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1. Introduction

In 1964 Perov [20] obtained a generalization of the Banach contraction principle by
considering mappings on the so-called generalized metric spaces. A generalized metric
space is a pair (X, d), where X is a nonempty set and d is a function from the Cartesian
product X × X to the Euclidean space Rm satisfying three well-known axioms of
a metric with respect to the following partial ordering � in Rm: (a1, . . . , am) �
(b1, . . . , bm) iff ai ≤ bi for i = 1, . . . ,m. Then a classical contractive condition for a
mapping T : X → X is replaced by

d(Tx, Ty) � A d(x, y) for x, y ∈ X,

where A is an m ×m matrix with nonnegative entries such that the spectral radius
of A is less than one. Many authors, mainly from the former Soviet Union, extended
Perov’s result by considering yet more general class of spaces – the so-called K-metric
spaces, in which a function d takes values in a cone in a Banach space. A survey paper
of Zabrĕıko [27] can serve as an excellent reference on this topic. In 2007 Huang and
Zhang [9] rediscovered the notion of K-metric space under the name ‘cone metric
space’, and they establish a fixed point theorem for mappings satisfying a contractive
condition of the following form:

d(Tx, Ty) � λd(x, y) for x, y ∈ X,
367
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where � is a partial ordering induced by a cone in a Banach space and λ ∈ [0, 1). Since
then a number of papers appeared containing various extensions of the Huang–Zhang
theorem (see, e.g., a survey paper of Janković et al. [11] and 100 references therein).
In 2010 Du [5] observed that the above theorem could be proved via the classical
Banach contraction principle by introducing an appropriate scalar metric induced by
a K-metric. Other constructions of such scalar metrics were given in [12, 13]. Yet
another approach was presented in [11], where the authors showed that all earlier fixed
point results obtained for mappings on K-metric spaces with a normal and solid cone
K could be derived from the corresponding results for mappings on (scalar) metric
spaces. Thus this part of fixed point theory may be interesting only if we work with
K-metric spaces with a non-normal or non-solid cone K.

However, most of papers which appeared after 2007 deal with contractive conditions
in which values of a vector metric d are multiplied by scalars, whereas in Perov’s
theorem there is a linear operator (induced by a matrix A), which acts on values
of d. Thus the Huang–Zhang theorem for mappings on generalized metric spaces is
identical with the special case of Perov’s theorem in which A = λI, where I denotes
the identity operator on Rm. However, the last condition for A is very restrictive.
Actually, the power of Perov’s theorem lies in a fact that even a norm of matrix
A need not be less than one, which is very important for applications as presented
in Section 4. A natural question arises whether Perov’s theorem can also be derived
from the Banach contraction principle. This question was posed by Jonathan Borwein
during the ”Workshop on Infinite Products of Operators and Their Applications” in
Haifa in 2012 after the talk of Adrian Petruşel on extensions of Perov’s theorem.
With the help of our remetrization theorem presented on the same Workshop, we
could answer this question in the affirmative. However, a few months later we found
that such an observation had been made in 2002 by E. De Pascale and L. De Pascale
[4]. Since rather a sketch of a proof was given in [4] and our argument is somewhat
different, we decided to present our proof in this paper (see Section 3). We also extend
that argument to obtain in Section 6 a generalization of Perov’s theorem for mappings
on K-metric spaces with a non-solid cone K. Section 5 contains characterizations of
two notions of convergence and Cauchy’s condition for sequences of elements of a
K-metric space.

2. Generalized metric spaces in the sense of Perov

Though some results presented below can be established in a more general context
of K-metrics or cone metrics, in this section we restrict our attention to vector metrics
with values in the Euclidean space Rm. This may be convenient for the reader who
had no occasion yet to work with vector metrics. Moreover, it is natural to study first
a finite dimensional case.

We start with the definition of a generalized metric space in the sense of Perov.
Recently, this notion has been recalled by Petruşel et al. [22]. Actually, Perov [20]
(see also Perov and Kibenko [21]) considered generalized normed spaces, i.e., linear
spaces endowed with a vector norm taking values in the Euclidean space Rm, which
is equipped with the following partial ordering: for a, b ∈ Rm, a = (a1, . . . , am),
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b = (b1, . . . , bm),
a � b iff ai ≤ bi for i = 1, . . . ,m. (2.1)

If a � b and a 6= b, then we write a ≺ b. The notation a � b means that ai < bi for
i = 1, . . . ,m. A natural extension of Perov’s notion of vector norms is the following
definition. Let X be a nonempty set and d : X ×X → Rm be a mapping satisfying
conditions: for any x, y, z ∈ X,

d(x, y) � Θ, and d(x, y) = Θ iff x = y; (2.2)

d(x, y) = d(y, x); (2.3)

d(x, y) � d(x, z) + d(z, y). (2.4)

