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Universidad de Valencia

Dr. Moliner, 50

46100 Burjasot (Valencia), Spain
E-mail: Jesus.Ferrer@uv.es

Abstract. The map T : `2 → `2 such that T (x) =
(
1
2
− ‖x‖2

)
· e1 + Rx, as well as the map

N(x) =
√

1− ‖x‖2 ·e1+Rx, were used by this author to produce two corresponding counterexamples
to the classical Rolle’s theorem in the closed unit ball of `2. In this paper we introduce a class of

maps, containing the before mentioned examples, which can be used to generate counterexamples to

Rolle’s theorem in the unit ball of `2.
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1. Introduction

Back in 1995, M. Furi and M. Martelli posed the problem of finding an explicit
counterexample to the classical Rolle’s theorem in the closed unit ball of `2, see [3],
that is, a real-valued function f continuous in the closed unit ball of `2, Fréchet
differentiable in its interior, with f = 0 in the sphere, such that f ′(x) 6= 0 in the open
ball. We gave an answer to this problem in [1] by means of the function

f(x) =
1− ‖x‖2

‖x− T (x)‖2
,

where x ∈ `2, ‖ · ‖ is the Euclidean norm and T : `2 → `2 is the mapping given by

T (x) =

(
1

2
− ‖x‖2

)
· e1 +Rx,

with e1 being the first unit vector and R standing for the right-shift operator in `2. In
fact, the function f is similar to the one used by Furi and Martelli, only with no square
in the denominator, in order to show that a real-valued function may be continuous
in the closed unit ball of `2 and yet be unbounded. We just put the square in the
denominator to make the function Fréchet-differentiable, then proving that f ′(x) 6= 0,
whenever ‖x‖ < 1. The continuity of this function relies on the fact that the mapping
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T is fixed-point-free. Some time later, in [2], we gave a different counterexample to
Rolle’s theorem, namely

fN (x) =
1− ‖x‖2

‖x−N(x)‖2
,

where N(x) =
√

1− ‖x‖2 · e1 +Rx. Even though both functions f and fN are quite
similar, the argument by contradiction used to show that their derivatives do not
vanish in the open unit ball works much faster in the second example. We would
like to recall that both maps T and N share the property of having no fixed points.
In fact, T is a variant of the so-called Kakutani’s map K(x) = (1 − ‖x‖) · e1 + Rx,
see [5], while N is shown not to be pseudo-contractive for any renorming of `2 in
[4]. In this paper, we introduce a class of maps, containing the former mentioned
examples, which will be used to obtain some necessary conditions in order to satisfy
Rolle’s theorem. These necessary conditions turn out useful to obtain some explicit
counterexamples to Rolle’s theorem which contain the two original ones. We shall
always be working in the closed unit ball B`2 of the Hilbert space `2, its interior, i.e.,
the open unit ball, will be denoted by U`2 .

2. A class of maps with no fixed points

We consider the family C formed by all real functions ϕ : [0, 1]→ R satisfying the
following conditions

i) ϕ(0) 6= 0,
ii) ϕ is continuous in [0, 1],
iii) ϕ is differentiable in ]0, 1[,
iv) the function ψ(t) := ϕ(t2) is also differentiable at t = 0 and ψ′(0) = 0..
For a function ϕ ∈ C, we define the map Tϕ : B`2 → `2 such that

Tϕ(x) := ϕ(‖x‖2) · e1 +Rx,

where e1 and R are, as usual, the first unit vector and the right-shift operator, re-
spectively. Clearly, the maps N and T mentioned before are of the type Tϕ for some
function ϕ in the class C just introduced by simply taking

ϕ1(t) :=
√

1− t
ϕ2(t) := 1

2 − t

}
⇒

{
ϕ1, ϕ2 ∈ C

N = Tϕ1
T = Tϕ2

.

Notice that, although Kakutani’s map can be written as Tϕ, with ϕ(t) = 1 −
√
t, ϕ

does not belong to class C, since condition iv) is not satisfied; in anyway, this map K
is out of our scope of interest given that the corresponding function fϕ is not Fréchet
differentiable at zero.

