
Fixed Point Theory, 17(2016), No. 2, 327-340

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

ON THE ORTHOGONAL PEXIDER DERIVATIONS

IN ORTHOGONALITY BANACH ALGEBRAS

M. ESHAGHI∗ AND S. ABBASZADEH∗∗

∗ Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences

Semnan University, Semnan 35195-363, Iran
E-mail: meshaghi@semnan.ac.ir

∗∗ Department of Mathematics, Payame Noor University P.O. Box 19395- 3697, Tehran, Iran

and
Young Researchers and Elite Club, Malayer Branch, Azad University, Malayer, Iran

E-mail: s.abbaszadeh.math@gmail.com
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1. Introduction and preliminaries

An orthogonality space (X,⊥) is a real vector space X with dimX ≥ 2 together
with a binary relation ⊥ satisfying some axioms similar to the ones in [11].

There are several orthogonality notions on a real normed space such as Birkhoff–
James, Boussouis, (semi–)inner product, Singer, Carlsson, area, unitary–Boussouis,
Roberts, Pythagorean, isosceles and Diminnie (see, e.g., [1, 2]). But here, we present
the orthogonality concept introduced by J. Rätz [20]. This is given in the following
definition.

Suppose that X is a real vector space (or an algebra) with dimX ≥ 2 and ⊥ is a
binary relation on X with the following properties:

(O1) totality of ⊥ for zero: x ⊥ 0, 0 ⊥ x for all x ∈ X;
(O2) independence: if x, y ∈ X − {0}, x ⊥ y, then x, y are linearly independent;
(O3) homogeneity: if x, y ∈ X, x ⊥ y, then αx ⊥ βy for all α, β ∈ R;
(O4) the Thalesian property: if P is a 2−dimensional subspace (subalgebra) of X,

x ∈ P and λ ∈ R+,
then there exists ux ∈ P such that x ⊥ ux and x+ ux ⊥ λx− ux.

The pair (X,⊥) is called an orthogonality space (algebra). By an orthogonality
normed space (normed algebra) we mean an orthogonality space (algebra) having a
normed structure.
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The first result on the stability of functional equations was given in 1941 by Hyers
[12] who proved the following theorem:
Let X and Y be Banach spaces. If ε > 0 and f : X → Y be a mapping such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ X and some ε > 0, then, there exists a unique additive mapping
T : X → Y such that

‖f(x)− T (x)‖ ≤ ε

for all x ∈ X. This was a first answer given to a question proposed by S.M. Ulam
in a talk at a conference at the Wisconsin University in 1940 and it represents the
starting point of the Hyers–Ulam stability theory of functional equations (see [23]).
The subject was later strongly developed by many authors. Consider f : X → Y to
be a mapping such that f(tx) is continuous in t ∈ R for each fixed x ∈ X. Assume
that there exist constants ε ≥ 0 and p ∈ [0, 1) such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε (‖x‖p + ‖y‖p)

for all x, y ∈ X. Th.M. Rassias [19] showed that there exists a unique R-linear
mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
‖x‖p

for all x ∈ X. A generalization of the theorem of Th.M. Rassias was obtained by
Gǎvruta [8] by replacing the unbounded Cauchy difference by a general control func-
tion ϕ : X ×X → [0,∞) in the spirit of Rassias approach.

There are cases in which each approximate mapping is actually a true mapping. In
such cases, we say that the functional equation is hyperstable. Indeed, a functional
equation is hyperstable if every solution satisfying the equation approximately is an
exact solution of it. For the history and various aspects of this theory we refer the
reader to papers [4, 5, 9, 10, 18, 21, 22].

The orthogonal Cauchy functional equation f(x+y) = f(x)+f(y), x ⊥ y in which
⊥ is an abstract orthogonality relation was first investigated in [11]. A generalized
version of Cauchy equation is the equation of Pexider type f1(x+ y) = f2(x) + f3(y).
Jun et. al. [14, 15] obtained the Hyers–Ulam stability of this Pexider equation.

Let (A,⊥) be an orthogonality normed algebra and B be an A-bimodule. A map-
ping d : A → B is an orthogonally ring derivation if d is an orthogonally additive
mapping satisfying

d(xy) = xd(y) + d(x)y (1.1)

for all x, y ∈ A with x ⊥ y. Moreover, a mapping d : A→ B is said to be an orthog-
onally Jordan ring derivation, if d is an orthogonally additive mapping satisfying

d(xy + yx) = xd(y) + d(x)y + yd(x) + d(y)x (1.2)
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for all x, y ∈ A with x ⊥ y. In particular, we may define orthogonally derivations
associated to the Pexiderized Cauchy functional equation.

