ON GLOBAL EXISTENCE OF CERTAIN IMPULSIVE MULTI-ORDERS FRACTIONAL DIFFERENTIAL PROBLEM

HAMZA MEDJEKAL* AND SAÏD MAZOUZI**

*,**Laboratory of Applied Mathematics, Badji Mokhtar-Annaba University P.O.Box 12, 23000 Annaba, Algeria E-mails: h.medjekal@yahoo.com mazouzi_sa@yahoo.fr

Abstract. In this paper, we introduce a novel approach to tackle a class of fractional differential problems with impulses on the positive half-ray. So, we establish the existence of a bounded solution to certain impulsive multi-orders fractional initial value problem in a finite dimensional Banach space. The obtained result is based on the Schauder's fixed point theorem as well as certain continuation process. Finally, an illustrative example is provided.

Key Words and Phrases: Caputo's fractional derivative, multi-orders, impulsive conditions, Schauder's fixed point Theorem, PC-Ascoli-Arzela Theorem, continuation process.

2010 Mathematics Subject Classification: 26A33, 34A12, 34A37, 47H10.

References

- [1] R.P. Agarwal, M. Benchohra, B.A. Slimani, Existence results for differential equations with fractional order and impulses, Mem. Diff. Eq. Math. Phys., 44(2008), 1–21.
- [2] A. Arara, M. Benchohra, N. Hamidi, J.J. Nieto, Fractional order differential equations on an unbounded domain, Nonlinear Anal., 72(2010), 580-586.
- K. Balachandran, S. Kiruthika, J.J. Trujillo, Existence results for fractional impulsive integrodifferential equations in Banach spaces, Commun. Nonlinear Sci. Numer. Simul., 16(2011), 1970–1977.
- [4] K. Balachandran, S. Kiruthika, J.J. Trujillo, On fractional impulsive equations of Sobolev type with nonlocal condition in Banach spaces, Comput. Math. Appl., 62(2011), 157–1165.
- K. Balachandran, S. Kiruthika, Existence of solutions of abstract fractional impulsive semilinear evolution equations, Electron. J. Qual. Theory Differ. Equ., (2010), no. 4, 1–12.
- [6] M. Benchohra, F. Berhoun, G. N'Guérékata, Bounded solutions for fractional order differential equations on the half-line, Bull. Math. Anal. Appl., 4(2012), no. 1, 62-71.
- [7] M. Benchohra, B.A. Slimani, Existence and uniqueness of solutions to impulsive fractional differential equations, Electron. J. Diff. Eq., 2009(2009), no. 10, 1-11.
- [8] A. Bouzaroura, Mazouzi, An alternative method for the study of impulsive differential equations of fractional orders in a Banach space, Int. J. Differ. Equ., 2013(2013), Article ID 191060.
- [9] K. Diethelm, A.D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity, in: Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties (F. Keil, W. Mackens, H. Voss, J. Werther - Eds.), Springer-Verlag, Heidelberg, 1999, 217–307.
- [10] M. Fečkan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17(2012), 3050–3060.

- [11] L. Gaul, P. Klein, S. Kempfle, Damping description involving fractional operators, Mech. Syst. Signal Process, 5(1991), 81–88.
- [12] E. Hernandez, D. O'Regan, K. Balachandran, On recent developments in the theory of abstract differential equations with fractional derivatives, Nonlinear Anal., 73(2010), 3462–3471.
- [13] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, 2000.
- [14] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies 204, Ed. Van Mill, Amsterdam, 2006.
- [15] A.A. Kilbas, J.J. Trujillo, Differential equations of fractional order: Methods, results and problems I, Appl. Anal., 78(2001), 153–192.
- [16] A.A. Kilbas, J.J. Trujillo, Differential equations of fractional order: methods, results and problems II, Appl. Anal., 81(2002), 435–493.
- [17] V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69(2008), 2677–2682.
- [18] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
- [19] G.M. Mophou, G.M. N'Guérékata, Existence of mild solution for some fractional differential equations with a nonlocal condition, Semigroup Forum, 79(2009), 315-322.
- [20] B. Nagy, F. Riesz, Functional Analysis, Blackie and Son Limited, London 1956.
- [21] L. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5(2002), 367–386.
- [22] L. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
- [23] H.M. Srivastava, R.K. Saxena, Operators of fractional integration and their applications, Appl. Math. Comput., 118(2001), 1–52.
- [24] G. Wang, B. Ahmad, L. Zhang, J.J. Nieto, Comments on the concept of existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 19(2014), no. 3, 401-403.
- [25] W. Wei, X. Xiang, Y. Peng, Nonlinear impulsive integrodifferential equation of mixed type and optimal controls, Optimization, 55(2006), 141-156.

Received: November 23, 2013; Accepted: March 10, 2014.