From the condition ϕ(0) 6= 0, it is straightforward to check that, for each ϕ ∈ C, the
map Tϕ has no fixed points. We shall now proceed to calculate the Fréchet derivative
of Tϕ. Identifying in the usual fashion `2 with its dual space, it is clear that the map
Tϕ is Fréchet differentiable in every point of the open unit ball except possibly at
zero. We show first that Tϕ is also Fréchet differentiable at x = 0 by proving that
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T ′ϕ(0) = R, and then evaluate its derivative in any arbitrary point of U`2 .

lim
‖y‖→0

Tϕ(y)− Tϕ(0)−Ry
‖y‖

= lim
‖y‖→0

ϕ(‖y‖2)e1 +Ry − ϕ(0)e1 −Ry
‖y‖

= lim
‖y‖→0

ϕ(‖y‖2)− ϕ(0)

‖y‖
· e1 = lim

t→0

ϕ(t2)− ϕ(0)

t
· e1

= lim
t→0

ψ(t)− ψ(0)

t
· e1 = ψ′(0) · e1 = 0.

If x ∈ U`2 \ {0}, then, using the notation 〈·, ·〉 for the inner product of `2, and T ′ϕ(x)
for the Fréchet derivative of Tϕ at x,

T ′ϕ(x)y = 2ϕ′(‖x‖2)〈x, y〉 · e1 +Ry, y ∈ `2,
which gives

T ′ϕ(x) = 2ϕ′(‖x‖2)〈x, ·〉 · e1 +R. (2.1)

Therefore, the expression in (2.1) gives the value of the derivative T ′ϕ for any point
in U`2 . Next we are going to introduce the type of functions which we will later use
to obtain counterexamples to Rolle’s theorem in order to first get hold of its Fréchet
derivative. For each ϕ ∈ C, we consider the function fϕ : B`2 → R defined as

fϕ(x) =
1− ‖x‖2

‖x− Tϕ(x)‖2
.

To evaluate the Fréchet derivative of fϕ, we introduce the real-valued function

g(x) := ‖x− Tϕ(x)‖2, x ∈ B`2 .

Hence we have

fϕ(x) =
1− ‖x‖2

g(x)
.

Now, noticing that 〈x,Ry〉 = 〈Lx, y〉, where L denotes the left-shift operator, the
Fréchet derivative of g at x ∈ U`2 is given by, for y ∈ `2,

〈g′(x), y〉 = 2 · 〈x− Tϕ(x), y − T ′ϕ(x)y〉 = 2 · [〈x− Tϕ(x), y〉 − 〈x− Tϕ(x), T ′ϕ(x)y〉]

= 2 · [〈x− Tϕ(x), y〉 − 〈x− Tϕ(x), 2ϕ′(‖x‖2)〈x, y〉 · e1 +Ry〉]
= 2 · [〈x− Tϕ(x), y〉 − 2ϕ′(‖x‖2)〈x, y〉〈x, e1〉 − 〈x,Ry〉

+2ϕ′(‖x‖2)〈x, y〉ϕ(‖x‖2) + 〈Tϕ(x), Ry〉]
= 2 · [〈x−Tϕ(x), y〉−2ϕ′(‖x‖2)〈x, y〉〈x, e1〉−〈Lx, y〉+2ϕ′(‖x‖2)〈x, y〉ϕ(‖x‖2)+〈x, y〉]

= 2 · 〈x− Tϕ(x)− 2ϕ′(‖x‖2)〈x, e1〉 · x− Lx+ 2ϕ(‖x‖2)ϕ′(‖x‖2) · x+ x, y〉
= 2 · 〈2[1 + ϕ′(‖x‖2) · (ϕ(‖x‖2)− 〈x, e1〉)] · x− Tϕ(x)− Lx, y〉],

i.e.

g′(x) = 2 · [2(1 + ϕ′(‖x‖2) · (ϕ(‖x‖2)− 〈x, e1〉)) · x− Tϕ(x)− Lx]. (2.2)

Hence, the derivative of fϕ at x ∈ U`2 is, for y ∈ `2,

〈f ′ϕ(x), y〉 =
1

g(x)2
[−2g(x)〈x, y〉 − (1− ‖x‖2)〈g′(x), y〉],



344 JESÚS FERRER

i.e.

f ′ϕ(x) =
−1

g(x)2
[2g(x) · x+ (1− ‖x‖2)g′(x)]. (2.3)

Consequently, since from (2.2)

g′(0) = −2 · Tϕ(0) = −2 · ϕ(0) · e1,

it is plain that, from (2.3),

f ′ϕ(0) =
−g′(0)

g(0)2
=

2 · ϕ(0)

ϕ(0)4
· e1 =

2

ϕ(0)3
· e1 6= 0.

Thus, if there is a point x ∈ U`2 such that f ′ϕ(x) = 0, then x 6= 0.

