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1. Introduction

Among many extensions of the Banach’s contraction principle a very interesting
one was given, in the framework of so-called b-metric spaces, by S. Czerwik in [7].
For the concept of b-metric space (also called quasimetric space) see I.A. Bakhtin [1],
L.M. Blumenthal [5], Czerwik [7], Heinonen [11]. For several fixed point theorems in
this context see [2], [6], Czerwik [7], [17],...

If (X, d) is a metric space and T : X ×X → X is an operator, then, by definition,
a coupled fixed point for T is a pair (x∗, y∗) ∈ X ×X satisfying{

x∗ = T (x∗, y∗)
y∗ = T (y∗, x∗) .

(1.1)

We will denote by CFix(T ) the coupled fixed point set for T .
Opoitsev in [15]-[16] considered, for the first time, the coupled fixed point prob-

lem, but the issue gets a fast development by the seminal works of D. Guo and V.
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Lakshmikantham [10] and T. Gnana Bhaskar and V. Lakshmikantham in [8]. For
other contributions, see [9], [14], [22], [23], ... A very interesting approach in this field
was presented by V. Berinde (see [4]), by introducing a symmetric contraction type
condition on the operator T . See also [3] for a consistent generalization.

The aim of this paper is to present, in the context of b-metric spaces with con-
stant s ≥ 1, some coupled fixed point theorems for symmetric contractions. On the
other hand, data dependence, well-posedness, Ulam-Hyers stability, limit shadowing
property of the coupled fixed point problem are discussed. The approach is based on
the application of a Ran-Reurings type theorem for an appropriate operator on the
Cartesian product space. From this point of view, the results are new even for the
case of metric spaces (i.e., s = 1). Some applications to a system of integral equations
and to a periodic boundary value problems are also given.

2. Preliminaries

Throughout this paper N stands for the set of natural numbers, while N∗ for the
set of natural numbers except 0.

We will recall now the definition of a b-metric space.

Definition 2.1. (Bakhtin [1], Czerwik [7]) Let X be a set and let s ≥ 1 be a given real
number. A functional d : X ×X → R+ is said to be a b-metric with constant s if the
classical axioms of the metric functional are satisfied, with the following modification
of the triangle inequality axiom:

(iii)
′
d(x, z) ≤ s[d(x, y) + d(y, z)], for all x, y, z ∈ X.

A pair (X, d) with the above properties is called a b-metric space.

Some examples of b-metric spaces are given in [2], [7], [6], [13], ...
It is worth to mention that the b-metric on a nonempty set X need not be contin-

uous. Moreover, open balls in such spaces need not be open sets. For example, the
definition of a closed set will be considered here in the sequential meaning, i.e., a set
Y ⊂ X is said to be closed if for any sequence (xn) in Y which is convergent to some
x, we have that x ∈ Y .

We also mention two continuity concepts. Let (X, d) be a b-metric space. Then f
is called:

a) continuous on X if for every x ∈ X and any sequence (xn)n∈N in X which
converges to x in (X, d), it follows that the sequence (f(xn))n∈N converges to f(x) in
(X, d);

b) with closed graph if for every sequence (xn)n∈N in X which converges to x in
(X, d) and the sequence (f(xn))n∈N converges to y in (X, d) as n→∞, we have that
y = f(x).

If X is a nonempty set and f : X → X is a single-valued operator, then we denote
Fix(f) := {x ∈ X : x = f(x)}, the fixed point set for f and by Graph(f) :=
{(x, f(x)) | x ∈ X}, the graph of the operator f .

3. Coupled fixed points for symmetric mixed monotone operators

We will present first a fixed point result, which will be used in the proof of our
main result. Actually, this result is an extension to the case of b-metric spaces of the
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well known fixed point theorem given by Ran and Reurings in [21]. In particular, for
s = 1 we get exactly Theorem 2.1 in [21].

Theorem 3.1. Let X be a nonempty set endowed with a partial order ”≤” and
d : X ×X → R+ be a complete b-metric with constant s ≥ 1. Let f : X → X be an
operator which has closed graph (in particular, it is continuous) with respect to d and
increasing with respect to ”≤”. Suppose that there exist a constant k ∈ (0, 1

s ) and an
element x0 ∈ X such that:

(i) d(f(x), f(y)) ≤ kd(x, y), for all x, y ∈ X with x ≤ y.
(ii) x0 ≤ f(x0).

Then Fix(f) 6= ∅ and the sequence of successive approximations (fn(x))n∈N starting
from any point x ∈ X which is comparable to x0 converges to a fixed point of f .

Proof. For x0 ∈ X, we have that the sequence (fn(x0))n∈N is increasing. Hence, we
can apply the contraction condition (i) and we get that f is asymptotically regular
at x0, i.e.

d(fn(x0), fn+1(x0)) ≤ knd(x0, f(x0))→ 0 as n→∞.
Now, in order to show that (fn(x0))n∈N is a Cauchy sequence, we observe that, for
n ∈ N and p ∈ N∗, we have

d(fn(x0), fn+p(x0))

≤ sd
(
fn(x0), fn+1(x0)

)
+ ...+ sp−1d

(
fn+p−2(x0), fn+p−1(x0)

)
+sp−1d

(
fn+p−1(x0), fn+p(x0)

)
≤ skn(1 + sk + · · ·+ (sk)p−1)d(x0, f(x0))

Since k < 1
s , we get that

d(fn(x0), fn+p(x0)) ≤ skn 1− (sk)p

1− sk
d(x0, f(x0))→ 0 as n→∞.

