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Abstract. The paper is mainly devoted to fixed point theorems. More general versions of important
theorems of Matkowski, Romaguera, Takahashi, Brøndsted, and Banach are proved. Also, Ekeland’s

variational principle is extended. On the way to the main results, short proofs of crucial properties

of partial metric spaces are proposed. In addition, the notion of kernel of partial metric is suggested
together with a standard method of proving fixed point theorems. We also supply a useful criterion

for Cauchy sequences.
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An Introduction

The paper is divided into three sections. The first one is devoted to the properties
of partial metric (it need not be nonnegative). We offer short proofs of the crucial
dependencies between partial metric and the related natural metric. All these facts
are gathered in Lemma 1.7. Lemma 1.9 is a nice criterion for Cauchy sequences. It
is also helpful in proving fixed point theorems.

The second section begins with the definition of a kernel Ker p = {x ∈ X : p(x, x) =
0} of p, followed by Lemma 2.2, establishing some properties of it. We suggest a
standard method of proving fixed point theorems involving the kernel. Two examples
are given: the theorem of Romaguera [16, Corollary 3] (here Theorem 2.3) and the
theorem of Aydi-Abbas-Vetro [1, Theorem 3.2] (here Theorem 2.4). Next, we present
an extension of the Romaguera result (Theorem 2.6) with a good-looking condition
(2.2), which is more general than the well known Matkowski’s condition, also in the
case of metric space. In it simplest form, Theorem 2.6 resolves the following well
known problem: “Assume that d(f t(y), fs(x)) ≤ kd(y, x) for a k < 1. Does f have a
fixed point?”. The last theorem of this section concerns a common fixed point of a
family of mappings.

The third section is devoted to variational type theorems. The variational prin-
ciples, i.e. Theorems 3.5, 3.6, 3.9 (an extension of the Ekeland theorem), and fixed
point theorems related to Theorem 3.6, i.e. Theorems 3.7, 3.8 (an extension of the
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Takahashi theorem), follow from the respective general results of [14]. Still we re-
quire some lemmas to show that the theory developed in [14] applies to partial metric
spaces. The section concludes with a theorem of Brøndsted type (Theorem 3.10) and
a variational version of the Banach type fixed point theorem (Theorem 3.11).

1. Properties of partial metric spaces

Let us recall the notion of a partial metric space introduced by Matthews [10,
Definition 3.1].

Definition 1.1. A partial metric is a mapping p : X ×X → R such that,

y = x iff p(y, y) = p(y, x) = p(x, x), x, y ∈ X, (1.1)

p(y, y) ≤ p(y, x), x, y ∈ X, (1.2)

p(y, x) = p(x, y), x, y ∈ X, (1.3)

p(z, x) ≤ p(z, y) + p(y, x)− p(y, y), x, y, z ∈ X. (1.4)

This nonalphabetical order, is better suited to variational principles.
Neill [12] suggests that Matthews assumes the values of p to be nonnegative. There-

fore, some authors use Neill’s notion of dualistic partial metric space for the case of real
valued p. We prefer the original definition given by Matthews, with p : X ×X → R.

If p is a partial metric on X then q : X ×X → [0,∞) defined by

q(y, x) = p(y, x)− p(y, y), x, y ∈ X (1.5)

is a quasi-metric [10, Theorem 4.1] (y = x iff q(y, x) = q(x, y) = 0, q(z, x) ≤ q(z, y) +
q(y, x)).

An open ball for x ∈ X, ε > 0 is defined by:

B(x, ε) = {y ∈ X : q(x, y) < ε} = {y ∈ X : p(x, y) < p(x, x) + ε}. (1.6)

The family of open balls generates topology Tq on X. It is accepted that the partial
metric space (X, p) is equipped with the topology Tq.

It is known (see, e.g. [13]) that a metric d can be defined by a partial metric p as
follows:

d(y, x) = max{q(y, x), q(x, y)} (1.7)

= max{p(y, x)− p(y, y), p(x, y)− p(x, x)}, x, y ∈ X.

The norms max{| x |, | y |} and [| x | + | y |]/2 in R2 are equivalent and therefore
metric d as in (1.7) is equivalent to ρ:

ρ(y, x) = [q(y, x) + q(x, y)]/2 = p(y, x)− [p(y, y) + p(x, x)]/2, x, y ∈ X.

In this section it is understood that q, d are defined by (1.5), (1.7) respectively, for
a partial metric p.

Remark 1.2. Clearly, the metric topology of (X, d) is stronger than the topology Tq
of (X, p). Therefore, every closed set in (X, p) is closed in (X, d), and x = limn→∞xn
in (X, d) implies x ∈ limn→∞xn in (X, p).
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For partial spaces it is accepted (see, e.g. [13, p. 19]) that a sequence (xn)n∈N
is called a Cauchy sequence in (X, p) if limm,n→∞p(xn, xm) = α ∈ R, and (X, p)
is complete if for every Cauchy sequence (xn)n∈N in (X, p) there exists an x ∈
limn→∞xn such that limm,n→∞p(xn, xm) = p(x, x).

