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Abstract. In this paper, we introduce the notion of semi-quasi contraction and obtain coincidence

and common fixed point theorems for such contractions without using any kind of continuity of
mappings. Besides addressing an open question, our results extend and generalize some well known

fixed point theorems including Ćirić’s quasi contraction theorem.
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1. Introduction and preliminaries

Throughout this paper Y denotes an arbitrary non-empty set, X a metric space
(X, d) and N the set of all positive integers. In 1974, Ćirić [1] introduced the following
notion of quasi-contraction and obtained a remarkable generalization of the classical
Banach contraction principle (BCP):

Definition 1.1. A self-mapping T of a metric space X is a quasi-contraction if there
exists a number r ∈ [0, 1) such that

d(Tx, Ty) ≤ r M(x, y) (1.1)

for all x, y ∈ X, where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Theorem 1.2. [1]. A quasi-contraction on a complete metric space has a unique
fixed point.

We remark that a quasi-contraction for a self-mapping on a metric space is consid-
ered as the most general among contractions listed by Rhoades [15].

Following Jungck [7] and Ćirić [1], Ranganathan [14] and Das and Naik [2] indepen-
dently obtained the following extension of Theorem 1.2.
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Theorem 1.3. Let X be a complete metric space and S, T : X → X a pair of
mappings satisfying the following: (a) S is continuous; (b) T (X) ⊆ S(X); (c) S
and T commute on X. Assume that there exists r ∈ [0, 1) such that for all x, y ∈ X,

d(Tx, Ty) ≤ r MS,T (x, y),

where MS,T (x, y) = max{d(Sx, Sy), d(Sx, Tx), d(Sy, Ty), d(Sx, Ty), d(Sy, Tx)}.
Then S and T have a unique common fixed point.

Notice that Theorem 1.2 is Theorem 1.3 when S is the identity mapping on X. On
the other hand, Suzuki [19] obtained the following forceful generalization of the BCP.

Theorem 1.4. Let X be a complete metric space and T a mapping on X. Define a
nondecreasing function θ : [0, 1)→ ( 1

2 , 1] by

θ(r) =


1 if 0 ≤ r ≤ (

√
5− 1)/2,

(1− r)r−2 if (
√

5− 1)/2 ≤ r ≤ 2−
1
2 ,

(1 + r)−1 if 2−
1
2 ≤ r < 1.

Assume that there exists r ∈ [0, 1) such that

θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ r d(x, y) for all x, y ∈ X.

Then T has a unique fixed point in X.

Using variants of θ(r), a number of extensions and generalizations of Theorem 1.4
have appeared in [3,4,9,13,17,18] and elsewhere. Popescu [11] obtained the following
generalization of a fixed point theorem of Jungck [7], Theorem 1.4 and a result of
Kikkawa and Suzuki [9, Th. 3].

Theorem 1.5. Let X be a complete metric space and S, T : X → X a pair of
mappings satisfying the conditions (a), (b) and (c). Assume that there exists r ∈
[0, 1) such that for all x, y ∈ X,

θ(r)d(Sx, Tx) ≤ d(Sx, Sy) implies d(Tx, Ty) ≤ r NS,T (x, y),

where NS,T (x, y) = max

{
d(Sx, Sy), d(Sx, Tx), d(Sy, Ty),

d(Sx, Ty) + d(Sy, Tx)

2

}
.

Then S and T have a unique common fixed point.

We remark that a mapping T : X → X satisfying the condition

d(Tx, Ty) ≤ r NS,T (x, y), x, y ∈ X,
also satisfies the condition

d(Tx, Ty) ≤ r MS,T (x, y), x, y ∈ X,
but the reverse implication is not true.
Now a natural question arises whether it is possible to drop the continuity requirement
on the mapping S and replace the condition NS,T (x, y) by MS,T (x, y) in Theorem 1.5.
Indeed, this question has implicitly been open for about five years.
In this paper, using a different value of θ(r), we answer this question affirmatively
and also relax the commutativity requirement considerably. Our results complement,
extend and generalize a number of fixed point results including Theorems 1.2 - 1.5
and an important coincidence theorem due to Goebel [5].
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2. Semi-quasi contractions

Definition 2.1. A pair of mappings S, T : Y → X with values in a metric space X
will be called a semi-quasi contraction if there exists a number r ∈ [0, 1) such that

(1− r)d(Sx, Tx) ≤ d(Sx, Sy) implies d(Tx, Ty) ≤ r MS,T (x, y) (CS)

for all x, y ∈ Y . It will be called a semi-quasi contraction for a self-mapping T of X
when Y = X and S is the identity mapping on X.