Hence (fn(x0))n∈N is a Cauchy sequence and by the completeness of the metric d,
there exists x∗ ∈ X such that (fn(x0))n∈N → x∗ as n → ∞. Because f has closed
graph it follows that x∗ ∈ Fix(f). Moreover, if x ≤ x0 (or x ≥ x0), by the mono-
tonicity condition on f , we have that fn(x) ≤ fn(x0) (or reversely), for each n ∈ N.
By the contraction condition (i) we get that

d(fn(x), fn(x0)) ≤ knd(x, x0)→ 0 as n→∞.
Thus

d(fn(x), x∗) ≤ s(d(fn(x), fn(x0)) + d(fn(x0), x∗))

≤ s(knd(x, x0) + d(fn(x0), x∗))→ 0 as n→∞.
which immediately implies that (fn(x))n∈N → x∗ as n→∞. �

Remark 3.2. Notice here that uniqueness of the fixed point and global convergence
of the successive approximations sequence can be obtained adding the hypothesis
that every pair of elements of X has a lower bound or an upper bound. We may also
remark that this condition is equivalent to the fact that for every x, y ∈ X, there
exists z ∈ X which is comparable to x and y. For some complementary results on
this topic see also [18].

We recall first the concept of mixed monotone mapping.
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Definition 3.3. Let (X,≤) be a partially ordered set and T : X ×X → X. We say
that T has the mixed monotone property if T (·, y) is monotone increasing for any
y ∈ X and T (x, ·) is monotone decreasing for any x ∈ X.

Let (X,≤) be a partially ordered set and d be a b-metric on X. Notice that we
can endow the product space X ×X with the following partial order:

for (x, y), (u, v) ∈ X ×X, we write (x, y) ≤P (u, v)⇔ x ≤ u, y ≥ v.

Our first main result is the following.

Theorem 3.4. Let (X,≤) be a partially ordered set and let d : X × X → R+ be a
complete b-metric on X with constant s ≥ 1. Let T : X×X → X be an operator with
closed graph (or, in particular, continuous) which has the mixed monotone property
on X ×X. Assume that the following conditions are satisfied:

(i) there exists k ∈ (0, 1
s ) such that

d(T (x, y), T (u, v)) + d(T (y, x), T (v, u)) ≤ k[d(x, u) + d(y, v)], ∀x ≤ u, y ≥ v;

(ii) there exist x0, y0 ∈ X such that x0 ≤ T (x0, y0) and y0 ≥ T (y0, x0);

Then, the following conclusions hold:
(a) there exists (x∗, y∗) ∈ X×X a solution of the coupled fixed point problem (1.1),

such that the sequences (xn)n∈N, (yn)n∈N in X defined, for n ∈ N, by{
xn+1 = T (xn, yn)
yn+1 = T (yn, xn) ,

(3.1)

have the property that (xn)n∈N → x∗, (yn)n∈N → y∗ as n→∞. Moreover, for every
pair (x, y) ∈ X×X with x ≤ x0 and y ≥ y0 (or reversely), we have that (Tn(x, y))n∈N
converges to x∗ and (Tn(y, x))n∈N converges to y∗.

(b) In particular, if the b-metric d is continuous, then the following estimation
holds

d(Tn(x0, y0), x∗) + d(Tn(y0, x0), y∗) ≤ skn

1− sk
· [d(x0, T (x0, y0)) + d(y0, T (y0, x0))],

for all n ∈ N∗.

Proof. We denote Z := X ×X. By (ii), we have that z0 := (x0, y0) ≤P (x1, y1) := z1.
If we consider x2 := T (x1, y1) and y2 := T (y1, x1), then we get

x2 := T (x1, y1) = T 2(x0, y0) and y2 := T (y1, x1) = T 2(y0, x0).

With these notations, due to the mixed monotone property of T , we have that

x2 = T (x1, y1) ≥ T (x0, y0) = x1 and y2 = T (y1, x1) ≤ T (y0, x0) = y1.

Indeed, for example for the first relation T (x1, y1) ≥ T (x0, y0), notice that by
(x0, y0) ≤P (x1, y1) and the mixed monotone property, we have that T (x0, y) ≤
T (x1, y), for any y ∈ X and T (x, y0) ≤ T (x, y1), for any x ∈ X. Thus, for y := y0

and x := x1 and using the transitivity we obtain T (x0, y0) ≤ T (x1, y1). In a similar
way one can prove the inequality T (y1, x1) ≤ T (y0, x0). Thus, we have

z1 = (x1, y1) ≤P (x2, y2) := z2.
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By this approach, we obtain the sequences (xn)n∈N, (yn)n∈N in X with{
xn+1 = T (xn, yn)
yn+1 = T (yn, xn) ,

(3.2)

Then, by mathematical induction, we can easily verify that

zn := (xn, yn) ≤P (xn+1, yn+1) := zn+1, ∀ n ∈ N.
Hence, (zn)n∈N is a monotone increasing sequence in (Z,≤P ).

We introduce now the functional d̃ : Z × Z → R+ defined by

d̃((x, y), (u, v)) := d(x, u) + d(y, v).

It is easy to see that d̃ is a b-metric on Z with the same constant s ≥ 1 and if the

space (X, d) is complete, then (Z, d̃) is complete too.
We consider now the operator F : Z → Z given by

F (x, y) := (T (x, y), T (y, x)).

Notice first that zn+1 = F (zn), for n ∈ N, where z0 := (x0, y0). Secondly, let us
observe that, by the mixed monotone property of T , we have that F is monotone
increasing with respect to ≤P , i.e.,

(x, y), (u, v) ∈ Z, with (x, y) ≤P (u, v) ⇒ F (x, y) ≤P F (u, v).

Notice also that, since T has closed graph (or respectively is continuous on X ×X),
then F has closed graph too (respectively is continuous on Z).

We will prove now that F is a contraction in (Z, d̃) on all comparable (with respect
to ≤P ) elements of Z. Indeed, for all z, w ∈ Z with z := (x, y) ≤P (u, v) := w, we
have

d̃(F (z), F (w)) = d̃(F (x, y), F (u, v)) = d̃((T (x, y), T (y, x)), (T (u, v), T (v, u)))

= d(T (x, y), T (u, v)) + d(T (y, x), T (v, u)) ≤ k[d(x, u) + d(y, v)] = kd̃(z, w).