(In the sequel we write simply 0 instead of Θ.) Then as in [22] we say that (X, d) is a
generalized metric space (in short, g.m.s.) and d is called Perov’s metric. Following
[21] we say that a sequence (xn) of elements of X is convergent to x ∈ X if for any
c ∈ Rm with c � 0, there exists k ∈ N such that d(xn, x) � c for n ≥ k. Similarly,
we define a Cauchy sequence. Then the completeness of (X, d) is understood in an
analogous way as in the case of real-valued metrics. Let us note that Perov’s metric
is a very particular case of the so-called K-metric (see, e.g., [27] and the references
therein), which in turn was rediscovered by Huang and Zhang [9] under the name
‘cone metric’. More information on it will be given in the next section.

Recall that a function ρ : X ×X → [0,∞) is a pseudometric if for any x, y, z ∈ X,
ρ(x, x) = 0, ρ(x, y) = ρ(y, x) and ρ(x, y) ≤ ρ(x, z) + ρ(z, y). We use this notion in the
following characterization of Perov’s metrics.

Proposition 2.1. Let X be a nonempty set and d : X ×X → Rm be a mapping, so
that d = (ρ1, . . . , ρm), where ρk : X × X → R for k = 1, . . . ,m. Then (X, d) is a
g.m.s. iff {ρ1, . . . , ρm} is a separating family of pseudometrics, i.e., for any x, y ∈ X,
if x 6= y then ρi(x, y) > 0 for some i ∈ {1, . . . ,m}.

Proof. Implication (⇐) is noted in [26, Remark 6.1.1]. Also, it is easy to prove
(⇒): conditions (2.3) and (2.4) for d imply, respectively, the symmetry and the
triangle inequality for each ρi. By (2.2), all functions ρi are nonnegative. Moreover,
if x, y ∈ X and x 6= y, then by (2.2), d(x, y) 6= 0, which yields that ρi(x, y) > 0 for
some i ∈ {1, . . . ,m}. �

We omit a straightforward proof of the following

Proposition 2.2. Let (X, d) be a g.m.s. and ρ1, . . . , ρm be pseudometrics associated
with d. Let xn ∈ X for n ∈ N and x ∈ X. The following statements hold:

(1) (xn) is convergent to x iff limn→∞ ρk(xn, x)→ 0 for each k = 1, . . . ,m;
(2) (xn) is a Cauchy sequence iff limi,j→∞ ρk(xi, xj) = 0 for each k = 1, . . . ,m.

We say that two metrics (scalar-valued or vector-valued) d and ρ in X are Cauchy
equivalent if they define the same notion of a Cauchy sequence, i.e., for any sequence
(xn) of elements of X, (xn) is a Cauchy sequence in (X, d) iff (xn) is a Cauchy sequence
in (X, ρ).

Proposition 2.3. Let (X, d) and (X, ρ) be (generalized) metric spaces such that d
and ρ are Cauchy equivalent. The following statements hold:
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(1) d and ρ are equivalent;
(2) (X, d) is complete iff (X, ρ) is complete.

Proof. Let us consider only the case when d is a vector metric and ρ is a scalar
metric. Assume that xn ∈ X for n ∈ N, x ∈ X and ρ(xn, x) → 0. For n ∈ N, define
y2n−1 := xn and y2n := x. Clearly, ρ(yn, x) → 0, which by hypothesis implies that
(yn) is a Cauchy sequence in (X, d). Let ρ1, . . . , ρm be pseudometrics associated with
d. By Proposition 2.2, we infer that limn→∞ ρk(y2n−1, y2n) = 0 for k = 1, . . . ,m, i.e.,
limn→∞ ρk(xn, x) = 0 for all such k, which again by Proposition 2.2 implies that (xn)
is convergent in (X, d).

A similar argument shows that if (xn) converges to x in (X, d), then ρ(xn, x)→ 0.
The second statement is now obvious. �

Of course, there exist equivalent metrics, which are not Cauchy equivalent. (For
example, define for x, y ∈ R, d(x, y) := |x− y| and ρ(x, y) := | arctanx− arctan y|.)

We say that two scalar metrics d and ρ are Lipschitz equivalent (see, e.g., [2]) if
there exist positive constants α and β such that for any x, y ∈ X,

αρ(x, y) ≤ d(x, y) ≤ βρ(x, y).