Following Itoh and Takahashi [6] (see also [16]), we have the following definition of
(IT)-commuting for a pair of mappings.

Definition 2.2. A pair of mappings S, T : X → X is (IT)-commuting (also called
weakly compatible by Jungck and Rhoades [8]) at u ∈ X if STu = TSu such that
Su = Tu.

Now onwards, O(yk;n) denotes the set of points {yk, yk+1, ..., yk+n} and δ[O(yk;n)]
the diameter of O(yk;n). Notice that if δ[O(yk;n)] > 0 for k, n ∈ N then

δ[O(yk;n)] = d(yk, yj); where k < j ≤ k + n.

The main result of this paper is prefaced by the following lemmas. Lemmas 2.3 and
2.4 are modeled on the pattern of Ćirić [1].

Lemma 2.3. Let X be a metric space and S, T : Y → X a semi-quasi contraction for
a pair of mappings. Suppose that T (Y ) ⊆ S(Y ) and δ[O(yn; 1)] > 0 for n ∈ N ∪ {0}.
Then

δ[O(yn; 1)] ≤ rnδ[O(y0;n+ 1)],

where yn = Txn = Sxn+1 for n ∈ N ∪ {0}.

Proof. Let x0 ∈ Y be arbitrary. We define sequences {xn} in Y and {yn} in X by

yn = Txn = Sxn+1 for n ∈ N ∪ {0}.
Since for n ∈ N,

(1− r)d(Sxn, Txn) ≤ d(Sxn, Txn) = d(Sxn, Sxn+1) = d(yn−1, yn),

by (CS), we have

d(yn, yn+1) = d(Txn, Txn+1)

≤ rmax{d(Sxn, Sxn+1), d(Sxn, Txn), d(Sxn+1, Txn+1),

d(Sxn, Txn+1), d(Sxn+1, Txn)}
= rmax{d(yn−1, yn), d(yn, yn+1), d(yn−1, yn+1)}.

Thus for n ∈ N,

d(yn, yn+1) ≤ r δ[O(yn−1; 2)]

and evidently

δ[O(yn; 1)] ≤ r δ[O(yn−1; 2)].

Inductively,

d(yn, yn+1) = δ[O(yn; 1)] ≤ r δ[O(yn−1; 2)]... ≤ rnδ[O(y0;n+ 1)]. �



452 RAJENDRA PANT, S.L. SINGH AND S.N. MISHRA

Lemma 2.4. Under the hypotheses of Lemma 2.3,

δ[O(y0;n+ 1)] ≤ 1

(1− r)
d(y0, y1).

Proof. It is obvious that δ[O(y0;n+1)] = d(y0, yk) for some positive integer k ≤ n+1.
Now

δ[O(y0;n+ 1)] = d(y0, yk) ≤ d(y0, y1) + d(y1, yk)

= d(y0, y1) + d(Tx1, Txk)

= d(y0, y1) + δ[O(y1;n)]

≤ d(y0, y1) + rδ[O(y0;n+ 1)].

Therefore

δ[O(y0;n+ 1)] ≤ 1

(1− r)
d(y0, y1). �

Lemma 2.5. Under the hypothesis of Lemma 2.3,

d(Txn, Txn+1) ≤ r

1− r
d(Sxn, Txn).

Proof. Pick x0 ∈ Y . Define sequences {xn} and {yn} as in Lemma 2.3.
Since for n ∈ N ∪ {0},

(1− r)d(Sxn, Txn) ≤ d(Sxn, Txn) = d(Sxn, Sxn+1),

by (CS), we have

d(Txn, Txn+1) ≤ rmax{d(Sxn, Sxn+1), d(Sxn, Txn), d(Sxn+1, Txn+1),

d(Sxn, Txn+1), d(Sxn+1, Txn)}
= rmax{d(Sxn, Sxn+1), d(Sxn+1, Sxn+2), d(Sxn, Sxn+2)}
≤ rmax{d(Sxn, Sxn+1), d(Sxn+1, Sxn+2), d(Sxn, Sxn+1)

+ d(Sxn+1, Sxn+2)}

=
r

1− r
d(Sxn, Txn).

�

Theorem 2.6. Let S, T : Y → X be a semi-quasi contraction for a pair of mappings
such that T (Y ) ⊆ S(Y ). If S(Y ) or T (Y ) is a complete subspace of the metric space
X then

(A) S and T have a coincidence point u ∈ Y .

