem for
generalized Matkowski contractions proved in [15, Theorem 3.1(i)] (for weaker class
of contractions, but proof for generalized Matkowski contraction is the same).
Let ϕ be a function which witnesses to the fact that f1, . . . , fn are generalized
Matkowski contractions. We will prove that for any k ∈ N and any α ∈ kΩ,

∀
x,y∈Xmk d(f̃α(x), f̃α(y)) ≤ ϕ(k)(dm(x, y)). (3.2)

Choose any i ∈ {1, . . . , n}. We have for any x, y ∈ Xm,

d(f̃i(x), f̃i(y)) = d(fi(x), fi(y)) ≤ ϕ(dm(x, y)).

Hence the case k = 1 is true. Now assume that (3.2) is true for some k ≥ 1. For

α ∈ k+1Ω, we have for any x, y ∈ Xmk+1

(we denote the metrices on X, Xmk

and on

Xmk+1

by the same letter d),

d(f̃α(x), f̃α(y)) = d (fα(hk+1(x)), fα(hk+1(y)))

= d
(
fα1

(
fα(1)(hk(x(1))), . . . , fα(m)(hk(x(m)))

)
,

fα1

(
fα(1)(hk(y(1))), . . . , fα(m)(hk(y(m)))

))
= d

(
fα1

(
f̃α(1)(x(1)), . . . , f̃α(m)(x(m))

)
, fα1

(
f̃α(1)(y(1)), . . . , f̃α(m)(y(m))

))
≤ ϕ

(
max

{
d
(
f̃α(1)(x(1)), f̃α(1)(y(1))

)
, . . . , d

(
f̃α(m)(x(m)), f̃α(m)(y(m))

)})
≤ ϕ

(
max

{
ϕk(d(x(1), y(1))), . . . , ϕ(k)(d(x(m), y(m)))

})
= ϕ(ϕ(k)(d(x, y))) = ϕ(k+1)(d(x, y)).

Now we show that the element xα ∈ Aα for every α ∈ Ω<. Clearly,

SAS := (f1|AS , . . . , fn|AS )

is a GIFS, hence, by the uniqueness of xα, we see that xα ∈ AS . But then for α ∈ kΩ,
we have

xα = f̃α(xα, . . . , xα) = fα(hk(xα, . . . , xα)) ∈ fα(ASk ) = Aα.

Finally, let x ∈ AS . Then x = g(α) for some α ∈ Ω. Let U be any open set containing
x. Since {x} =

⋂
k∈NAα|k , by Lemma 3.6, there is k ∈ N such that Aα|k ⊂ U . But

then xα|k ∈ Aα|k ⊂ U . �
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The next result will complete the picture of GIFSs. Again, the case m = 1 is
known (and the case m = 2 and k = 1 is an extended counterpart of [9, Theorem
3.1 (8)]). Define the family of mappings {gk : Πk → Xk : k ∈ N} by the following
inductive formula:

g1(α1, . . . , αm) := (g(α1), . . . , g(αm))

gk+1(β1, . . . , βm) := (gk(β1), . . . , gk(βm)), k ≥ 1.

Theorem 3.11. For every k ∈ N and α ∈ kΩ, fα ◦ gk = g ◦ τα.

Proof. We will proceed inductively with respect to k. Let k = 1 and

α = (α1, . . . , αm) ∈ Ω× . . .× Ω.

Let (xk) be a sequence built as before Corollary 3.9 for some arbitrary taken x ∈ Xm.
Then:

fi ◦ g1(α) = fi (g(α1), . . . , g(αm)) = fi

(
lim
k→∞

(fα1|k(xk)), . . . , lim
k→∞

(fαm|k(xk))

)
lim
k→∞

(
fi(fα1|k(xk), . . . , fαm|k(xk))

)
= lim
k→∞

(fτi(α)|k+1
(xk+1)) = g(τi(α)) = g ◦ τi(α).