Clearly, if d and ρ are Lipschitz equivalent, then they are Cauchy equivalent, but
in general the converse is not true. (Consider, e.g., metrics d(x, y) := |x − y| and
ρ(x, y) := |x3 − y3| for x, y ∈ R.)

Now let us consider the following three standard norms in Rm:
for a = (a1, . . . , am) ∈ Rm,

‖ a ‖1 :=

m∑
i=1

|ai|, ‖ a ‖2 :=

(
m∑
i=1

a2i

)1/2

and ‖ a ‖∞ := max
1≤i≤m

|ai|.

It is easily seen that each of these norms is monotone with respect to the partial
ordering defined by (2.1) if we restrict to vectors in Rm with nonnegative coordinates,
i.e.,

if a, b ∈ Rm and 0 � a � b then ‖ a ‖l ≤ ‖ b ‖l for l = 1, 2,∞.
Hence we may infer that if (X, d) is a g.m.s. and for x, y ∈ X and l = 1, 2,∞,

ρ(l)(x, y) := ‖ d(x, y) ‖l,
then each ρ(l) is a metric in X. Moreover, Proposition 2.2 yields that d, ρ(1), ρ(2) and
ρ(∞) are Cauchy equivalent. Consequently, we get the following

Corollary 2.4. Let (X, d) be a g.m.s. and ρ(1), ρ(2), ρ(∞) be metrics associated with
d. If one of the four spaces is complete, then all of them are complete.

Now we explain the reason for which relation ‘�’ in the definition of convergence
or the Cauchy condition should not be replaced by relation ‘≺’.

Proposition 2.5. Let (X, d) be a g.m.s. with m ≥ 2 and (xn) be a sequence of
elements of X satisfying the following condition: for some x ∈ X and for any c ∈ Rm
with c � 0, there is k ∈ N such that

d(xn, x) ≺ c for each n ≥ k.
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Then xn = x for sufficiently large n, i.e., (xn) converges to x in the discrete topology
of X.

Proof. Set c := (1, 0, . . . , 0), c ∈ Rm. Clearly, c � 0, so by hypothesis, there is k ∈ N
such that for n ≥ k, d(xn, x) ≺ c, which yields that ρi(xn, x) = 0 for i = 2, . . . ,m and
n ≥ k. Next set c′ := (0, 1, . . . , 1), c′ ∈ Rm. There is k′ ∈ N such that for n ≥ k′,
d(xn, x) ≺ c′, which implies ρ1(xn, x) = 0 for such n. So xn = x for n ≥ max{k, k′}
since family {ρ1, . . . , ρm} is separating. �

Of course, an analogous modification of the definition of Cauchy’s condition for
sequences would also make this definition trivial.

3. Perov’s fixed point theorem via the Banach contraction principle

We recall Perov’s fixed point theorem (see [20, 21]), which originally was established
for selfmaps of closed subsets of generalized Banach spaces. We denote by Mm(R+)
the set of all m ×m matrices with nonnegative entries. Given A ∈ Mm(R+), r(A)
denotes the spectral radius of A (see, e.g., [6, p. 149]), i.e.,

r(A) = max{|λ| : λ ∈ σ(A)},
where σ(A) is the set of all complex eigenvalues of A. It is well known that

r(A) = lim
n→∞

‖ An ‖1/n

(see, e.g., [6, Theorem 14.16]). Hence, if r(A) < 1 then by Cauchy criterion, the
series

∑∞
n=1 ‖ An ‖ converges; in particular, ‖ An ‖ → 0. Actually, the latter

condition is equivalent to ‘r(A) < 1’ because of the inequality r(A) ≤ ‖ An ‖1/n (see
[6, Lemma 14.14]).

The notion of the spectral radius can be considered in a more general setting.
Namely, observe that each m × m matrix induces a linear selfmap of Rm, which
is automatically Lipschitzian. In fact, we may attribute a spectral radius to any
Lipschitzian selfmap T of a metric space (X, ρ) in the following way. Denote by
Lρ(T ) the Lipschitz constant of T . Then the spectral radius rρ(T ) is defined by the
formula:

rρ(T ) := lim
n→∞

(Lρ(T
n))1/n.

(It is known that the above limit exists; see, e.g., [8, p. 10].) Moreover, the following
result was proved by Goebel [7] (also, see [8, p. 11]).

Lemma 3.1 (Goebel). Let T be a Lipschitzian selfmap of a metric space (X, ρ).
Then

rρ(T ) = inf{Lρ′(T ) : ρ′ is Lipschitz equivalent to ρ}.