Proposition 1.3. Let (X, p) be a partial metric space and (xn)n∈N a sequence in X.
If x ∈ limn→∞xn then the following holds:

lim supm,n→∞p(xn, xm) ≤ limn→∞p(x, xn) = p(x, x). (1.8)

If limn→∞p(x, xn) = p(x, x) is satisfied then x ∈ limn→∞xn.

Proof. The equivalence of limn→∞p(x, xn) = p(x, x) and x ∈ limn→∞xn follows
directly from (1.6) and (1.2). Conditions (1.4), (1.3) yield

p(xn, xm)− p(x, x) ≤ p(xn, x) + p(x, xm)− 2p(x, x)

= p(x, xn)− p(x, x) + p(x, xm)− p(x, x).

Therefore, limn→∞p(x, xn) = p(x, x) implies

lim supm,n→∞p(xn, xm) ≤ p(x, x). �

The subsequent three propositions are included in the proof of Lemma 2.2 in [13].
We present shorter reasonings.

Proposition 1.4. Let (X, p) be a partial metric space. A sequence (xn)n∈N converges
to an x in (X, d) iff the following is satisfied:

limm,n→∞p(xn, xm) = limn→∞p(x, xn) = p(x, x). (1.9)

Proof. If (1.9) holds then

limn→∞q(x, xn) = limn→∞[p(x, xn)− p(x, x)]

= limn→∞[p(xn, x)− p(xn, xn)]

= limn→∞q(xn, x) = 0

and therefore x = limn→∞xn in (X, d). Conversely, for x = limn→∞xn in (X, d), i.e.
limn→∞q(xn, x) = limn→∞q(x, xn) = 0 from

0 ≤ p(xn, xm)− p(xn, xn) ≤ p(xn, x) + p(x, xm)− p(x, x)− p(xn, xn)

= p(xn, x)− p(xn, xn) + p(x, xm)− p(x, x) = q(xn, x) + q(x, xm)

we get (1.9). �

Proposition 1.5. A sequence (xn)n∈N is a Cauchy sequence in (X, p) iff it is a
Cauchy sequence in (X, d).

Proof. Assume that (xn)n∈N is a Cauchy sequence in (X, p). From

limm,n→∞p(xn, xm) = α ∈ R

it follows that

limm,n→∞q(xn, xm) = limm,n→∞[p(xn, xm)− p(xn, xn)] = 0
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and limm,n→∞q(xm, xn) = 0, i.e. limm,n→∞d(xn, xm) = 0 and (xn)n∈N is a Cauchy
sequence in (X, d).

Assume that (xn)n∈N is a Cauchy sequence in (X, d). We have

| p(xn, xn)− p(xm, xm) | ≤| p(xn, xm)− p(xn, xn) |+ | p(xm, xn)− p(xm, xm) |
= q(xn, xm) + q(xm, xn)

and consequently (see (1.7)), (p(xn, xn))n∈N is a Cauchy sequence in R, and so
it converges, say to an α ∈ R. Now limm,n→∞[p(xn, xm) − p(xn, xn)] = 0 yields
limm,n→∞p(xn, xm) = α and (xn)n∈N is a Cauchy sequence in (X, p). �

Proposition 1.6. A partial metric space (X, p) is complete iff the metric space (X, d)
is complete.

Proof. In view of Proposition 1.5 any Cauchy sequence in (X, p) or (X, d) is a
Cauchy sequence in both spaces. If (X, d) is complete and x = limn→∞xn then
x ∈ limn→∞xn in (X, p) (Remark 1.2). If (X, p) is complete and x ∈ limn→∞xn
is such that limm,n→∞p(xm, xn) = p(x, x) then in view of Proposition 1.3 condition
(1.9) is satisfied and x = limn→∞xn in (X, d) (Proposition 1.4). �

Our propositions yield the following more precise version of [13, Lemma 2.2].

Lemma 1.7. A partial metric space (X, p) is complete iff the metric space (X, d)
is complete (see (1.7)). We have x ∈ limn→∞xn in (X, p) iff (1.8) holds, and x =
limn→∞xn in (X, d) iff (1.9) is satisfied. A sequence (xn)n∈N is a Cauchy sequence
in (X, p) iff it is a Cauchy sequence in (X, d); in addition, if any of these spaces is
complete then there exists an x ∈ limn→∞xn in (X, p) such as to satisfy (1.9).

The last three lemmas of this section have a role to play in Section 3. Lemma 1.9
is a nice criterion for Cauchy sequences.

Proposition 1.8. Let (αn)n∈N be sequence in R satisfying:

for each ε > 0 there exists an n0 ∈ N such that (1.10)

each m,n ∈ N , n0 < m < n yield αm < αn + ε.