3. Generating counterexamples to Rolle’s theorem

In the previous section, given a function ϕ ∈ C, we have calculated the Fréchet
derivative of fϕ. We proceed next to study under what additional conditions on ϕ we
can assure that f ′ϕ(x) 6= 0, whenever x ∈ U`2 .

Assuming there is a point x ∈ U`2 such that f ′ϕ(x) = 0, from what we did before
we know that x 6= 0, and, after (2.2) and (2.3), we have

g(x)

1− ‖x‖2
· x = −2[1 + ϕ′(‖x‖2)(ϕ(‖x‖2)− 〈x, e1〉)] · x+ Tϕ(x) + Lx.

Setting

λ := 2[1 + ϕ′(‖x‖2)(ϕ(‖x‖2)− 〈x, e1〉)] +
g(x)

1− ‖x‖2
∈ R,

we obtain the equation

Tϕ(x) + Lx = λx, (3.1)

which by applying the operator L, noticing that LTϕ(x) = x, we have

L2x− λ · Lx+ x = 0. (3.2)

Given that x = (x1, x2, . . .) ∈ `2, we may use general notions of finite difference
equations to recognize (3.2) as a finite difference equation of second order. The dis-
criminant of the characteristic equation being λ2−4 gives three different possibilities:
One. | λ |= 2. In this case, the general solution of the finite difference equation has
the form x = Au+Bv, with

u =

(
1,
λ

2
,

(
λ

2

)2

, . . .

)
; v =

(
0,
λ

2
, 2

(
λ

2

)2

, 3

(
λ

2

)3

, . . .

)
.

Hence

xn = A

(
λ

2

)n−1

+B(n− 1)

(
λ

2

)n−1

, n ≥ 1.

But lim
n→∞

xn = 0 implies that A = B = 0, i.e., x = 0, which is a contradiction.

Two. | λ |< 2. Now the characteristic equation has the complex roots

z1 = cos θ + i · sin θ, z2 = cos θ − i · sin θ, sin θ 6= 0.
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Consequently, there are complex constants A,B such that

xn = A(cos θ + i · sin θ)n−1 +B(cos θ − i · sin θ)n−1, n ≥ 1.

Thus, for suitable real constants C,D, we obtain

xn = C cos(n− 1)θ +D sin(n− 1)θ, n ≥ 1.

But, since sin θ 6= 0, again limn→∞ xn = 0 implies that C = D = 0, i.e., x = 0, again
a contradiction.
Three. | λ |> 2. Here, the characteristic equations has the real roots r, 1

r , such that
one of them has absolute value strictly smaller than one. We assume that 0 <| r |< 1.
Then, since

xn = Arn−1 +B

(
1

r

)n−1

, n ≥ 1,

again lim
n→∞

x0 = 0 implies that B = 0, and so x is the geometric progression

x = (x1, x2, x3, . . .) = (x1, x1r, x1r
2, . . .), x1 6= 0.

We do now some more calculations in order to obtain some necessary conditions.

‖x‖2 =
x2
1

1−r2

‖Tϕ(x)‖2 = ϕ(‖x‖2)2 + ‖x‖2

}
⇒ ‖Tϕ(x)‖2 = ϕ(‖x‖2)2 +

x2
1

1− r2
.

But, from (3.1),

ϕ(‖x‖2) + x1r = λ · x1,

from where

ϕ(‖x‖2) = (λ− r)x1 =
x1

r
,

and so

‖Tϕ(x)‖2 =
(x1

r

)2

+
x2

1

1− r2
=

x2
1

r2(1− r2)
=
‖x‖2

r2
.

Still more patient calculations give us

g(x) = ‖x− Tϕ(x)‖2 = ‖x‖2 + ‖Tϕ(x)‖2 − 2 · 〈x, Tϕ(x)〉,

which, using our former evaluations, lead us to

g(x) = ‖x‖2 +
‖x‖2

r2
− 2 · 〈x, Tϕ(x)〉. (3.3)

But

〈x, Tϕ(x)〉 = ϕ(‖x‖2) · x1 + x2
1r(1 + r2 + r4 + . . .) = ϕ(‖x‖2) · x1 +

x2
1r

1− r2
,

i.e.

〈x, Tϕ(x)〉 = ϕ(‖x‖2) · x1 + r‖x‖2.
Consequently

g(x)

1− ‖x‖2
=

(1− r)2‖x‖2

r2(1− ‖x‖2)
.
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Now, from the definition of the value λ

r +
1

r
= λ = 2[1 + ϕ′(‖x‖2)(ϕ(‖x‖2)− x1)] +

(1− r)2‖x‖2

r2(1− ‖x‖2)
.