Lemma 3.1 will be used in our proof of the following

Theorem 3.2 (Perov). Let (X, d) be a complete g.m.s. and T : X → X be a mapping.
If there exists a matrix A ∈Mm(R+) such that r(A) < 1 and for any x, y ∈ X,

d(Tx, Ty) � A(d(x, y)), (3.1)

then T has a unique fixed point x∗ ∈ X and for any x0 ∈ X, x∗ = limn→∞ Tnx0.
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It turns out that Perov’s theorem can be derived from the classical Banach con-
traction principle in view of the following

Theorem 3.3. Under the assumptions of Perov’s theorem, for any λ ∈ (r(A), 1)
there exists a scalar metric ρλ, which has the following properties:

(1) ρλ and ρ(1) are Lipschitz equivalent, hence ρλ and d are Cauchy equivalent;
(2) (X, ρλ) is complete;
(3) ρλ(Tx, Ty) ≤ λρλ(x, y) for any x, y ∈ X.

Proof. Since the matrix A has nonnegative entries, we may infer that A is nondecreas-
ing with respect to � on the set of all vectors in Rm having nonnegative coordinates,
i.e., if a, b ∈ Rm and 0 � a � b then 0 � Aa � Ab. Hence (3.1) implies that for any
n ∈ N and x, y ∈ X,

d(Tnx, Tny) � An(d(x, y)).

Since norm ‖ · ‖1 is monotone with respect to � and An is a linear bounded operator
on Rm, we obtain that

‖ d(Tnx, Tny) ‖1 ≤ ‖ An(d(x, y)) ‖1 ≤ ‖ An ‖1,1‖ d(x, y) ‖1 .

(Here ‖ A ‖1,1 = max1≤j≤m
∑m
i=1 |aij |; see, e.g., [6, Lemma 7.14].) Hence Lρ(1)(T

n) ≤
‖ An ‖1,1 for any n ∈ N, which yields rρ(1)(T ) ≤ r(A). Now let λ ∈ (r(A), 1). Then
rρ(1)(T ) < λ, so by Lemma 3.1,

inf{Lρ(T ) : ρ is Lipschitz equivalent to ρ(1)} < λ.

Hence there exists a metric ρλ, which is Lipschitz equivalent to ρ(1) and Lρλ(T ) < λ.
Thus properties 1 and 3 hold, whereas 2 follows from 1 in view of Proposition 2.3. �

Finally, we give the following equivalent formulation of Perov’s theorem, which will
be useful in the next section.

Theorem 3.4 (Perov). Let (X, d) be a complete g.m.s. and T : X → X be a mapping.
Let ρ1, . . . , ρm be pseudometrics associated with d. If there exists a matrix A = [aij ] ∈
Mm(R+) such that r(A) < 1 and for any x, y ∈ X,

ρi(Tx, Ty) ≤
m∑
j=1

aijρj(x, y) for i = 1, . . . ,m, (3.2)

then T has a unique fixed point x∗ ∈ X and for any x0 ∈ X, x∗ = limn→∞ Tnx0.

4. Two applications of Perov’s fixed point theorem

We start with recalling Matkowski’s [18] fixed point theorem for selfmaps of the
Cartesian product of metric spaces. It is known (but rather not well-known) that
Matkowski’s result can be derived from Perov’s theorem. In particular, it was noticed
without any details in [15, p. 40], where only the reference to the book of Krasnoselskĭı
et al. [14] was given. Here we would like to explain more exactly the connections
between the two theorems. Let us note that Păvăloiu [19] and Rus [25] obtained the
following result in case m = 2 by using different methods.
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Theorem 4.1 (Matkowski). Let m ∈ N and (X1, d1),..., (Xm, dm) be complete metric
spaces, X := X1 × · · · ×Xm, and Ti : X → Xi be mappings for i = 1, . . . ,m. If there
exists a matrix A = [aij ] ∈Mm(R+) such that r(A) < 1 and

di(Ti(x1, . . . , xm), Ti(y1, . . . , ym)) ≤
m∑
j=1

aijdj(xj , yj) (4.1)

for any i = 1, . . . ,m and (x1, . . . , xm), (y1, . . . , ym) ∈ X, then mapping T :=
(T1, . . . , Tm) has a unique fixed point x∗ = (x∗1, . . . , x

∗
m) ∈ X, i.e., x∗i = Ti(x

∗
1, . . . , x

∗
m)

for i = 1, . . . ,m, and for any x0 ∈ X, x∗ = limn→∞ Tnx0.

Proof. For x, y ∈ X, x = (x1, . . . , xm), y = (y1, . . . , ym) and i = 1, . . . ,m, define

ρi(x, y) := di(xi, yi).