Then there exists limn→∞αn > −∞.

Proof. Suppose that (αn)n∈N has no finite limit. Then for a δ > 0 there exist infinitely
many m < n such that | αn − αm |> δ, i.e. αn > αm + δ or αm > αn + δ. The last
inequality contradicts (1.10). Let k1 be such that αn > αk1

− δ/2 holds for all n > k1
(see (1.10)). There exist k2, n ∈ N such that k2 > n > k1 and αk2

> αn + δ. Hence
we obtain αk2 > αn + δ > αk1 + δ/2. By induction we define a subsequence (αkn)n∈N
such that αkn+1 > αkn + δ/2, n ∈ N . This means that limn→∞αkn =∞. Now for all
n > km > n0 we have (see (1.10)) αn ≥ αkm

− δ/2 and hence limn→∞αn =∞. �

Lemma 1.9. Let (X, p) be a partial metric space. A sequence (xn)n∈N is a Cauchy
sequence in (X, p) (or (X, d)) iff (p(xn, xn))n∈N is upper bounded and the following
condition is satisfied:

for each ε > 0 there exists an n0 ∈ N such that each m,n ∈ N , (1.11)

n0 < m < n yield q(xn, xm) = p(xn, xm)− p(xn, xn) < ε.
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Proof. We have (see (1.4), (1.3))

p(xm, xm)− p(xn, xn) ≤ p(xm, xn) + p(xn, xm)− 2p(xn, xn)

= 2[p(xn, xm)− p(xn, xn)].

Therefore, (1.11) implies (1.10) for αn = p(xn, xn), n ∈ N . Now we apply
Proposition 1.8. From the upper boundedness of (p(xn, xn))n∈N it follows that
limn→∞p(xn, xn) = α ∈ R. Now (1.2) and (1.11) yield

0 ≤ p(xn, xm)− p(xn, xn) < ε, n0 < m < n

for large m < n, which means (see (1.3)) that limm,n→∞p(xn, xm) = α ∈ R and
(xn)n∈N is a Cauchy sequence in both spaces (Proposition 1.5).

If (xn)n∈N is a Cauchy sequence in (X, p) then limm,n→∞p(xn, xm) = α ∈ R,
(p(xn, xn))n∈N is bounded and clearly (see Proposition 1.5), (1.11) holds. �

Lemma 1.10. Let (X, p) be a partial metric space. Then q(·, y) is a lower semicon-
tinuous mapping on (X, p) and (X, d) for each y ∈ X.

Proof. Let us assume x ∈ limn→∞xn in (X, p). Then from

q(x, y) = p(x, y)− p(x, x) ≤ p(x, xn) + p(xn, y)− p(xn, xn)− p(x, x)

= p(xn, y)− p(xn, xn) + p(x, xn)− p(x, x) = q(xn, y) + q(x, xn)

and Proposition 1.3 (limn→∞q(x, xn) = 0) we get

q(x, y) ≤ lim infn→∞q(xn, y).

The same reasoning applies to x = limn→∞xn in (X, d) and Proposition 1.4. �
In fact, our Lemma 1.10 for (X, d) is equivalent to [15, Lemma 2.2], which states

that p(·, x) is lower semicontinuous on (X, d), as by Proposition 1.4 p(·, ·) is continu-
ous.

Lemma 1.11. Let (X, p) be a partial metric space. If f : (X, d) → (X, d) is a
continuous mapping then p(f(·), ·) and q(f(·), ·) = p(f(·), ·) − p(f(·), f(·)) are lower
semicontinuous on (X, d).

Proof. We have (see (1.4))

p(f(x), x) ≤ p(f(x), f(xn)) + p(f(xn), x)− p(f(xn), f(xn))

≤ p(f(x), f(xn))− p(f(xn), f(xn)) + p(f(xn), xn) + p(xn, x)− p(xn, xn).

Condition (1.9) applies for x = limn→∞xn in (X, d) and therefore, for continuous f
we obtain

p(f(x), x) ≤ lim infn→∞p(f(xn), xn).

Besides, p(·, ·) is continuous (see Proposition 1.4) and consequently, q(f(·), ·) is lower
semicontinuous. �
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2. Kernel and fixed points

Many fixed point theorems for partial metric spaces contain a conclusion that
f(x) = x for an x such that p(x, x) = 0. This suggests that the following notion
should be useful.

Definition 2.1. Let p : X × X → R be a mapping. The kernel of p is the set
Ker p = {x ∈ X : p(x, x) = 0}.

The next lemma presents some properties of the kernel in partial metric spaces.

Lemma 2.2. Let (X, p) be a partial metric space with a nonempty kernel Z. Then
p = d on Z × Z (see (1.7)) and the metric topology of (Z, p|Z×Z) is induced by the
topology of (X, p). The kernel is a closed set in (X, d). If (X, p) or (X, d) is complete
then Z is complete in both spaces.