As a conclusion, by our hypotheses and the construction of F , we have the following
properties for F :

1) F : Z → Z has closed graph (in particular it is continuous) on Z;
2) F : Z → Z is increasing on Z;
3) there exists z0 := (x0, y0) ∈ Z such that z0 ≤P F (z0);
4) there exists k ∈ (0, 1

s ) such that

d̃(F (z), F (w)) ≤ kd̃(z, w), for all z, w ∈ Z with z ≤P w.
Hence we can apply Theorem 3.1 and we get that F has at least one fixed point

z∗ ∈ Z and, for any z ∈ Z which is comparable with z0, the sequence of successive
approximations for F starting from z converges to a fixed point of F . In particular, the

sequence (zn) = ((xn, yn))n∈N constructed below converges in (Z, d̃) to z∗ := (x∗, y∗)
as n→∞.

If additionally, the b-metric d is continuous, we have the following apriori estimation
of the errors:

d̃(zn, z
∗) ≤ skn

1− sk
· d̃(z0, z1), for all n ∈ N∗,
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which means that

d(xn, x
∗) + d(yn, y

∗) ≤ skn

1− sk
· [d(x0, x1) + d(y0, y1)], for all n ∈ N∗.

As a consequence, we also have that (xn)n∈N → x∗, (yn)n∈N → y∗ in (X, d) as n→∞.
Moreover, by Theorem 3.1, for every pair (x, y) ∈ X ×X with x ≤ x0 and y ≥ y0 (or
reversely), we have that (Tn(x, y))n∈N converges to x∗ and (Tn(y, x))n∈N converges
to y∗. This completes the proof. �

Concerning the uniqueness of the coupled fixed point, by Remark 3.2, we get the
following result.

Theorem 3.5. If, in addition to the hypotheses of Theorem 3.4, we suppose that, at
least one of the following assumptions takes place:

(A) for every (x, y), (u, v) ∈ X ×X there exists (z, w) ∈ X ×X such that{
(x ≤ z, y ≥ w) or (z ≤ x,w ≥ y)
(u ≤ z, v ≥ w) or (z ≤ u,w ≥ v),

(3.3)

or

(B) every pair of elements (x, y) ∈ X ×X there exists z ∈ X such that x ≤ z ≤ y,
(3.4)

then the coupled fixed point in Theorem 3.4 is unique and for every pair (x, y) ∈ X×X
with x ≤ x0 and y ≥ y0 (or reversely), we have that (Tn(x, y))n∈N converges to x∗

and (Tn(y, x))n∈N converges to y∗ as n→∞.

Concerning the existence of a fixed point for T (in the sense that T (x, x) = x), we
can prove the following result.

Theorem 3.6. If we assume that all the hypotheses of Theorem 3.5 take place, then
for the unique coupled fixed point (x∗, y∗) of T we have that x∗ = y∗, i.e., x∗ is a
fixed point for T .

Proof. From Theorem 3.5, the coupled fixed point problem for T has a unique solution
(x∗, y∗). We will consider two cases:

Case 1. If x∗ and y∗ are comparable, then, from the contraction condition on T ,
written for x = v := x∗, y = u = y∗, we obtain

d(T (x∗, y∗), T (y∗, x∗)) + d(T (y∗, x∗), T (x∗, y∗)) ≤ k[d(x∗, y∗) + d(y∗, x∗)],

which yields that d(x∗, y∗) ≤ kd(x∗, y∗). Since k < 1, we get that d(x∗, y∗) = 0. Thus
x∗ = y∗ and T (x∗, x∗) = x∗.

Case 2. If x∗ and y∗ are not comparable, then there exists z ∈ X which is com-
parable to x∗ and y∗. Suppose, for example, that x∗ ≤ z and y∗ ≤ z. In view of the
definition of the partially order relation ≤P on X×X, we obtain that (x∗, y∗), (x∗, z),
(z, x∗) and (y∗, x∗) are comparable with respect to ≤P . From the proof of Theorem
3.4, we know that F : X × X → X × X, given by F (x, y) = (T (x, y), T (y, x)) is a
k-contraction on all comparable (with respect to ≤P ) elements of Z. Moreover

d̃(Fn(u), Fn(v)) ≤ knd̃(u, v),∀u, v ∈ X ×X, with u ≤P v.
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Then, for u := (x∗, z) and v := (x∗, y∗), we get

d̃(Fn(x∗, z), Fn(x∗, y∗)) ≤ knd̃((x∗, z), (x∗, y∗)) = knd(z, y∗).

Similarly, for u := (x∗, z) and v := (z, x∗), we obtain

d̃(Fn(x∗, z), Fn(z, x∗)) ≤ knd̃((x∗, z), (z, x∗)) = 2knd(x∗, z),

while for u := (y∗, x∗) and v := (z, x∗), we can write that

d̃(Fn(y∗, x∗), Fn(z, x∗)) ≤ knd̃((y∗, x∗), (z, x∗)) = knd(y∗, z).

As a consequence of the above three relations, we have

d(x∗, y∗) =
1

2
d̃((x∗, y∗), (y∗, x∗)) =

1

2
d̃(Fn(x∗, y∗), Fn(y∗, x∗))

≤ s

2
(d̃(Fn(x∗, y∗), Fn(x∗, z)) + d̃(Fn(x∗, z), Fn(y∗, x∗)))

≤ s

2
d̃(Fn(x∗, y∗), Fn(x∗, z)) +

s2

2
(d̃(Fn(x∗, z), Fn(z, x∗)) + d̃(Fn(z, x∗), Fn(y∗, x∗)))

≤ s

2
knd(z, y∗) +

s2

2
kn(2d(x∗, z) + d(y∗, z))

=
s

2
kn[(1 + s)d(y∗, z) + 2sd(x∗, z)]→ 0 as n→∞.

Hence, we get that x∗ = y∗.
In a similar way, if we suppose that x∗ ≤ z and y∗ ≥ z, then we obtain that

(x∗, y∗), (y∗, z), (z, y∗) and (y∗, x∗) are comparable with respect to ≤P . From the
contraction condition on F , we get

d̃(Fn(y∗, x∗), Fn(z, y∗)) ≤ kn[d(y∗, z) + d(x∗, y∗)],

d̃(Fn(z, y∗), Fn(y∗, z)) ≤ 2knd(y∗, z),

d̃(Fn(y∗, z), Fn(x∗, y∗)) ≤ kn[d(y∗, x∗) + d(z, y∗)].