It is easily seen that {ρ1, . . . , ρm} is a separating family of pseudometrics in X and
(4.1) can be written in the following form:

ρi(Tx, Ty) ≤
m∑
j=1

aijρj(x, y) for i = 1, . . . ,m.

Moreover, since each (Xi, di) is complete, so is (X, ρ(1)). (Here ρ(1)(x, y) =∑m
i=1 di(xi, yi) for x, y ∈ X.) Set d := (ρ1, . . . , ρm). By Proposition 2.1 and Corol-

lary 2.4, (X, d) is a complete g.m.s., so it suffices to apply Theorem 3.4. �

Remark 4.2. Clearly, with the help of Perov’s theorem, we could get some versions
of Matkowski’s theorem by considering other pseudometrics on the Cartesian product.
For example, let m = 3 and for x, y ∈ X1 ×X2 ×X3,

ρ1(x, y) := max{d1(x1, y1), d2(x2, y2)} and ρ2(x, y) := d3(x3, y3).

Let A = [aij ] ∈M2(R+) and r(A) < 1. Now, if we replace (4.1) in Theorem 4.1 by

di(Tix, Tiy) ≤ a11 max{d1(x1, y1), d2(x2, y2)}+ a12d3(x3, y3) for i = 1, 2, and
d3(T3x, T3y) ≤ a21 max{d1(x1, y1), d2(x2, y2)}+ a22d3(x3, y3),

then, by Theorem 3.4 (here with m = 2!), such mapping T = (T1, T2, T3) has a unique
fixed point.

Now we present a proof of the classical Picard–Lindelöf theorem by using Perov’s
fixed point theorem. Most certainly, our proof is not new and, probably, it can be
found in [20]. However, Perov’s paper [20] is hardly available (in particular, it was
unavailable for us), so it seems that the proof presented below is not well-known.
Actually, it is inspired by the argument used by E. De Pascale and L. De Pascale [4]
in their proof of Lou’s [17] fixed point theorem. In fact, the Picard–Lindelöf theorem
can be proved in many ways: in particular, three different approaches were presented
in [8, pp. 14–18].

Theorem 4.3 (Picard–Lindelöf). Let a be a positive real and f : [0, a]×R→ R be a
continuous function such that for some L > 0,

|f(t, u)− f(t, v)| ≤ L|u− v| for any t ∈ [0, a] and u, v ∈ R.
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Then for any u0 ∈ R, the Cauchy initial value problem

x′(t) = f(t, x(t)) for t ∈ [0, a], and x(0) = u0 (4.2)

has a unique solution.

Proof. (Via Perov’s theorem.) Given u0 ∈ R, we define

(Tx)(t) := u0 +

∫ t

0

f(s, x(s))ds for t ∈ [0, a] and x ∈ C[0, a].

There exist m ∈ N and a partition (ti)
m
i=0 of interval [0, a], i.e., 0 = t0 < t1 < · · · <

tm = a such that

max
1≤i≤m

(ti − ti−1) ≤ 1

2L
.

For x, y ∈ C[0, a] and i = 1, . . . ,m, set

ρi(x, y) := max{|x(t)− y(t)| : ti−1 ≤ t ≤ ti}.
Then {ρ1, . . . , ρm} is a separating family of pseudometrics in C[0, a], so by Propo-
sition 2.1, d := (ρ1, . . . , ρm) is Perov’s metric in C[0, a]. Moreover, metric ρ(∞)

associated with d coincides with the standard maximum metric in C[0, a]. Since
(C[0, a], ρ(∞)) is complete, so is (C[0, a], d) in view of Corollary 2.4. Thus by Theo-
rem 3.4, it suffices to show that condition (3.2) holds. Let i ∈ {1, . . . ,m}, x, y ∈ C[0, a]
and t ∈ [ti−1, ti]. Then we have

|(Tx)(t)− (Ty)(t)| = |
∫ t
0
(f(s, x(s))− f(s, y(s))ds| ≤

∫ ti
0
|f(s, x(s))− f(s, y(s))|

=
∑i
j=1

∫ tj
tj−1
|f(s, x(s))− f(s, y(s))|ds

≤ L
∑i
j=1

∫ tj
tj−1
|x(s)− y(s)|ds

≤ L
∑i
j=1(tj − tj−1)ρj(x, y) ≤

∑i
j=1

1
2ρj(x, y).

Hence we infer that

ρi(Tx, Ty) ≤
i∑

j=1

1

2
ρj(x, y).