Proof. For x, y ∈ Z condition (1.1) means that y = x iff p(y, x) = 0. Condition (1.4)
yields

p(z, x) ≤ p(z, y) + p(y, x)− p(y, y) = p(z, y) + p(y, x), x, z ∈ X, y ∈ Z.

Thus (Z, p|Z×Z) is a metric space and, clearly p = d on Z × Z. For z = x ∈ Z
conditions (1.4), (1.3) yield p(y, x) ≥ 0, x, y ∈ Z (the same follows from (1.2)). The
induced topology of a subspace of the partial metric space (X, p) is the partial metric
topology for restricted p and therefore the metric topology of (Z, p|Z×Z) is induced
by the topology of (X, p).

If (xn)n∈N is a sequence in Z and x = limn→∞xn in (X, d), then by (1.9) 0 =
limn→∞p(xn, xn) = limm,n→∞p(xn, xm) = p(x, x), i.e. x ∈ Z and consequently, Z is
closed in (X, d).

For complete (X, p) and any Cauchy sequence (xn)n∈N in Z there exists an x ∈
limn→∞xn in (X, p) such that

0 = limn→∞p(xn, xn) = limm,n→∞p(xn, xm) = p(x, x).

Thus x ∈ Z and Z is complete in (X, p). Clearly, the same concerns Z as a closed
subset of the complete metric space (X, d). Consequently (see Proposition 1.6), Z is
a complete set in (X, p) and (X, d), if any of these spaces is complete. �

Let us present two applications of Lemma 2.2.
Romaguera has proved the following extension of a theorem due to Matkowski [8,

Theorem 1.2, p. 8].

Theorem 2.3 ([16, Corollary 3]). Let (X, p) be a complete partial space with non-
negative p and let f : X → X be a mapping such that

p(f(y), f(x)) ≤ Φ(p(y, x)), x, y ∈ X, (2.1)

where Φ: [0,∞)→ [0,∞) is a nondecreasing function such that

limn→∞Φn(t) = 0 for all t > 0.

Then f has a unique fixed point x and p(x, x) = 0.
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It is sufficient to prove that Z = Ker p 6= ∅. Then from (2.1) it follows that for any
x ∈ Z we have

p(f(x), f(x)) ≤ Φ(p(x, x)) = 0,

i.e. f(Z) ⊂ Z and Matkowski’s theorem applies to f|Z . In addition, each fixed point
of f belongs to Z, as

p(x, x) = p(f(x), f(x)) ≤ Φ(p(x, x))

means that p(x, x) = 0.
Lemma 2.2 also applies in the proof of the following theorem of Aydi-Abbas-Vetro.

Theorem 2.4 ([1, Theorem 3.2]). Let (X, p) be a complete partial metric space with
nonnegative p. If T : X → CBp(X) is a multi-valued mapping such that for all
x, y ∈ X, we have

Hp(Ty, Tx) ≤ kp(y, x)

where k ∈ (0, 1). Then T has a fixed point.

The authors first prove that there exists an x ∈ Z = Ker p. For any x ∈ Z we have
Hp(Tx, Tx) ≤ kp(x, x) = 0. Moreover, Hp(Tx, Tx) = sup{p(y, y) : y ∈ Tx} (see [1,
Proposition 2.2 (i)]), and consequently, T (Z) ⊂ Z. Now it is sufficient to apply the
Nadler theorem [11, Theorem 5] to T|Z .

The known notion of 0-completeness can be defined in the following way with the
help of the concept of kernel.

Definition 2.5 (cp. [15, Definition 2.1]). A partial metric space (X, p) is 0-complete
if every sequence (xn)n∈N in X such that limm,n→∞p(xn, xm) = 0 yields limn→∞xn∩
Ker p 6= ∅.

It should be noted that nonnegative partial metric p defines metric δ in the following
way: δ(x, y) = 0 iff x = y, and δ(x, y) = p(x, y) for x 6= y. The topology of (X, δ) is
clearly, larger than the topology of (X, d) (see (1.7)). Moreover, (X, p) is 0-complete
iff (X, δ) is complete [7], [6, Proposition 2.1].

If the proof of a theorem is based on a sequence (xn)n∈N such that p(xn+1, xn) 6= 0,
n ∈ N , then it works for (X, δ) and the theorem itself looks like the respective result
(if known) for metric spaces. Numerous examples can be found in [6]. The authors
work on assumptions in order to replace p by δ, and then known “metric” theorems
appear.

The method presented in [6] is very interesting and strong, nevertheless our results
seem to be new also for metric spaces. As regards the kernel, it is a natural metric
subspace of partial metric space and is better suited to the cases where topology of
this subspace matters.

Now we are ready to present a considerable extension of the Romaguera theorem
[16, Corollary 3]. Let us note that f0 is the identity mapping.