As a consequence of the above three relations, we have

d(x∗, y∗) =
1

2
d̃((y∗, x∗), (x∗, y∗)) =

1

2
d̃(Fn(y∗, x∗), Fn(x∗, y∗))

≤ s

2
(d̃(Fn(y∗, x∗), Fn(z, y∗)) + d̃(Fn(z, y∗), Fn(x∗, y∗)))

≤ s

2
d̃(Fn(y∗, x∗), Fn(z, y∗)) +

s2

2
(d̃(Fn(z, y∗), Fn(y∗, z)) + d̃(Fn(y∗, z), Fn(x∗, y∗)))

≤ s

2
kn(d(y∗, z) + d(x∗, y∗)) +

s2

2
kn(2d(y∗, z) + d(y∗, x∗) + d(z, y∗))

=
s

2
kn[(1 + 3s)d(y∗, z) + (1 + s)d(x∗, y∗)]→ 0 as n→∞.

Hence, we get that x∗ = y∗. �

It is worth to mention now that if we consider the coupled fixed point problem
(1.1) in a complete b-metric space and we assume that the symmetric contraction
condition on T holds on the whole space (and not only on comparable pairs of the
space), then the following theorem can be deduced.
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Theorem 3.7. Let (X, d) be a complete b-metric space with constant s ≥ 1. Let
T : X ×X → X be an operator. Assume that there exists k ∈ (0, 1) such that

d(T (x, y), T (u, v)) + d(T (y, x), T (v, u)) ≤ k[d(x, u) + d(y, v)], ∀(x, y), (u, v) ∈ X ×X

Then, the following conclusions hold:
(a) there exists a unique solution (x∗, y∗) ∈ X×X of the coupled fixed point problem

(1.1), and, for any initial point (x0, y0) ∈ X × X, the sequences (xn)n∈N, (yn)n∈N
defined, for n ∈ N, by {

xn+1 = T (xn, yn)
yn+1 = T (yn, xn) ,

(3.5)

converge to x∗ and respectively to y∗ as n→∞.
(b) In particular, if k < 1

s and the b-metric d is continuous, then the following
estimation holds

d(Tn(x0, y0), x∗) + d(Tn(y0, x0), y∗) ≤ skn

1− sk
· [d(x0, T (x0, y0)) + d(y0, T (y0, x0))],

for all n ∈ N∗.

Proof. We introduce on Z := X ×X the functional d̃ : Z × Z → R+ defined by

d̃((x, y), (u, v)) := d(x, u) + d(y, v).

Notice that, as before, d̃ is a b-metric on Z with the same constant s ≥ 1 and, if the

space (X, d) is complete, then (Z, d̃) is complete too.
We consider now the operator F : Z → Z given by

F (x, y) := (T (x, y), T (y, x)).

It is easy to prove now that F is a contraction in (Z, d̃) with constant k ∈ (0, 1), i.e.,

d̃(F (z), F (w)) ≤ kd̃(z, w), for all z, w ∈ Z.

Thus, we can apply for F the b-metric space version of the contraction principle (see [7]
or Theorem 12.2 page 115 in [13]) and we get the first conclusion. For the estimation
of the error, one can repeat the arguments from the proof of Theorem 3.4. �

4. Properties of the coupled fixed point set
for symmetric contractions

In this section, we will study some qualitative properties of the coupled fixed point
set related to a symmetric contraction condition, such as: data dependence, well-
posedness, Ulam-Hyers stability and limit shadowing property.

For the data dependence problem, we have the following result.

Theorem 4.1. Let (X,≤) be a partially ordered set and let d : X × X → R+ be a
complete b-metric on X with constant s ≥ 1. Let Ti : X ×X → X (i ∈ {1, 2}) be two
mappings such that T1 has closed graph (or, in particular, is continuous) and satisfies
the mixed monotone property on X × X. Assume that the following conditions are
satisfied:
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(i) there exists k ∈ (0, 1
s ) such that

d(T1(x, y), T1(u, v)) + d(T1(y, x), T1(v, u)) ≤ k[d(x, u) + d(y, v)], ∀x ≤ u, y ≥ v;

(ii) there exist x0, y0 ∈ X such that x0 ≤ T1(x0, y0) and y0 ≥ T1(y0, x0);
(iii) the operator T2 has at least one coupled fixed point in X ×X;
(iv) for every (x, y), (u, v) ∈ X ×X there exists (z, w) ∈ X ×X such that{

(x ≤ z, y ≥ w) or (z ≤ x,w ≥ y)
(u ≤ z, v ≥ w) or (z ≤ u,w ≥ v),

(v) there exists η > 0 such that

d(T1(x, y), T2(x, y)) ≤ η, for all (x, y) ∈ X ×X.
In the above conditions, if (x∗, y∗) denotes the unique coupled fixed point for T1, then

d(x∗, x̄) + d(y∗, ȳ) ≤ 2sη

1− sk
,∀(x̄, ȳ) ∈ CFix(T2)

with (x̄ ≤ x∗, ȳ ≥ y∗) or (x̄ ≥ x∗, ȳ ≤ y∗).

Proof. Since the operator T1 satisfies the hypotheses of Theorem 3.5, there exists
a unique coupled fixed point for T1, say (x∗, y∗). Let (x̄, ȳ) ∈ CFix(T2) such that

(x̄ ≤ x∗, ȳ ≥ y∗) or (x̄ ≥ x∗, ȳ ≤ y∗). We consider again the b-metric d̃ : Z ×Z → R+

defined by

d̃((x, y), (u, v)) := d(x, u) + d(y, v).