Further,

(B) S and T have a unique fixed point provided that Y = X and the mappings S
and T are (IT)-commuting at u.

Proof. Pick x0 ∈ Y . Define sequences {xn} and {yn} as in Lemma 2.3.
If for some n ∈ N ∪ {0}, δ[O(yn; 1)] = 0, we have

yn = yn+1, i.e., Sxn = Txn and xn is a coincidence point of S and T .
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If δ[O(xn; 1)] > 0 then by Lemmas 2.3 and 2.4, we have

d(yn, yn+1) ≤ rn

1− r
d(y0, y1).

Since r < 1, the sequence {yn} is Cauchy. Suppose S(Y ) is a complete subspace of
X. Then {yn} being contained in S(Y ) has a limit in S(Y ). Call it z. Let u ∈ S−1z.
Then Su = z. We claim that

(1− r)d(Sxn, Txn) ≤ d(Sxn, Su).

Suppose that for some n ∈ N ∪ {0},
d(Sxn, Su) < (1− r)d(Sxn, Txn) and d(Txn, Su) < (1− r)d(Txn, Txn+1).

Then

d(Sxn, Txn) < d(Sxn, Su)+d(Txn, Su) < (1−r)d(Sxn, Txn)+(1−r)d(Txn, Txn+1).

Using Lemma 2.5,

d(Sxn, Txn) < (1− r)
[
d(Sxn, Txn) +

r

1− r
d(Sxn, Txn)

]
= (1− r)

[
1 +

r

1− r

]
d(Sxn, Txn) = d(Sxn, Txn).

a contradiction. Therefore (1 − r)d(Sxn, Txn) ≤ d(Sxn, Su) holds for every n ∈
N ∪ {0}.
Now by (CS),

d(Txn, Tu) ≤ r max{d(Sxn, Su), d(Sxn, Txn), d(Su, Tu), d(Sxn, Tu), d(Su, Txn)}.
Making n→∞,

d(Su, Tu) ≤ r d(Su, Tu),

and Su = Tu.
Further, if Y = X and the mappings S and T are (IT)-commuting at u then STu =
TSu = SSu = TTu. Again since

(1− r)d(STu, Tu) ≤ d(STu, Tu) = d(STu, Su),

by (CS),

d(TTu, Tu) ≤ rmax{d(STu, Su), d(STu, TTu), d(Su, Tu), d(STu, Tu), d(Su, TSu)}
= rd(TTu, Tu),

a contradiction, and Tu = z is a common fixed point of S and T .
In case T (Y ) is a complete subspace of X, the sequence {yn} converges in S(Y )

since T (Y ) ⊆ S(Y ). So the previous argument works. The unicity of the common
fixed point follows easily. �

Corollary 2.7. Let X be a complete metric space and T : X → X a semi-quasi
contraction. Then T has a unique fixed point in X.

Proof. It comes from Theorem 2.6 when Y = X and S is the identity mapping on
X. �
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3. Examples

In this section, we present a number of examples to illustrate the generality of our
results.

Example 3.1. Let Y = {a, b, c, d} and X = {1, 2, 3, 4} be endowed with the metric
d on X defined by d(1, 2) = d(1, 3) = 1, d(1, 4) = 3

2 , d(2, 3) = d(2, 4) = d(3, 4) = 2.
Let S, T : Y → X be given by Ta = Td = 1, Tb = Tc = 4 and Sa = 1, Sb = Sc = 3,
Sd = 4.
Notice that d(Ta, Tb) = 3

2 > 1 = d(Sa, Sb) and Goebel’s condition [5]:

d(Tx, Ty) ≤ rd(Sx, Sy) for all x, y ∈ Y
is not satisfied. However, T (Y ) ⊆ S(Y ) and

(1− r)d(Sx, Tx) ≤ d(Sx, Sy) ≤ 2 implies

d(Tx, Ty) ≤ 3

2
≤ rmax{d(Sx, Sy), d(Sx, Tx), d(Sy, Ty), d(Sx, Ty), d(Sy, Tx)}

with 1 > r ≥ 3
4 . Therefore all the hypotheses of Theorem 2.6 hold and Sa = Ta.

Example 3.2. Let (X, d) be as in Example 3.1 and S, T : X → X such that T1 =
T4 = 1, T2 = T3 = 4 and S1 = 1, S2 = S3 = 3, S4 = 4, then

1. θ(r)d(1, T1) = 0 ≤ d(T1, T2) and d(T1, T2) = 3
2 > 1 = d(1, 2). So T does

not satisfy the assumptions of Theorem 1.4. Further,
2. θ(r)d(S1, T1) = 0 ≤ d(S1, S2) and d(T1, T2) = 3

2 > 1 = d(S1, S2). Therefore
S and T do not satisfy the assumptions of Kikkawa and Suzuki [9, Th. 3].