Now assume that for some k ∈ N we have the thesis and take any β ∈ k+1Ω and some
α = (α1, . . . , αm) ∈ Πk+1.
Then (we denote β = (β1, . . . , βk+1)) :

fβ ◦ gk+1(α) = fβ(gk(α1), . . . , gk(αm)) = fβ1

(
fβ(1)(gk(α1)), . . . , fβ(m)(gk(αm))

)
= fβ1

(
(fβ(1) ◦ gk)(α1), . . . , (fβ(m) ◦ gk)(αm)

)
= fβ1

(
(g ◦ τβ(1))(α1), . . . , (g ◦ τβ(m))(αm)

)
= fβ1

(
g(τβ(1)(α1)), . . . , g(τβ(m)(αm))

)
=
(
fβ1 ◦ g1

) (
τβ(1)(α1), . . . , τβ(m)(αm)

)
=
(
g ◦ τβ1

) (
τβ(1)(α1), . . . , τβ(m)(αm)

)
= g

(
τβ1(τβ(1)(α1), . . . , τβ(m)(αm)

)
= g(τβ(α)) = g ◦ τβ(α). �

Finally, we give an extension of counterpart of [9, Theorem 3.1 (9)]. We say that
a GIFS S is totally disconnected, if for every k ∈ N and every distinct α, β ∈ kΩ,
Aα∩Aβ = ∅. The following proposition gives us important informations about totally
disconnectedness of AS .

Proposition 3.12. A GIFS S is totally disconnected iff the mapping g is injective.

Proof. At first note that if x ∈ Aβ for some β ∈ Ω<, then x = g(α) for some α ∈ Ω
such that β ≺ α - this can be shown similarly as in the proof of Theorem 3.7 (ii).
Hence if for some distinct β1, β2 ∈ kΩ, there is x ∈ Aβ1∩Aβ2 , then for some α1, α2 ∈ Ω
with β1 ≺ α1 and β2 ≺ α2, x = g(α1) = g(α2). In particular, g is not injective. The
converse implication is obvious. �
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4. Application - connectedness of attractors of GIFSs

In this section we will study the problem of connectedness of attractors of GIFSs.
Main theorems will be implied by some general and abstract results connected with
properties of some compact spaces which admit certain families of compact sets.

A family of finite sequences F is called a tree, if for every α = (α1, . . . , αk) ∈ F\{∅},
α|k−1 ∈ F .
A tree F is called a pruned tree, if for every α ∈ F , there is an element β such that
α̂ β ∈ F .
A tree F is called a finitely splitting tree, if for every α ∈ F there are only finitely
many elements β such that α̂ β ∈ F .

If F is a tree, then an infinite sequence α is called a node of F , if for every k ∈ N,
α|k ∈ F .
Let X be a topological space and F be a pruned and finitely splitting tree. A family
{Dα : α ∈ F} of compact subsets of X is called a proper family (adjusted to F), if

(a) X = D∅;
(b) for every α ∈ F , Dα =

⋃
{β: α̂ β∈F}

Dα̂ β ;

(c) for every node α of F ,
⋂
k∈NDα|k is a singleton.

If X is a topological space and {Dα : α ∈ F} is a proper family of subsets of X, then
for every node α of F , by xα we denote the only element of

⋂
k∈NDα|k . Clearly, for

every x ∈ X, there is a node α of F such that x = xα.
It turns out that the notion of proper families is appropriate for our study:

Proposition 4.1. Assume that A is an attractor of some GIFS. Then A admits a
proper family of sets. Moreover, if A is connected, then A admits a proper family
consisting of connected sets.

Proof. Let (f1, . . . , fn) be a GIFS such that A = f1(A× . . .×A)∪ . . .∪fn(A× . . .×A).
For every α ∈ Ω<, let Aα be defined as in (3.1). Additionally, let A∅ = A. Since fα
are continuous, then each Aα is compact, and if A connected, then it is also connected.
Then Proposition 3.5 implies that the family {Aα : α ∈ Ω<} satisfies our needs. �

We skip an easy proof of the following

Lemma 4.2. Let (X, d) be a metric space and (Dk) be a decreasing family of compact
sets such that

⋂
k∈NDk is a singleton. Then diam(Dk)→0.

Lemma 4.3. Let (X, d) be a metric space and {Dα : α ∈ F} be a proper family of
subsets of X. Then max{diam(Dα) : α ∈ F , |α| = k} −→

k→∞
0.

Proof. For every k ∈ N, let ak = max{diam(Dα) : α ∈ F , |α| = k}. Clearly, (ak) is
nonincreasing. Assume on contrary that (ak) does not converge to 0 and let ε > 0
be such that ak ≥ ε for every k ∈ N. By induction, we will define a node of F for
which diam(Dα|k) ≥ ε for every k ∈ N. By our assumption (and since F is finitely

splitting), there is α1, such that the family {α ∈ F : α|1 = α1 and diam(Dα) ≥ ε}
is infinite. Assume that for some k, we defined α1, . . . , αk such that {α ∈ F : α|k =
(α1, . . . , αk) and diam(Dα) ≥ ε} is infinite. Then there is αk+1 such that the family
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{α ∈ F : α|k+1 = (α1, . . . , αk+1) and diam(Dα) ≥ ε} is infinite. In this way we define
the sequence α = (α1, α2, . . .) which is a node of F and such that diam(Dα|k) ≥ ε for
k ∈ N. We get a contradiction with Lemma 4.2. �

Recall that a metric space (X, d) has the property S, if for every ε > 0, X can be
covered by a finite family of connected sets with diameter < ε. It is known that a
connected and compact metric space X is locally connected iff it has the property S
(cf. [13, 8.2, 8.4]).