Then, we have:

d̃((x∗, y∗), (x̄, ȳ)) = d̃((T1(x∗, y∗), T1(y∗, x∗)), (T2(x̄, ȳ), T2(ȳ, x̄)))

= d(T1(x∗, y∗), T2(x̄, ȳ)) + d(T1(y∗, x∗), T2(ȳ, x̄))

≤ s[d(T1(x∗, y∗), T1(x̄, ȳ)) + d(T1(x̄, ȳ), T2(x̄, ȳ))]

+s[d(T1(y∗, x∗), T1(ȳ, x̄)) + d(T1(ȳ, x̄), T2(ȳ, x̄))]

= s[d(T1(x∗, y∗), T1(x̄, ȳ)) + d(T1(y∗, x∗), T1(ȳ, x̄))]

+s[d(T1(x̄, ȳ), T2(x̄, ȳ)) + d(T1(ȳ, x̄), T2(ȳ, x̄))

≤ sk(d(x∗, x̄) + d(y∗, ȳ)) + 2sη.

Thus,

d̃((x∗, y∗), (x̄, ȳ)) ≤ 2sη

1− sk
,

and the proof is complete. �

We will study the well-posedness of the coupled fixed point problem (1.1).

Definition 4.2. Let (X, d) be a b-metric space with constant s ≥ 1 and T : X×X →
X be an operator. By definition, the coupled fixed point problem (1.1) is said to be
well-posed if:

(i) CFix(T ) = {(x∗, y∗)};
(ii) for any sequence (xn, yn)n∈N in X × X for which d(xn, T (xn, yn)) → 0 and

respectively d(yn, T (yn, xn)) → 0 as n → ∞, we have that (xn) → x∗ and (yn) → y∗

as n→∞.
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A well-posedness result is given in the following theorem.

Theorem 4.3. Assume that all the hypotheses of Theorem 3.7 take place. Addition-
ally, assume that the contraction constant k of T satisfies the condition k < 1

s . Then
the coupled fixed point problem (1.1) is well-posed.

Proof. By Theorem 3.7 we get that CFix(T ) = {(x∗, y∗)}. Let (xn, yn)n∈N be a se-
quence in X×X for which d(xn, T (xn, yn))→ 0 and respectively d(yn, T (yn, xn))→ 0

as n→∞. As before, we will work on Z := X×X with the b-metric d̃((x, y), (u, v)) :=
d(x, u) + d(y, v). Then, we have:

d̃((xn, yn), (x∗, y∗)) = d(xn, x
∗) + d(yn, y

∗)

≤ s[d(xn, T (xn, yn)) + d(T (xn, yn), x∗)] + s[d(yn, T (yn, xn)) + d(T (yn, xn), y∗)]

= s[d(xn, T (xn, yn)) + d(yn, T (yn, xn))]

+s[d(T (xn, yn), T (x∗, y∗)) + d(T (yn, xn), T (y∗, x∗))]

≤ s[d(xn, T (xn, yn)) + d(yn, T (yn, xn))] + sk[d(xn, x
∗) + d(yn, y

∗)]

= s[d(xn, T (xn, yn)) + d(yn, T (yn, xn))] + skd̃((xn, yn), (x∗, y∗)).

Thus

d̃((xn, yn), (x∗, y∗)) ≤ s

1− sk
[d(xn, T (xn, yn)) + d(yn, T (yn, xn))]→ 0 as n→∞.

Hence, we get that (xn)→ x∗ and (yn)→ y∗ as n→∞. �

We will consider the Ulam-Hyers stability of the coupled fixed point problem (1.1).
For the case of metric spaces, see [20].

Definition 4.4. Let (X, d) be a b-metric space with constant s ≥ 1 and T : X×X →
X be an operator. Let d̃ be any b-metric on X × X generated by d. By definition,
the coupled fixed point problem (1.1) is said to be Ulam-Hyers stable if there exists an
increasing operator ψ : R+ → R+, continuous at 0 with ψ(0) = 0, such that for each
ε ∈ R∗+ and for each solution (x̄, ȳ) ∈ X ×X of the inequality

d̃((x, y), (T (x, y), T (y, x)) ≤ ε,

there exists a solution (x∗, y∗) ∈ X ×X of the coupled fixed point problem (1.1) such
that

d̃((x∗, y∗), (x̄, ȳ)) ≤ ψ(ε).

An Ulam-Hyers stability result for the coupled fixed point problem (1.1) is given
in the following theorem.

Theorem 4.5. Assume that all the hypotheses of Theorem 3.7 take place. Addition-
ally, assume that the contraction constant k of T satisfies the condition k < 1

s . Then
the coupled fixed point problem (1.1) is Ulam-Hyers stable.
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Proof. By Theorem 3.7 we get that CFix(T ) = {(x∗, y∗)}. Let any ε > 0 and let
(x̄, ȳ) ∈ X ×X such that

d(x̄, T (x̄, ȳ)) + d(ȳ, T (ȳ, x̄)) ≤ ε.

As before, we consider on Z := X×X the b-metric d̃((x, y), (u, v)) := d(x, u)+d(y, v).
Then, we have:

d̃((x̄, ȳ), (x∗, y∗)) = d(x̄, x∗) + d(ȳ, y∗) = d(x̄, T (x∗, y∗)) + d(ȳ, T (y∗, x∗))

≤ s[d(x̄, T (x̄, ȳ)) + d(T (x̄, ȳ), T (x∗, y∗))] + s[d(ȳ, T (ȳ, x̄)) + d(T (ȳ, x̄), T (y∗, x∗))

≤ s[d(x̄, T (x̄, ȳ)) + d(ȳ, T (ȳ, x̄))] + sk[d(x̄, x∗) + d(ȳ, y∗)].

Thus

d̃((x̄, ȳ), (x∗, y∗)) ≤ s

1− sk
ε,

which leads to our conclusion. �

Finally, we will discuss the limit shadowing property of a coupled fixed point prob-
lem (1.1).

Definition 4.6. Let (X, d) be a b-metric space with constant s ≥ 1 and T :
X × X → X be an operator. By definition, the coupled fixed point problem (1.1)
has the limit shadowing property if, for any sequence (xn, yn)n∈N in X × X for
which d(xn+1, T (xn, yn)) → 0 and respectively d(yn+1, T (yn, xn)) → 0 as n → ∞,
there exists a sequence (Tn(x, y), Tn(y, x))n∈N such that d(xn, T

n(x, y)) → 0 and
d(yn, T

n(y, x))→ 0 as n→∞.