Theorem 2.6. Let (X, p) be a 0-complete partial metric space with nonnegative p.
Assume that f : X → X is a mapping satisfying:

p(f t(y), fs(x)) ≤ Φ(p(y, x)), x, y ∈ X (2.2)
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for fixed s, t ∈ N ∪ {0}, where Φ : [0,∞) → [0,∞) is a nondecreasing mapping such
that limn→∞Φn(α) = 0, α > 0. Then f has a unique fixed point. If x is a fixed point
of f then x ∈ limn→∞f

n(x0) ∩Ker p, x0 ∈ X.

To make the proof of Theorem 2.6 more perspicuous we precede it with four propo-
sitions.

Proposition 2.7. Assume that Φ: [0,∞)→ [0,∞) is a mapping such that Φ(0) = 0
and Φ(α) < α, α > 0. Then α ≤ Φk(α) yields α = 0, k ∈ N .

Proof. Let us adopt Φ0(α) = α and suppose Φk−1(α) > 0. Then by finite induction
we get Φk(α) = Φ(Φk−1(α)) < Φk−1(α) < · · · < α, which contradicts α ≤ Φk(α).
Therefore, 0 ≤ α ≤ Φ(Φk−1(α)) = Φ(0) = 0 holds. �

Definition 2.8. A family F [X] commutes on fixed points if it consists of map-
pings from X in itself such that h(x) = x for a h ∈ F [X] and an x ∈ X yields
(h ◦ g)(x) = g(x) for all g ∈ F [X].

Proposition 2.9. Let p : X×X → R be a mapping satisfying (1.1) on Ker p in place
of X and let F [X] commute on fixed points and satisfy (2.3) for s = t = 1, | p | in
place of p and a Φ: [0,∞)→ [0,∞) such that Φ(0) = 0 and Φ(α) < α, α > 0. Then
each of f ∈ F [X] has at most one fixed point, the point is common for F [X] and
belongs to Ker p.

Proof. If x, y ∈ X are fixed points of some g, h ∈ F [X], then (2.3) yields

| p(y, x) |=| p(h(y), g(x)) |≤ Φ(| p(y, x) |),
i.e. p(y, x) = 0 (Proposition 2.7). Similarly, we get

| p(x, x) |=| p(g(x), g(x)) |≤ Φ(| p(x, x) |),
i.e. p(x, x) = 0 and finally p(x, x) = p(y, y) = 0 (x, y ∈ Ker p). Now, from (1.1) it
follows that y = x. �

Proposition 2.10. Let p : X ×X → R be a mapping satisfying (1.1) for all x, y ∈
Ker p, and (1.3). Assume that F [X] commutes on fixed points and satisfies (2.3) for
s = t = 1, | p | in place of p and a Φ: [0,∞)→ [0,∞) such that Φ(α) < α, α > 0. If
Φ is nondecreasing, then h(x) = x for an h ∈ F [X] and an x ∈ Ker p yields g(x) = x,
g ∈ F [X]; if in addition, h = f t, g = fs for some s+ t > 0 then f(x) = x holds.

Proof. First let us prove that g(x) = x. We have

| p(g(x), x) |=| p(x, g(x)) |=| p(h(x), g(x)) |≤ Φ(| p(x, x) |) = 0.

Φ is nondecreasing and hence we get

| p(g(x), g(x)) | =| p((h ◦ g)(x), (g ◦ h)(x)) |≤ Φ(| p(g(x), h(x)) |)
= Φ(| p(h(x), g(x)) |) ≤ Φ2(| p(x, x) |) = 0.

Now p(g(x), g(x)) = p(g(x), x) = p(x, x) = 0 and (1.1) for x ∈ Ker p yield g(x) = x.
From (2.2) for | p | in place of p we get

| p(f(x), x) |=| p(f t+1(x), fs(x)) |≤ Φ(| p(f(x), x) |),
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and by Proposition 2.7 p(f(x), x) = 0. Now for nondecreasing Φ we obtain

| p(f(x), f(x)) |=| p(f t+s+1(x), fs+t+1(x)) |≤ Φ2(| p(f(x), f(x)) |),
and consequently, p(f(x), f(x)) = p(f(x), x) = p(x, x) = 0, i.e f(x) = x. �

Proposition 2.11. Let p : X × X → [0,∞) be a mapping satisfying (1.1), (1.2),
(1.3) for all x ∈ Ker p, the triangle inequality, and let f : X → X satisfy (2.2) for
a Φ : [0,∞) → [0,∞) such that Φ(α) ≤ α, α ≥ 0. Then for xn = fn(x0), n ∈ N
condition limn→∞p(x, xn) = p(x, x) = 0 yields f t(x) = x.