For i, j = 1, . . . ,m, set aij := 1/2 if j ≤ i, and aij := 0 if j > i. Then A :=
[aij ]i,j=1,...,m is a triangular matrix with 1/2 on the diagonal, so 1/2 is the only
eigenvalue of A, and hence r(a) = 1/2. By Theorem 3.4, T has a unique fixed point,
which implies that the Cauchy problem (4.2) has a unique solution. �

5. K-metric spaces and some their properties

Actually, a more general notion than the concept of generalized metric spaces was
known much earlier and was first introduced by Kurepa [16] in 1934, who used the
term pseudodistance. However, now this term is used in a different sense and following,
e.g., Zabrĕıko [27] we substitute the term ‘K-metric’ for ‘pseudodistance’. Instead of
Rm as in Section 2, we consider now an arbitrary Banach space E and a cone K ⊆ E
(for the definition, see, e.g., [3, p. 218]). We denote by � the partial ordering induced
by K by the formula: for a, b ∈ E,

a � b iff b− a ∈ K.
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We write a ≺ b if a � b and a 6= b. If K is solid, i.e., intK 6= ∅, then a� b stands for
b − a ∈ intK. Clearly, orderings �, ≺ and � considered in Section 2 were induced
by the cone

K := {(a1, . . . , am) : ai ≥ 0 for i = 1, . . . ,m}.
Now if X is a nonempty set, then a function d : X ×X → E is called a K-metric in
X if d satisfies conditions (2.2), (2.3) and (2.4) with respect to the partial ordering �
induced by K. Given a solid cone K, we define the convergence, Cauchy’s condition
for sequences and the completeness of (X, d) in the same way as in Section 2. If K is
not solid, then we may consider the convergence with respect to the function

X ×X 3 (x, y) 7→ ‖ d(x, y) ‖,
which however, in general, is not a metric. Similarly, a counterpart of Cauchy’s con-
dition for a sequence (xn) of elements of X is the following: limm,n→∞ ‖ d(xn, xm) ‖
= 0. Then we may consider another notion of completeness of (X, d) as given in [14,
p. 92]. To distinguish the two notions, we say that (X, d) is ‖ · ‖-complete if for any
sequence (xn) such that limm,n→∞ ‖ d(xn, xm) ‖ = 0, there exists x ∈ X such that
limn→∞ ‖ d(xn, x) ‖ = 0. In general, the two notions of convergence and complete-
ness are not equivalent. Now we discuss on relations between them. Given c ∈ E and
r > 0, we denote by B(c, r) the open ball centered at c with radius r. If A ⊆ E then
we define c−A := {c− a : a ∈ A}.

Proposition 5.1. Let (X, d) be a K-metric space with a solid cone K in a Banach
space E. Let c ∈ E, xn ∈ X for n ∈ N and x ∈ X. The following statements hold:

(1) c� 0 iff there exists r > 0 such that for any a ∈ E, ‖ a ‖ < r implies a� c.
(2) If ‖ d(xn, x) ‖ → 0 then (xn) is convergent to x.
(3) If limm,n→∞ ‖ d(xn, xm) ‖ = 0 then (xn) is a Cauchy sequence.

Proof. We prove (⇒) of statement 1. Let c � 0, i.e., c ∈ intK. Then there is
r > 0 such that B(c, r) ⊆ K. Hence c − B(c, r) ⊆ c −K, i.e., B(0, r) ⊆ c −K since
c−B(c, r) = B(0, r). The latter inclusion is equivalent to c−B(0, r) ⊆ K, and hence
we get

c−B(0, r) = int(c−B(0, r)) ⊆ intK,

which means that if ‖ a ‖ < r then a� c. Conversely, the last condition implies that
c−B(0, r) ⊆ intK, so B(c, r) ⊆ intK since c−B(0, r) = B(c, r), and thus c� 0. So
statement 1 is proved.

Now statements 2 and 3 are immediate consequences of 1. Indeed, if for example,

lim
m,n→∞

‖ d(xn, xm) ‖ = 0 and c� 0,

then there is r > 0 as in statement 1. Then there exists k ∈ N such that ‖ d(xn, xm) ‖
< r for all m,n ≥ k, which implies that d(xn, xm)� c by property of r. So (xn) is a
Cauchy sequence. �

We will need the following folklore result a proof of which is left to the reader.

Lemma 5.2. Let K be a cone in a Banach space. Then

K + intK = intK and λ intK = intK for any λ > 0.
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Lemma 5.2 improves an observation from [24, p. 720] by which intK+intK ⊆ intK
and λ intK ⊆ intK for λ > 0. As an immediate consequence of Lemma 5.2, we get
the following result, which is also mentioned in [11, p. 2598].

Corollary 5.3. Let K be a solid cone ina Banach space E, and let a, b, c ∈ E.

(1) If a � b and b� c, or a� b and b � c, then a� c.
(2) If c� 0 then λc� 0 for any λ > 0.