A shadowing type result for the coupled fixed point problem is given now.

Theorem 4.7. Assume that all the hypotheses of Theorem 3.7 take place. Addition-
ally, assume that the contraction constant k of T satisfies the condition k < 1

s . Then
the coupled fixed point problem (1.1) for T has the limit shadowing property.

Proof. By Theorem 3.7 we know that CFix(T ) = {(x∗, y∗)} and, for any initial
starting point (x, y) ∈ X ×X, we have that (Tn(x, y))→ x∗ and (Tn(y, x))→ y∗ as
n → ∞. Let (xn, yn)n∈N be a sequence in X ×X such that d(xn+1, T (xn, yn)) → 0
and respectively d(yn+1, T (yn, xn))→ 0 as n→∞. We consider on Z := X ×X the

b-metric d̃((x, y), (u, v)) := d(x, u) + d(y, v). Then, for every (x, y) ∈ X ×X, we have

d̃((xn+1, yn+1), (Tn+1(x, y), Tn+1(y, x)))

≤ s
[
d̃((xn+1, yn+1), (x∗, y∗)) + d̃((x∗, y∗), (Tn+1(x, y), Tn+1(y, x)))

]
.

For the first term of the above sum, we can write

d̃((xn+1, yn+1), (x∗, y∗)) ≤ s[d̃((xn+1, yn+1), (T (xn, yn), T (yn, xn)))

+d̃((T (xn, yn), T (yn, xn)), (T (x∗, y∗), T (y∗, x∗)))]

≤ sd̃((xn+1, yn+1), (T (xn, yn), T (yn, xn))) + skd̃((xn, yn), (x∗, y∗))

≤ sd̃((xn+1, yn+1), (T (xn, yn), T (yn, xn)))

+sk[sd̃((xn, yn), (T (xn−1, yn−1), T (yn−1, xn−1))) + skd̃((xn−1, yn−1), (x∗, y∗))]
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≤ · · · ≤ s
n∑
p=0

(sk)n−pd̃((xp+1, yp+1), (T (xp, yp), T (yp, xp)))

+(sk)n+1d̃((x0, y0), (x∗, y∗)).

The first term of the above sum converges to zero by the Cauchy Lemma (see, for
example [19]), while the second one goes to zero since sk < 1.

Thus,

d̃((xn+1, yn+1), (Tn+1(x, y), Tn+1(y, x)))→ 0 as n→∞,
and the conclusion follows. �

Remark 4.8. Notice that similar results (well-posedness property, Ulam-Hyers sta-
bility, limit shadowing property) can be established in the framework of a metric space
endowed with a partial order relation and under a symmetric contraction condition on
T with respect only on comparable elements, but then some additional assumptions
(involving comparison properties of some elements) must be imposed.

5. Applications to integral and differential equations

We will discuss two applications of the previous results. Let us consider first the
following system of Volterra type integral equations:

x(t) = g(t) +

∫ t

0

G(s, t)f(s, x(s), y(s))ds

y(t) = g(t) +

∫ t

0

G(s, t)f(s, y(s), x(s))ds,

(5.1)

where t ∈ [0, T ].
A solution of the above system is a pair (x, y) ∈ C[0, T ] × C[0, T ] satisfying the

above relations for all t ∈ [0, T ].
We consider X := C[0, T ] endowed with the partial order relation:

x ≤C y ⇐⇒ x(t) ≤ y(t) for all t ∈ [0, T ].

Notice that the pair (X,≤) has the property (3.4).
We will also consider the following b-metric of Bielecki type on X

d(x, y) := max
t∈[0,T ]

((x(t)− y(t))2e−2τt),

where τ > 0 could be arbitrarily chosen. Notice that d is a b-metric with constant s =
2 and d can be represented using the classical Bielecki norm by d(x, y) = ‖(x−y)2‖B .

Then, we have the following existence and uniqueness result.

Theorem 5.1. Consider the integral equation system (5.1). We suppose:
(i) g : [0, T ]→ R and f : [0, T ]×R2 → R are continuous and G : [0, T ]×[0, T ]→ R+

is integrable with respect to the first variable.
(ii) f(s, ·, ·) has the mixed monotone property with respect to the last two variables

for all s ∈ [0, T ].
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(iii) there exist α, β : [0, T ] → R+ in L1[0, T ] such that, for each s ∈ [0, T ] and
every x, y, u, v ∈ R, with x ≤ u, y ≥ v, we have

|f(s, x, y)− f(s, u, v)| ≤ α(s)|x− u|+ β(s)|y − v|;
(iv) there exist x0, y0 ∈ C[0, T ] such that

x0(t) ≤ g(t) +

∫ t

0

G(s, t)f(s, x0(s), y0(s))ds

y0(t) ≥ g(t) +

∫ t

0

G(s, t)f(s, y0(s), x0(s))ds,

(5.2)

or 
x0(t) ≥ g(t) +

∫ t

0

G(s, t)f(s, x0(s), y0(s))ds

y0(t) ≤ g(t) +

∫ t

0

G(s, t)f(s, y0(s), x0(s))ds,

(5.3)

for all t ∈ [0, T ].
Then, there exists a unique solution (x∗, y∗) of the system (5.1).

Proof. We will work in the space (X, d) with

d(x, y) := max
t∈[0,T ]

((x(t)− y(t))2e−2τt) = ‖(x− y)2‖B ,

which is a b-metric space with s = 2, for any τ > 0.
We can prove that all the assumptions of Theorem 3.5 are satisfied. We define

S : X ×X → X by

S(x, y)(t) := g(t) +

∫ t

0

G(s, t)f(s, x(s), y(s))ds, for each t ∈ [0, T ].

Then, the system (5.1) can be re-written as a coupled fixed point problem for S:{
x = S (x, y)
y = S (y, x) .