Multiplying by r2

r3 + r = 2r2[1 + ϕ(‖x‖2)ϕ′(‖x‖2)− x1 · ϕ′(‖x‖2)] +
(1− r)2‖x‖2

1− ‖x‖2
,

and so

r(1− r) = 2r2 · ϕ(‖x‖2)ϕ′(‖x‖2) +
(1− r)‖x‖2

1− ‖x‖2
.

Consequently, the following result has been obtained
Proposition 3.1 Let fϕ be the real-valued function defined in the previous section,

where ϕ ∈ C. A necessary condition for fϕ to satisfy Rolle’s theorem in the closed
unit ball of `2 is that there exist real numbers r, x1 and x ∈ `2, with 0 <| r |< 1,
0 <| x1 |< 1, x = (x1, x1r, x1r

2, . . .), such that

‖x‖2 =
x2

1

1− r2
< 1;ϕ(‖x‖2) =

x1

r
; r(1− r) = 2r2 · ϕ(‖x‖2)ϕ′(‖x‖2) +

(1− r)‖x‖2

1− ‖x‖2
.

4. Explicit counterexamples to Rolle’s theorem

In this section, we introduce a subclass of the class C such that, for each element
ϕ of this subclass, the corresponding function fϕ does not satisfy Rolle’s theorem
in the closed unit ball of `2. This subclass, which clearly contains the two original
counterexamples given in [1] and [2], is formed by the functions

{ϕ(t) = a
√

1− t : a 6= 0} ∪ {ϕ(t) = b− t : 0 < b ≤ 1}.
In order to show that, for ϕ in this subclass, the function fϕ does not accomplish
Rolle’s theorem it suffices to prove that the necessary condition of the former propo-
sition leads to a contradiction. With this in mind, let ϕ(t) = a

√
1− t, a 6= 0. From

the conditions above, since

ϕ(‖x‖2)ϕ′(‖x‖2) = −a
2

2
,

we have that

r(1− r)(1− ‖x‖2) = −a2r2(1− ‖x‖2) + (1− r)‖x‖2. (4.1)

Now, using again the conditions in the proposition above, we obtain

a2(1− ‖x‖2) = ϕ(‖x‖2)2 =
x2

1

r2
=

1− r2

r2
‖x‖2,

which leads us to

(1− r2)‖x‖2 = a2r2(1− ‖x‖2). (4.2)

From (4.1) and (4.2), we deduce

0 = r(1− r)(1− ‖x‖2 +
1 + r

r
‖x‖2 − 1

r
‖x‖2) = r(1− r),
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a contradiction.
For ϕ(t) = b−t, 0 < b ≤ 1, to show that the function fϕ is another counterexample

to our theorem will be a little more complicated. As done before, since now

ϕ(‖x‖2)ϕ′(‖x‖2) = ‖x‖2 − b,

we obtain

r(1− r) = 2r2

(
‖x‖2 − b+

1

2

)
− r2 +

(1− r)‖x‖2

1− ‖x‖2
,

leading to

2

(
‖x‖2 − b+

1

2

)
(1− ‖x‖2) =

1

r
− ‖x‖

2

r2
. (4.3)

But

(b− ‖x‖2)2 = ϕ(‖x‖2)2 =
x2

1

r2
=

1− r2

r2
‖x‖2 =

‖x‖2

r2
− ‖x‖2. (4.4)

From (4.3) and (4.4), we obtain

1

r
= ‖x‖2(2− ‖x‖2) + (1− b)2. (4.5)

This implies that 0 < r < 1 and so

‖x‖2(2− ‖x‖2) + (1− b)2 > 1,

which yields that, since b ≤ 1,

1− b > 1− ‖x‖2,

i.e.

‖x‖2 > b. (4.6)

Again making use of the equality of the former proposition, we have

r(1− r) = 2r2(‖x‖2 − b) +
(1− r)‖x‖2

1− ‖x‖2
,

which leads to

1 + (2b− 1)r = r · ‖x‖2 · [2 +
1− r

r2(1− ‖x‖2)
].

From here, after (4.5), we get

2

(
‖x‖2 − b+

1

2

)
+

(1− r)‖x‖2

r2(1− ‖x‖2)
=

1

r
= ‖x‖2(2− ‖x‖2) + (1− b)2,

which takes us to

b2 − ‖x‖4 =
(1− r)‖x‖2

r2(1− ‖x‖2)
> 0,

a contradiction, in light of (4.6) since b > 0.
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