Now we give a characterization of the convergence in a K-metric space with a solid
cone.

Proposition 5.4. Let (X, d) be a K-metric space with a solid cone K in a Banach
space E. Let xn ∈ X for n ∈ N and x ∈ X. The following statements are equivalent:

(i) (xn) converges to x;
(ii) for any c� 0, there exists k ∈ N such that for any n ≥ k, d(xn, x) � c;

(iii) there exists c � 0 such that for any λ ∈ (0, 1), there exists k ∈ N such that
d(xn, x) � λc for all n ≥ k;

(iv) there exists a sequence (cn) such that cn � 0 for any n ∈ N, ‖ cn ‖ → 0 and
for any n ∈ N, there exists k ∈ N such that d(xm, x) � cn for each m ≥ k.

Proof. (i)⇒(ii) is obvious since a� b implies a � b.
(ii)⇒(iii): Choose any c0 � 0 and λ ∈ (0, 1). By Corollary 5.3, λc0 � 0, so by (ii)

there is k ∈ N such that d(xn, x) � λc0 for n ≥ k, which proves (iii).
(iii)⇒(iv): It suffices to set cn := (1/n)c, where c is as in (iii).
(iv)⇒(i): Fix c � 0. Since ‖ cn ‖ → 0, Proposition 5.1 yields that cj � c for

some j ∈ N. By (iv), there is k ∈ N such that for i ≥ k, d(xi, x) � cj . Hence, by
Corollary 5.3, we infer that d(xi, x)� c for each i ≥ k, which proves (i). �

Recall that a cone K is normal if

inf{‖ x+ y ‖: x, y ∈ K and ‖ x ‖ = ‖ y ‖ = 1} > 0.

A norm ‖ · ‖ on E is called semi-monotone if there exists γ > 0 such that for any
a, b ∈ E,

0 � a � b implies ‖ a ‖ ≤ γ ‖ b ‖ .
‖ · ‖ is said to be monotone if it is semi-monotone with γ = 1.

The following characterization of normal cones is known (see, e.g., [1, Theo-
rem 2.38]).

Lemma 5.5. Let K be a cone in a Banach space (E, ‖ · ‖). The following statements
are equivalent:

(i) K is normal;
(ii) the norm ‖ · ‖ is semi-monotone;

(iii) E admits an equivalent monotone norm.

We may add the following characterization of normal cones, which strengthens a
result of Huang and Zhang [9, Lemma 1]. It is inspired by [23, Example 9.2].

Proposition 5.6. Let K be a solid cone in a Banach space E. The following state-
ments are equivalent:
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(i) K is normal;
(ii) for any K-metric space (X, d) and any sequence (xn) of elements of X, (xn)

converges to some x ∈ X iff ‖ d(xn, x) ‖ → 0.

Proof. (i)⇒(ii) was proved in [9].
(ii)⇒(i): Suppose, on the contrary, K is not normal. By Lemma 5.5 ((ii)⇒(i)),

there exist sequences (an) and (bn) of elements of E such that for any n ∈ N,

0 � an � bn and ‖ an ‖ > n ‖ bn ‖ .

In particular, ‖ an ‖ > 0, so an 6= 0, and hence bn 6= 0 since 0 � an � bn. Thus we
may define:

a′n :=
1

n ‖ bn ‖
an and b′n :=

1

n ‖ bn ‖
bn for n ∈ N.

Then ‖ a′n ‖ > 1, ‖ b′n ‖ = 1/n and 0 � a′n � b′n. Now set X := K and for a, b ∈ K,

d(a, b) := a+ b if a 6= b, and d(a, b) := 0 if a = b.

It is easy to verify that (X, d) is a K-metric space. Observe that since a′n 6= 0,

‖ d(a′n, 0) ‖ = ‖ a′n ‖ > 1,

so ‖ d(a′n, 0) ‖9 0. We show that (a′n) converges to 0, which will yield a contradiction.
Fix c� 0. Since also b′n 6= 0,

‖ d(b′n, 0) ‖ = ‖ b′n ‖ =
1

n
→ 0,

so by Proposition 5.1, (b′n) converges to 0. Hence there is k ∈ N such that b′n � c for
n ≥ k. Since a′n � b′n, we get that

d(a′n, 0) = a′n � c for n ≥ k,

so a′n → 0, which gives a contradiction. �

6. An extension of Perov’s theorem

It is known that Perov’s theorem can be extended by substituting a K-metric space
for a generalized metric space, and replacing a matrix A by a linear bounded operator
Λ. The following theorem is taken from [14, p. 92]. It is not clear who discovered this
result; see comments in Zabrĕıko’s paper [27, p. 841].