Theorem 4.4. Let (X, d) be a connected metric space which admits a proper family
of subsets of X consisting of connected sets. Then X is locally connected.

Proof. Let {Dα : α ∈ F} be a proper family of subsets of X consisting of connected
sets. For every k ∈ N, let

Ak := {Dα : α ∈ F , |α| = k},

and

ak := max{diam(D) : D ∈ Ak}.
By Lemma 4.3, ak → 0. Moreover, each Ak is a finite cover of X consisting of
connected sets. In particular, X has the property S and the result follows. �

As a direct implication, we get

Theorem 4.5. Assume that A is an attractor of some GIFS. If A is connected, then
it is locally connected.

Recall that a topological space X is arcwise connected if for every x, y ∈ X there
is a continuous function f : [0, 1]→ X such that f(0) = x and f(1) = y.
A sequence of sets (D1, . . . , Dm) is called a chain, if Di∩Di+1 6= ∅ for i = 1, . . . ,m−1.
If (D1, . . . , Dm) is a chain and x ∈ D1 and y ∈ Dm, then (D1, . . . , Dm) is called a
chain which connects x and y. A family of sets A is connected, if for every A,B ∈ A,
there is a chain (D1, . . . , Dm) such that D1 = A and Dm = B and Di ∈ A for
i ∈ {1, . . . ,m}.

The following Lemma was proved in [12]. We say that a set ∆ = {y0, . . . , ym} is a
division of [0, 1], if 0 = y0 < y1 < . . . < ym = 1 (we will always use the convention that
elements of divisions are listed in this way). We also denote ||∆|| := max{yi+1 − yi :
i = 0, 1, . . . ,m− 1}.

Lemma 4.6. Let (X, d) be a complete metric space and (ak)k≥0 be a sequence of
positive numbers convergent to 0. Let (∆k)k≥0 be a sequence of divisions of the unit
interval [0, 1] (denote ∆k = {yk0 , . . . , yklk}) such that ∆k ⊂ ∆k+1 and limk→∞ ||∆k|| =
0. Let (gk) be a sequence of functions such that gk : ∆k → X, gk+1|∆k

= gk and for
every m ≥ k, every yki and every ymj ∈ [yki , y

k
i+1] ∩∆m,

d
(
gm
(
ymj
)
, gk
(
yki
))
≤ ak and d

(
gm
(
ymj
)
, gk
(
yki+1

))
≤ ak.

Then there exists a continuous function g : [0, 1] → X such that g|∆k
= gk for every

k ∈ N.
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Theorem 4.7. Let (X, d) be a metric space which admits a proper family {Dα :
α ∈ F} of subsets of X such that for every α ∈ F , the family {Dα̂ β : α̂ β ∈ F} is
connected. Then X is arcwise connected.

Proof. Let {Dα : α ∈ F} be a proper family of subsets of X such that for every
α ∈ F , the family

Dα := {Dα̂ β : α̂ β ∈ F}
is connected. To prove that X is arcwise connected, choose x, y ∈ X. We will use
Lemma 4.6 - we will construct appropriate sequences of reals, divisions and partial
functions.
For every k ∈ N, let

Ak := {Dα : α ∈ F , |α| = k},
and let ak := max{diam(D) : D ∈ Ak}. By Lemma 4.3, ak → 0.
Define the sequence of divisions (∆k) and the sequence of functions (gk) by induction
such that the following conditions hold for every k ∈ N and i = 0, . . . , lk − 1 (we will
always abbreviate elements of ∆k by yk0 , . . . , y

k
lk

so that yki < yki+1):

(i) ∆0 = {0, 1}, g0(0) = x and g0(1) = y;
(ii) ∆k ⊂ ∆k+1;

(iii) the elements of ∆k+1 ∩ [yki , y
k
i+1] are uniformly distributed on the interval

[yki , y
k
i+1];

(iv) the set ∆k+1 ∩ [yki , y
k
i+1] has at least three elements;

(v) gk : ∆k → X;
(vi) there is D ∈ Ak such that for every m ≥ k, gm(∆m ∩ [yki , y

k
i+1]) ⊂ D;

(vii) if k ≥ 1, then gk|∆k−1
= gk−1.