(5.4)

Then we have

|S(x, y)(t)− S(u, v)(t)|2 ≤
[∫ t

0

G(s, t)|f(s, x(s), y(s))− f(s, u(s), v(s))|ds
]2

≤
[∫ t

0

G(s, t)(α(s)|x(s)− u(s)|+ β(s)|y(s)− v(s)|)ds
]2

=

[∫ t

0

G(s, t)(α(s)
√

(x(s)− u(s))2e−2τseτs + β(s)
√

(y(s)− v(s))2e−2τseτs)ds

]2

=

[∫ t

0

G(s, t)(α(s)
√
|x(s)− u(s)|2e−2τs eτs + β(s)

√
|y(s)− v(s)|2e−2τs eτs)ds

]2

≤

[∫ t

0

G(s, t)α(s)
√
‖(x− u)2‖B eτsds+

∫ T

0

G(s, t)β(s)
√
‖(y − v)2‖B eτsds

]2
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≤2

(∫ t

0

G(s, t)α(s)
√
‖(x−u)2‖B eτsds

)2

+

(∫ T

0

G(s, t)β(s)
√
‖(y−v)2‖B eτsds

)2


= 2

{[∫ t

0

G(s, t)α(s)eτsds

]2

· ‖(x− u)2‖B +

[∫ t

0

G(s, t)β(s)eτsds

]2

· ‖(y − v)2‖B

}

≤ 2

{∫ t

0

(G(s, t)α(s))
2
ds ·

∫ t

0

e2τsds · ‖(x− u)2‖B

+

∫ t

0

(G(s, t)β(s))
2
ds ·

∫ t

0

e2τsds · ‖(y − v)2‖B
}

≤
{∫ t

0

(G(s, t)α(s))
2
ds · ‖(x− u)2‖B +

∫ t

0

(G(s, t)β(s))
2
ds · ‖(y − v)2‖B

}
· e

2τt

τ

≤
[

max
t∈[0,T ]

(∫ t

0

(G(s, t)α(s))
2
ds

)
· ‖(x− u)2‖B

+ max
t∈[0,T ]

(∫ t

0

(G(s, t)β(s))
2
ds

)
· ‖(y − v)2‖B

]
· e

2τt

τ
.

Thus, after a multiplication with e−2τt and taking the maximum over t ∈ [0, T ], we
get that

‖(S(x, y)− S(u, v))2‖B ≤ k1‖(x− u)2‖B + k2‖(y − v)2‖B ,
where

k1 :=
1

τ
max
t∈[0,T ]

(∫ t

0

(G(s, t)α(s))
2
ds

)
and

k2 :=
1

τ
max
t∈[0,T ]

(∫ t

0

(G(s, t)β(s))
2
ds

)
.

Hence, we get that

d(S(x, y), S(u, v)) ≤ k1d(x, u) + k2d(y, v).

By a similar approach, we get that

d(S(y, x), S(v, u)) ≤ k1d(y, v) + k2d(x, u).

Thus,

d(S(x, y), S(u, v))+d(S(y, x), S(v, u))≤(k1+k2)(d(x, u)+d(y, v)), for all x≤ u, y≥ v.

Since τ > 0 is arbitrary, we can chose τ > 0 such that

k1 + k2 =
1

τ
max
t∈[0,T ]

(∫ t

0

(G(s, t))2(α2(s) + (β(s))2)ds

)
<

1

s
=

1

2
.

As a conclusion, all the assumptions of Theorem 3.4 are satisfied and the result follows
by Theorem 3.5. �
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Another application to a periodic boundary value problem will be presented now.
More precisely, we consider the following periodic boundary value problem of the
following type: {

x′(t) = f(t, x(t)) + g(t, x(t)), t ∈ (0, T )
x(0) = x(T ).

(5.5)

A solution of the above problem is a function x ∈ C1[0, T ] satisfying the above
relations.

The above problem was considered for the first time in D. Guo, V. Lakshmikantham
[10] and then in some related papers (see, for example, [3], [12], [14], ...). Notice also
that a nice extension was given in V. Berinde [4].

We will follow [10], in order to present the statement and the terms of our problem.
Let λ1, λ2 > 0 be such that:{

ln 2e−1
e ≤ (λ2 − λ1)T,

(λ1 + λ2)T ≤ 1.
(5.6)

In order to study the existence and uniqueness problem for (5.5), we will study
first the existence and uniqueness of a solution for the following periodic system of
differential equations:

x′ + λ1x− λ2y = f(t, x) + g(t, y) + λ1x− λ2y, t ∈ (0, T )
y′ + λ1y − λ2x = f(t, y) + g(t, x) + λ1y − λ2x
x(0) = x(T )
y(0) = y(T ).

(5.7)

Under some usual continuity assumptions (which will be imposed in the main theorem)
the above system is equivalent to the following system of integral equations

x(t) =

∫ T

0

(G1(t, s)[f(s, x) + g(s, y) + λ1x− λ2y]

+G2(t, s)[f(s, y) + g(s, x) + λ1y − λ2x])ds

y(t) =

∫ T

0

(G1(t, s)[f(s, y) + g(s, x) + λ1y − λ2x]

+G2(t, s)[f(s, x) + g(s, y) + λ1x− λ2y])ds,

where t ∈ [0, T ] and G1, G2 have the same expressions as in [10]. By the assumptions
(5.6), we obtain (see [10]) that G1(t, s) ≥ 0 and G2(t, s) ≤ 0, for all t, s ∈ [0, T ].

Then, we have the following existence and uniqueness result for the periodic system
(5.7).

Theorem 5.2. Consider the periodic system of differential equations (5.7). We sup-
pose:

(i) f : [0, T ]× R→ R and g : [0, T ]× R→ R are continuous;
(ii) there exist λ1, λ2, µ1, µ2 > 0 such that, for every x, y ∈ R with y ≤ x, we have

0 ≤ (f(t, x) + λ1x)− (f(t, y) + λ1y) ≤ µ1(x− y)

−µ2(x− y) ≤ (g(t, x)− λ2x)− (g(t, y)− λ2y) ≤ 0,
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where

max

{(
µ1 + µ2

λ1 + λ2

)2

,

(
µ1 − µ2

λ1 − λ2

)2
}
<

1

4
.