Proof. From

0 ≤ p(f t(x), xn) ≤ Φ(p(x, xn−s)) ≤ p(x, xn−s)
it follows that limn→∞p(f

t(x), xn) = 0. The triangle inequality and (1.3) yield

0 ≤ p(f t(x), x) ≤ p(f t(x), xn) + p(x, xn),

i.e. p(f t(x), x) = 0. Now from

0 ≤ p(f t(x), f t(x)) ≤ p(f t(x), x)

we get p(f t(x), f t(x)) = p(f t(x), x) = p(x, x) and f t(x) = x. �
Proof of Theorem 2.6. It is well known that Φ as in Theorem 2.6 satisfies Φ(α) < α
for each α > 0 [9, Lemma]. Therefore, our propositions work. From Proposition 2.7
it follows that the case of s = t = 0 is trivial, as here X is a singleton (see (1.1)).
Thus we assume that s ≤ t and t ≥ 1. Let x0 ∈ X be arbitrary and let xn = fn(x0),
n ∈ N , while f0(x0) = x0. If limn→∞p(xn, xm) = 0 then by the 0-completeness of X
there exists an x ∈ limn→∞xn∩Ker p. In view of Proposition 2.11 we have f t(x) = x;
by Proposition 2.10, f(x) = x; and x is the unique fixed point of f (Proposition 2.9).
Therefore, the only step we need is to prove that limm,n→∞p(xn, xm) = 0. We adapt
the Romaguera reasoning from the proof of [16, Theorem 4].

For each ε > 0 there exists a k0 such that all k > k0 yield

p(x(k+1)(s+t)+v, xk(s+t)+u) ≤ Φ2k(p(xs+t+v, xu)) ≤ ε− Φ(ε),

for all u, v < s+ t (see the proof of Proposition 2.10).
Let us adopt n = k(s+ t) + v, m = k(s+ t) + u. Now we have

p(xn+2(s+t), xm) ≤ p(xn+2(s+t), xn+(s+t)) + p(xn+(s+t), xm)

− p(xn+(s+t), xn+(s+t))

≤ p(xn+2(s+t), xn+(s+t)) + p(xn+(s+t), xm)

≤ Φ2(ε− Φ(ε)) + ε− Φ(ε) ≤ Φ(ε) + ε− Φ(ε) = ε,

and similarly,

p(xn+3(s+t), xm) ≤ p(xn+3(s+t), xn+(s+t)) + p(xn+(s+t), xm)

≤ Φ2(p(xn+2(s+t), xn)) + p(xn+(s+t), xm)

≤ Φ2(ε) + ε− Φ(ε) ≤ Φ(ε) + ε− Φ(ε) = ε.

By induction we prove that p(xn+r(s+t), xm) ≤ ε, r ∈ N .
Consequently, limm,n→∞p(xn, xm) = 0 holds for independent m,n ∈ N . �
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For a complete metric space (X, p) Theorem 2.6 extends the Matkowski theorems
[8, Theorem 1.2, p. 8] and [9, Theorem 2].

Theorem 2.12. Let (X, p) be a 0-complete partial metric space with nonnegative p.
Assume that F [X] is a family such that for fixed s, t inN ∪ {0} and all g, h ∈ F [X]
mappings ht, gs commute on their fixed points and

p(ht(y), gs(x)) ≤ Φ(p(y, x)), g, h ∈ F [X], x, y ∈ X (2.3)

holds for a nondecreasing Φ : [0,∞) → [0,∞) such that limn→∞Φn(α) = 0, α > 0.
Then each of f ∈ F [X] has the same unique fixed point; if x ∈ Fix f then x ∈
limn→∞f

n(x0) ∩Ker p, x0 ∈ X.

Proof. Any f ∈ F [X] has a unique x ∈ Fix f (Theorem 2.6). Clearly, x ∈ Fix f t
and hence, x is a common fixed point (Proposition 2.9). �

More sophisticated theorems on coincidences and fixed points (for continuous Φ)
can be found in [5].

3. Variational conditions

In [14, Definition 14] the following notion was introduced.

Definition 3.1. Let q : X ×X → [0,∞) be a mapping. Then (xn)n∈N is a Cauchy
sequence in (X, q) if for each ε > 0 there exists an n0 ∈ N such that each m,n ∈ N ,
n0 < m < n yield q(xn, xm) < ε.

Now Lemma 1.9 can be given the following form:

Lemma 3.2. Let (X, p) be a partial metric space with upper bounded p(·, ·) and let
q be defined by (1.5). Then (xn)n∈N is a Cauchy sequence in (X, q) in the sense of
Definition 3.1 iff it is a Cauchy sequence in (X, p) (or in the metric space (X, d) (see
(1.7)).

Another notion from [14] is presented in the following:

Definition 3.3 ([14, Definition 15]). Let (X, d) be a metric space. A mapping q :
X ×X → [0,∞) is a d-istance in X if the following conditions are satisfied:

(i) q(z, x) ≤ q(z, y) + q(y, x), x, y, z ∈ X,
(ii) q(·, x), is lower semicontinuous, x ∈ X,

(iii) each Def. 3.1 Cauchy sequence in (X, q) is a Cauchy sequence in (X, d).