Let ∆0 and g0 be as in (i). Assume that we have already defined ∆0,∆1, . . . ,∆n and
g0, . . . , gn for some n ≥ 0 so that (i) − (vii) are satisfied for every k = 0, . . . , n and
i = 0, . . . , lk − 1 (of course, in (vi) we can only consider n ≥ m ≥ k).
Now let i ∈ {0, . . . , lk − 1}. By (vi), there is D ∈ Ak such that gk(yki ), gk(yki+1) ∈ D.

By our assumptions, there is a chain (D1, . . . ., Dn) which connects gk(yki ) and gk(yki+1)

such that n ≥ 2 (clearly, we can assume n ≥ 2), Di ⊂ D and Di ∈ Ak+1. Let y0 := yki ,
yn := yki+1 and y1, .., yn−1 be uniformly distributed on [y0, yn], and let x0 := gk(yki ),

xn := gk(yki+1) and xj ∈ Dj ∩Dj+1 for j = 1, . . . , n− 1. Then define g(yj) := xj for
j = 0, . . . , n.
Let ∆k+1 be the family of all y′js which appear in this construction (for all i′s), and
gk+1 be the union of all partial functions g.
Proceeding inductively, we get desired sequences. Now it is easy to check that the
assumptions of Lemma 4.6 are satisfied, hence there exists a continuous function
g : [0, 1]→ X such that g(0) = x and g(1) = y. This ends the proof. �

Lemma 4.8. Let (X, d) be a connected metric space and A be a finite family of closed
and nonempty subsets of X such that X =

⋃
A. Then A is connected.

Proof. Let D ∈ A and set

AD := {(D1, . . . , Dn) : n ≥ 2, D = D1, Di ∩Di+1 6= ∅, Di ∈ A}.
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It is enough to show that for every E ∈ A there is (D1, . . . , Dn) ∈ AD such that
Dn = E. Assume on the contrary that it is not the case and let E ∈ A be a set which
witnesses to this. Set

B := {G : ∃(D1,...,Dn)∈AD
∃i=1,...,n G = Di},

F :=
⋃
B and H :=

⋃
(A \ B). By our assumption, F and H are nonempty (H is

nonempty, because E /∈ B). They are also closed and disjoint. This is a contradiction.
�

Finally, Theorem 4.7 and Lemma 4.8 imply the following generalization of [12,
Theorem 3.1]

Theorem 4.9. Assume that A is an attractor of some GIFS S = (f1, . . . , fn). Then
the following conditions are equivalent:

(i) A is connected;
(ii) A is arcwise connected;

(iii) the family {f1(A× . . .×A), . . . , fn(A× . . .×A)} is connected.

Proof. Implication (ii)⇒ (i) is trivial and implication (i)⇒ (iii) follows from Lemma
4.8. Now assume that the family {A1, . . . , An} is connected (we use the notation from
(3.1)). In view of Theorem 4.7, it is enough to show that for every k ∈ N and every
α ∈ kΩ, the family {Aα̂ β : β ∈ Ωk+1} is connected. We will prove it by induction.
Let i ∈ {1, . . . , n}. By our assumption, the family {Aj : j = 1, . . . , n} is connected.
This implies that the family

{Aj1 × . . .×Ajm : j1, . . . , jm ∈ {1, . . . , n}}
is connected, and hence the family {fi(Aj1 × . . . × Ajm) : j1, . . . , jm = 1, . . . , n} is
connected. But this gives thesis for k = 1 since {fi(Aj1 × . . . × Ajm) : j1, . . . , jm ∈
{1, . . . , n}} = {Aî β : β ∈ Ω2}.
Assume that we proved the thesis for some k and let α ∈ k+1Ω. By inductive
assumption, families {Aα(1)̂ β : β ∈ Ωk+1},. . . ,{Aα(m)̂ β : β ∈ Ωk+1} are connected,
and this easily implies that the family

{Aα(1)̂ β1
× . . .×Aα(m)̂ βm

: β1, . . . , βm ∈ Ωk+1}
is also connected. Similarly as in the proof of Proposition 3.3, we can show that for
any β = (β1, . . . , βm) ∈ Ωk+2,

Aα̂ β = fα1(Aα(1)̂ β1
× . . .×Aα(m)̂ βm

).

All in all, we get that {Aα̂ β : β ∈ Ωk+2} is connected. �
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