(iii) the relations (5.6) are satisfied;
(iv) there exist lower and upper solution x0, y0 ∈ C[0, T ] for the system (5.7) such

that 
λ1(x0(T )− x0(0)) + λ2(y0(0)− y0(T )) ≤ x0(T )− x0(0)

T

λ1(y0(T )− y0(0)) + λ2(x0(0)− x0(T )) ≤ y0(T )− y0(0)

T
;

(5.8)

Then, there exists a unique solution (x∗, y∗) of the system (5.7).

Proof. We consider the space X := C[0, T ] endowed with the partial order relation:

x ≤C y ⇐⇒ x(t) ≤ y(t) for all t ∈ [0, T ].

Notice again that the pair (X,≤) has the property (3.4).
On X we will also consider the functional

d(x, y) := max
t∈[0,T ]

((x(t)− y(t))2).

Notice that d is a b-metric with constant s = 2 and d can be represented using the
classical Chebyshev norm by d(x, y) = ‖(x− y)2‖C .

We can prove that all the assumptions of Theorem 3.5 are satisfied. We define
S : X ×X → X by

S(x, y)(t) :=

∫ T

0

(G1(t, s)[f(s, x) + g(s, y) + λ1x− λ2y]

+G2(t, s)[f(s, y) + g(s, x) + λ1y − λ2x])ds.

Then, the system (5.3) can be written as a coupled fixed point problem for S:{
x = S (x, y)
y = S (y, x) .

(5.9)

By (ii), it follows in a similar way to [10], that S satisfies the mixed monotone condi-
tion.
By (iv), we have that x0(t) ≤ S(x0, y0)(t) and y0(t) ≥ S(y0, x0)(t), for all t ∈ [0, T ].

Moreover, for x ≤ u, y ≥ v, we can write

(S(x, y)(t)− S(u, v)(t))2

≤
(∫ T

0

(G1(t, s)[(f(s, x) + g(s, y) + λ1x− λ2y)− (f(s, u) + g(s, v) + λ1u− λ2v)]

+G2(t, s)[(f(s, y) + g(s, x) + λ1y − λ2x)− (f(s, v) + g(s, u) + λ1v − λ2u)])ds

)2

=

(∫ T

0

(G1(t, s)[(f(s, x) + g(s, y) + λ1x− λ2y)− (f(s, u) + g(s, v) + λ1u− λ2v)]
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−G2(t, s)[(f(s, v) + g(s, u) + λ1v − λ2u)− (f(s, y) + g(s, x) + λ1y − λ2x)])ds

)2

≤

(∫ T

0

(G1(t, s)[µ1(u− x) + µ2(y − v)]−G2(t, s)[µ1(y − v) + µ2(u− x)]ds)

)2

=

(∫ T

0

G1(t, s)[µ1

√
(u− x)2 + µ2

√
(y − v)2]

−G2(t, s)[µ1

√
(y − v)2 + µ2

√
(u− x)2]ds

)2

=

(∫ T

0

(µ1G1(t, s)− µ2G2(t, s))
√

(u− x)2ds

+

∫ T

0

(µ2G1(t, s)− µ1G2(t, s))
√

(y − v)2ds

)2

≤ 2

([∫ T

0

(µ1G1(t, s)− µ2G2(t, s))
√

(u− x)2ds

]2

+

[ ∫ T

0

(µ2G1(t, s)− µ1G2(t, s))
√

(y − v)2ds

]2)
= 2

(
‖(x− u)2‖C

[ ∫ T

0

(µ1G1(t, s)− µ2G2(t, s))ds

]2

+‖(y − v)2‖C
[ ∫ T

0

(µ2G1(t, s)− µ1G2(t, s))ds

]2)
≤
(
µ1 + µ2

λ1 + λ2

)2

· ‖(x− u)2‖C +

(
µ1 − µ2

λ1 − λ2

)2

· ‖(y − v)2‖C

≤ max

{(
µ1 + µ2

λ1 + λ2

)2

,

(
µ1 − µ2

λ1 − λ2

)2
}
· (‖(x− u)2‖C + ‖(y − v)2‖C),∀t ∈ [0, T ].

Thus, by taking the maximum over [0, T ], we obtain

d(S(x, y), S(u, v)) ≤ k(d(x, u) + d(y, v)),

where k := max

{(
µ1+µ2

λ1+λ2

)2

,
(
µ1−µ2

λ1−λ2

)2
}
.

By a similar approach, we get that

d(S(y, x), S(v, u)) ≤ k(d(x, u) + d(y, v)).

Hence, by adding the above two relations, we get

d(S(x, y), S(u, v)) + d(S(y, x), S(v, u))} ≤ 2k(d(x, u) + d(y, v)), for all x ≤ u, y ≥ v.
Since 2k < 1

2 , all the assumptions of Theorem 3.5 are satisfied and the result follows
by Theorem 3.5. �

We will discuss now the existence of the solution for the periodic boundary value
problem (5.5).
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Theorem 5.3. Consider the periodic boundary value problem (5.5). Suppose that
all the assumptions of Theorem 5.2 are satisfied. Then, the periodic boundary value
problem (5.5) has a unique solution x∗.

Proof. The conclusion follows by Theorem 3.6, since we get that, for the unique
solution (x∗, y∗) of the coupled system, we also have x∗ = y∗. Hence x∗ is the unique
solution of the periodic boundary value problem (5.5). �

Remark 5.4. It is worth to mention, that different qualitative properties (data de-
pendence, well-posedness, Ulam-Hyers stability, limit shadowing) of the above studied
problems can be discussed, using the coupled fixed point approach given in Section 4.

We also notice that the above examples illustrate how fixed point and coupled
fixed point results in b-metric spaces can be applied to different operator equations
and systems. It is an open question to find applications of the abstract results in
some relevant complete b-metric spaces, for example, in b-metric spaces which cannot
be organized as metric spaces.
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