From condition (1.4), [15, Lemma 2.2] and Proposition 1.5 (see Definition 3.1) it
follows that each nonnegative partial metric p is a d-istance for d as in (1.7).

Now, this last statement, Lemma 1.10, and Lemma 3.2 (see also Proposition 1.6)
yield:

Corollary 3.4. For a partial metric space (X, p) let q, d be as in (1.5), (1.7) respec-
tively. If p(·, ·) is upper bounded then q is a d-istance. If p is nonnegative then it is
a d-istance. Metric space (X, d) is complete iff (X, p) is complete.

Corollary 3.4 and the main results of [14] yield the subsequent five theorems.
For a mapping ψ : X → R let us adopt

β = inf{ψ(z) : z ∈ X}, B = {z ∈ X : ψ(z) = β}. (3.1)



PARTIAL METRIC, FIXED POINTS, VARIATIONAL PRINCIPLES 445

Theorem 3.5 (cp. [14, Theorem 21]). Let (X, p) be a complete partial metric space
and let d be as in (1.7). Assume that ψ : (X, d) → R is a lower semicontinuous
mapping bounded below, and q = p for nonnegative p or q is defined by (1.5) for
upper bounded p(·, ·). Let us adopt y4x iff ψ(y) + q(y, x) − ψ(x) ≤ 0, x, y ∈ X, and
assume that the following holds (see (3.1)):

for each x ∈ X \B there exists a y ∈ X \ {x} such that y4x. (3.2)

Then for any x0 ∈ X \ B, each maximal chain A ⊂ X containing x0 has a unique
smallest element x, in addition satisfying:

(i) ψ(x) = inf{ψ(z) : z ∈ X} (i.e. x ∈ B),
(ii) ψ(x) + q(x, x0)− ψ(x0) = inf{ψ(z) + q(z, x0)− ψ(x0) : z ∈ A} ≤ 0,

(iii) 0 < ψ(y) + q(y, x)− ψ(x), for each y ∈ X \ {x}.

Theorem 3.6 (cp. [14, Theorem 22]). Let (X, p) be a complete partial metric space
and let d be as in (1.7). Assume that ψ : (X, d) → R is a lower semicontinuous
mapping bounded below, and q = p for nonnegative p or q is defined by (1.5) for
upper bounded p(·, ·). Let us adopt y4x iff ψ(y) + q(y, x) − ψ(x) ≤ 0, x, y ∈ X, and
assume that the following condition holds:

for each x ∈ X there exists a y such that y4x. (3.3)

Then for any xo ∈ X, each maximal chain A ⊂ X containing x0 has a unique smallest
element x, in addition satisfying:

(i) ψ(x) = inf{ψ(z) : z ∈ A},
(ii) ψ(x) + q(x, x0)− ψ(x0) = inf{ψ(z) + q(z, x0)− ψ(x0) : z ∈ A} ≤ 0,

(iii) 0 < ψ(y) + q(y, x)− ψ(x), for each y ∈ X \ {x},
(iv) q(x, x) = 0.

Let 2Y be the family of all subsets of Y . We say that F : X → 2Y is a (multivalued)
mapping if F (x) 6= ∅, for all x ∈ X 6= ∅.

Theorem 3.7 (cp. [14, Theorem 23]). Let (X, p) be a complete partial metric space
and let d be as in (1.7). Assume that ψ : (X, d) → R is a lower semicontinuous
mapping bounded below, and q = p for nonnegative p or q is defined by (1.5) for
upper bounded p(·, ·). Assume X ⊂ Y and F : X → 2Y is a mapping satisfying:

for each x ∈ X \ F (x) there exists a y ∈ X \ {x}
such that ψ(y) + q(y, x)− ψ(x) ≤ 0. (3.4)

Then F has a fixed point.

The next theorem extends the theorems of Caristi [2, Theorem (2.1)’] and Taka-
hashi [4, Theorem 5].

Theorem 3.8 (cp. [14, Theorem 24]). Let (X, p) be a complete partial metric space
and let d be as in (1.7). Assume that ψ : (X, d) → R is a lower semicontinuous
mapping bounded below, and q = p for nonnegative p or q is defined by (1.5) for
upper bounded p(·, ·). Let us adopt y4x iff ψ(y) + q(y, x) − ψ(x) ≤ 0, x, y ∈ X, and
assume that X ⊂ Y and F : X → 2Y is a mapping satisfying:

for each x ∈ X there exists a y ∈ F (x) such that y4x. (3.5)
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Then for any x0 ∈ X, each maximal chain A ⊂ X containing x0 has a unique smallest
element x, in addition satisfying conditions (i),. . .,(iv) of Theorem 3.6 and such that
x ∈ F (x).