Theorem 6.1. Let K be a normal (not necessarily solid) cone in a Banach space E
and Λ: E → E be a linear bounded operator, which is positive, i.e., a � 0 implies
Λa � 0 for any a ∈ E. Let (X, d) be a ‖ · ‖-complete K-metric space and T : X → X
be such that

d(Tx, Ty) � Λ(d(x, y)) for all x, y ∈ X.
If the spectral radius of Λ is less than 1, then T has a unique fixed point x∗ ∈ X and
for any x0 ∈ X, x∗ = limn→∞ Tnx0.
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Actually, it is known that Theorem 6.1 can be derived from the classical Banach
contraction principle (see [4], where a sketch of a proof is given). Here we show that
also a more general version of Theorem 6.1 can be proved via Banach’s contraction
principle. We consider a mapping T satisfying a nonlinear Lipschitz condition with
operator Λ, i.e., we allow Λ to be nonlinear. Such mappings were also studied (see
[27, Theorem 2] and references therein), but it seems that the following result may
be new.

Theorem 6.2. Let K be a normal cone in a Banach space (E, ‖ · ‖0) and Λ: K → E
be a monotone operator, i.e., a � b implies Λa � Λb for a, b ∈ K, and Λ0 = 0. Let
(X, d) be a ‖ · ‖0-complete K-metric space and T : X → X be such that

d(Tx, Ty) � Λ(d(x, y)) for all x, y ∈ X. (6.1)

If Λ is continuous and for some p ∈ N, Λp is Lipschitzian with L(Λp) < 1, then T
has a unique fixed point x∗ ∈ X and for any x0 ∈ X, limn→∞ ‖ d(Tnx0, x∗) ‖0 = 0.

Proof. By Lemma 5.5, since K is normal, E admits an equivalent monotone norm
‖ · ‖. Then the function

ρ(x, y) := ‖ d(x, y) ‖ for x, y ∈ X
is a metric. Since (X, d) is ‖ · ‖0-complete and norms ‖ · ‖0 and ‖ · ‖ are equivalent,
we may infer that (X, ρ) is complete. Since (6.1) holds, the monotonicity of Λ yields

d(Tnx, Tny) � Λn(d(x, y)) for any n ∈ N and x, y ∈ X.
Hence, since ‖ · ‖ is monotone, we obtain that ρ(Tnx, Tny) ≤ ‖ Λn(d(x, y)) ‖. In
particular,

ρ(Tx, Ty) ≤ ‖ Λ(d(x, y)) ‖, (6.2)

so if ρ(xn, x)→ 0, i.e., ‖ d(xn, x) ‖ → 0, then by continuity of Λ, Λ(d(xn, x))→ Λ0 =
0 which, by (6.2), implies that ρ(Txn, Tx) → 0. Thus T is continuous with respect
to ρ. Moreover, since Λp is Lipschitzian and Λp0 = 0, we have

ρ(T px, T py) ≤ ‖ Λp(d(x, y))− Λp0 ‖ ≤ L(Λp) ‖ d(x, y) ‖ = L(Λp)ρ(x, y),

so Lρ(T
p) ≤ L(Λp) < 1. By [10, Theorem 2.1], there exists a metric ρ′ equivalent to

ρ such that (X, ρ′) is complete and Lρ′(T ) < 1. By Banach’s contraction principle, T
has a unique fixed point x∗ ∈ X and for any x0 ∈ X, ρ′(Tnx0, x∗)→ 0, which implies
that

‖ d(Tnx0, x∗) ‖ = ρ(Tnx0, x∗)→ 0,

and hence also ‖ d(Tnx0, x∗) ‖0 → 0 since the two norms are equivalent. �

Let us note that under the assumptions of Theorem 6.1, Λ is monotone since
a � b means b − a � 0, so Λ(b − a) � 0 and hence Λa � Λb because of linearity
of Λ. Moreover, r(Λ) < 1 implies that ‖ Λp ‖ < 1 for some p ∈ N since r(Λ) =
limn→∞ ‖Λn ‖1/n. So indeed, Theorem 6.2 is a generalization of Theorem 6.1.

In a forthcoming paper we are going to present an application of theorems given
in this section to obtain a result on the existence of solutions of the Cauchy initial
value problem, which act on a half-line and have a limit at the infinity.

Acknowledgment. We thank the referee for the following information: “An answer
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to Borwein’s question was also given in the paper by S. Czerwik, Fixed point theorems
and special solutions of functional equations, Scientific Publications of the University
of Silesia, 428, Katowice, 1980”.
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