Evidently, all the hypotheses of Theorem 2.6 hold and S1 = T1 = 1.

Example 3.3. Let (X, d) be as in Example 3.1. Define T : X → X by T1 = T2 =
T4 = 1, T3 = 4.
Then for all x, y ∈ X,

(1− r)d(x, Tx) ≤ d(x, y) ≤ 2 implies

d(Tx, Ty) ≤ 3

2
≤ r max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

with r ≥ 3
4 . Therefore Corollary 2.7 applies.

On the other hand, θ(r)d(1, T1) = 0 ≤ 1 = d(1, 3) and d(T1, T3) = 3
2 > rd(1, 3) for

every r ∈ [0, 1). So, the mapping T does not satisfy the assumptions of Theorem 1.4.

Example 3.4. In [19, Example 2], it is shown that T does not satisfy the assumption
of Theorem 1.4. However, the same T satisfies all the conditions of Corollary 2.7.

The following example shows that Corollary 2.7 is more general than Theorem 1.2.

Example 3.5. [19, Example 1]. Let X = {(0, 0), (4, 0), (0, 4), (4, 5), (5, 4)} be en-
dowed with the metric d defined by

d((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|.
Let T be a mapping on X defined by

T (x1, x2) =

{
(x1, 0) if x1 ≤ x2,
(0, x2) if x1 > x2.



FIXED POINT THEOREMS FOR SEMI-QUASI CONTRACTIONS 455

We note that

d(Tx, Ty) ≤ (4/5)M(x, y) if (x, y) 6= ((4, 5), (5, 4)) and (y, x) 6= ((4, 5), (5, 4)).

Since

(1− r)d((4, 5), T (4, 5)) >
5

2
> 2 = d((4, 5), (5, 4))

and
(1− r)d((5, 4), T (5, 4)) > d((5, 4), (4, 5)) for every r ∈ [0, 1).

Therefore Corollary 2.7 holds. But, since

d((T (5, 4), T (4, 5)) = 8 ≥M((5, 4), (4, 5)),

the mapping T does not satisfy the condition (1.1) of Theorem 1.2.

Finally, we present an example showing the superiority of Theorem 2.6 over Theorems
1.2-1.5.

Example 3.6. Let Y = X = {(0, 0), (3, 3), (4, 0), (0, 4), (4, 5), (5, 4)} be a metric
space endowed with the metric d defined by

d((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|.
Let S, T : X → X defined by

T (x1, x2) =

 (0, 4) if x1 = x2 = 3,
(x1, 0) if x1 ≤ x2,
(0, x2) if x1 > x2.

and S(x1, x2) = (x1, x2).

We note that d(Tx, Ty) = (4/5)MS,T (x, y) if

(x, y) 6= ((4, 5), (5, 4)), ((4, 5), (3, 3))

and
(y, x) 6= ((4, 5), (5, 4)), ((4, 5), (3, 3)).

Since, in these cases

(1− r)d(Sx, Tx) > d(Sx, Sy) for every r ∈ [0, 1),

T satisfies the assumption of Theorem 2.6. Notice that
1. d((T (5, 4), T (4, 5)) = 8 ≥M((5, 4), (4, 5)), and Theorem 1.2 does not apply.
2. d((T (5, 4), T (4, 5)) = 8 ≥MS,T ((5, 4), (4, 5)), and Theorem 1.3 does not apply.
3. For every r ∈ [0, 1),

θ(r)d((4, 0), T (4, 0)) = 4 ≤ d((4, 0), (3, 3))

and
d(T (4, 0), T (3, 3)) = 4 > r d((4, 0), (3, 3)).

So, the mapping T does not satisfy the assumption of Theorem 1.4.
4. For every r ∈ [0, 1),

θ(r)d((3, 3), T (0, 4)) = 4 ≤ d((3, 3), (0, 4))

and
d(T (3, 3), T (0, 4)) = 4 > r NS,T ((3, 3), (0, 4))).

So the mapping T does not satisfy the assumption of Theorem 1.5.
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Question. Whether the condition (CS) of Theorem 1.4 can be replaced by the
following:

θ(r)d(Sx, Tx) ≤ d(Sx, Sy) implies d(Tx, Ty) ≤ rMS,T (x, y).
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