The subsequent theorem extends Ekeland’s variational principle [3, Theorem 1].

Theorem 3.9 (cp. [14, Theorem 25]). Let (X, p) be a complete partial metric space
and let d be as in (1.7). Assume that ψ : (X, d) → R is a lower semicontinuous
mapping bounded below, and q = p for nonnegative p or q is defined by (1.5) for
upper bounded p(·, ·). Then the following are satisfied:

(i) for each x0 ∈ X there exists an x ∈ X such that ψ(x) ≤ ψ(x0) and ψ(x) −
q(y, x) < ψ(y), for each y ∈ X \ {x},

(ii) for any ε > 0 and each x0 ∈ X with q(x0, x0) = 0 and
ψ(x0) ≤ ε+ inf{ψ(z) : z ∈ X} there exists an x ∈ X such that
ψ(x) ≤ ψ(x0), q(x, x0) ≤ 1 and ψ(x)− εq(y, x) < ψ(y), for each
y ∈ X \ {x}.

The assumption of the lower semicontinuity of ψ can be replaced by the assumption
of “continuity” of F as shown in the following extension of the Brøndsted theorem to
the case of multivalued mappings in partial metric spaces.

Theorem 3.10 (cp. [4, (B.6), p. 33]). Let (X, p) be a complete partial metric space
and let d be as in (1.7). Assume that ψ : X → R is a mapping bounded below, and
q = p for nonnegative p or q is defined by (1.5) for upper bounded p(·, ·). Let us adopt
y4x iff ψ(y) + q(y, x) − ψ(x) ≤ 0, x, y ∈ X, and assume that mapping F : X → 2X

has a closed graph (for (X, d) or (X, p)) and satisfies (3.5). Then F has a fixed point.

Proof. Let x0 ∈ X be arbitrary and let x1 ∈ F (x0) satisfy x14x0. If xn is defined,
then xn+1 ∈ F (xn) is such that xn+14xn. From

ψ(xn) + q(xn, xm)− ψ(xm) ≤ ψ(xn) + q(xn, xn−1)− ψ(xn−1)

+ψ(xn−1) + q(xn−1, xn−2)− ψ(xn−2) + · · ·+ +ψ(xm+1) + q(xm+1, xm)− ψ(xm)≤0

for m < n it follows that

0 ≤ q(xn, xm) ≤ ψ(xm)− ψ(xn).

Therefore, (ψ(xn))n∈N is nonincreasing, i.e. convergent, as ψ is bounded below. Now
it is clear that (xn)n∈N is a Cauchy sequence in (X, q) (see Definition 3.1). In view of
Lemma 3.2 (xn)n∈N is a Cauchy sequence in (X, d), which is complete (Proposition
1.6). The graph of F is closed for (X, d) (see Remark 1.2) and limn→∞d(xn, F (xn)) ≤
limn→∞d(xn, xn+1) = 0 means that x = limn→∞xn ∈ F (x). �

Clearly, in the present paper one can use λq for a λ > 0 in place of q, and a metric
equivalent to d.

Now we are ready to present a Banach type fixed point theorem in a variational
version.

Theorem 3.11. Let (X, p) be a complete partial metric space and let d be as in (1.7).
Assume that p is bounded below with upper bounded p(·, ·) and f : (X, d) → (X, d) is
a continuous mapping which for a c ∈ [0, 1) satisfies:

q(f2(x), f(x)) ≤ cq(f(x), x), x ∈ X, (3.6)



PARTIAL METRIC, FIXED POINTS, VARIATIONAL PRINCIPLES 447

where q(y, x) = p(y, x) − p(y, y), x, y ∈ X. For ψ(·) = q(f(·), ·) let us adopt y4x iff
ψ(y) + (1− c)q(y, x)−ψ(x) ≤ 0, x, y ∈ X. Then for any x0 ∈ X, each maximal chain
A ⊂ X containing x0 has a unique smallest element x such that f(x) = x and the
following conditions are satisfied:

(i) (1− c)q(x, x0)− q(f(x0), x0) = inf{q(f(z), z) + (1− c)q(z, x0)
−q(f(x0), x0) : z ∈ A} ≤ 0,

(ii) 0 < q(f(y), y) + (1− c)q(y, x), for each y ∈ X \ {x}.

Proof. Condition (3.6) can be rewritten in the form

q(f2(x), f(x)) + (1− c)q(f(x), x)− q(f(x), x)

= ψ(f(x)) + (1− c)q(f(x), x)− ψ(x) ≤ 0, x ∈ X.
Now we can see (Lemma 1.11) that Theorem 3.8 applies. Clearly, for f(x) = x we
have ψ(x) = q(f(x), x) = q(x, x) = 0 and conditions (i),(iv) of Theorem 3.6 can be
disregarded (see (1.2)). �
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