Definition 1.1. Let (A,⊥) be an orthogonality normed algebra and B be an A-
bimodule and let f, g, h : A→ B be mappings satisfying the system

f(x+ y) = g(x) + h(y),

f(xy) = xg(y) + h(x)y

for all x, y ∈ A with x ⊥ y, then we call it an orthogonal Pexiderized ring derivation
system of equations. Moreover, if the mappings f, g, h satisfy the system

f(x+ y) = g(x) + h(y),

f(xy + yx) = xg(y) + h(x)y + yg(x) + h(y)x

for all x, y ∈ A with x ⊥ y, we call it an orthogonal Pexiderized Jordan ring derivation
system of equations.

At the first, the stability problem for derivations was studied by Šemrl in [21].
Then, the topic of approximate derivations, or the stability of the equations of deriva-
tion, was taken up by a number of mathematicians (see [3, 7]).

In 1991, J. Baker [6] used the Banach fixed point theorem for prove the Hyers–
Ulam stability. The method was generalized in [17]. We recall this fundamental result
as follows.

Theorem 1.2 (Banach contraction principle). Let (X,m) be a complete generalized
metric space and consider a mapping T : X → X as a strictly contractive mapping,
that is

m(Tx, Ty) ≤ Lm(x, y)

for all x, y ∈ X and for some (Lipschitz constant) 0 < L < 1. Then
• T has one and only one fixed point x∗ = T (x∗);
• x∗ is globally attractive, that is, lim

n→∞
Tnx = x∗ for any starting point x ∈ X;

• One has the following estimation inequalities for all x ∈ X and n ≥ 0
m(Tnx, x∗) ≤ Lnm(x, x∗),
m(Tnx, x∗) ≤ 1

1−LL
nm(Tnx, Tn+1x),

m(x, x∗) ≤ 1
1−Lm(x, Tx).

Theorem 1.3 (The Alternative of Fixed Point [16]). Suppose that we are given
a complete generalized metric space (X,m) and a strictly contractive mapping T :
X → X with Lipschitz constant L. Then, for each given element x ∈ X, either
m(Tnx, Tn+1x) = +∞ for all nonnegative integers n or there exists a positive integer
n0 such that m(Tnx, Tn+1x) < +∞ for all n ≥ n0. If the second alternative holds,
then
? The sequence (Tnx) is convergent to a fixed point y∗ of T ;
? y∗ is the unique fixed point of T in the set Y = {y ∈ X,m(Tn0x, y) < +∞};
? m(y, y∗) ≤ 1

1−Lm(y, Ty) , y ∈ Y .
In this paper, we apply the above–mentioned fixed point method to prove the

Hyers–Ulam stability property for the orthogonal derivations in orthogonality Banach



330 M. ESHAGHI AND S. ABBASZADEH

algebras associated to the Pexiderized Cauchy functional equation. Throughout this
paper, let A be an orthogonality Banach algebra and B a Banach A-bimodule.

2. The orthogonal Pexider ring derivation

In the following theorem, by applying the fixed point method (Theorem 1.3), we
will prove the Hyers–Ulam stability and hyperstability properties for the orthogonal
Pexider ring derivation.

Theorem 2.1. Suppose that f, g, h : A → B are mappings fulfilling the system of
functional inequalities

‖f(x+ y)− g(x)− h(y)‖ ≤ ϕ(x, y), (2.1)

‖f(xy)− xg(y)− h(x)y‖ ≤ φ(x, y), (2.2)

where ϕ, φ : X ×X → [0,∞) are mappings such that

lim
n→∞

ϕ(2njx, 2njy)

2nj
= 0, (2.3)

lim
n→∞

φ(2njx, y)

2nj
= lim
n→∞

φ(x, 2njy)

2nj
= 0 (2.4)

for all x, y ∈ A with x ⊥ y, where j ∈ {−1, 1}. If f is an odd mapping, ϕ(0, 0) =
φ(0, 0) = 0 and there exists 0 < L = L(j) < 1 such that for any fixed x ∈ A and some
ux ∈ A with x ⊥ ux, the mapping

x 7→ ψ(x, ux) =ϕ

(
x+ ux

2
,
x− ux

2

)
+ ϕ

(
0,
x− ux

2

)
+ ϕ

(
x+ ux

2
, 0

)
+ ϕ

(x
2
,
ux
2

)
+ ϕ

(
x

2
,
−ux

2

)
+ 2ϕ

(x
2
, 0
)

+ ϕ
(

0,
ux
2

)
+ ϕ

(
0,
−ux

2

)
(2.5)

has the property

ψ(x, ux) ≤ L2jψ(
x

2j
,
ux
2j

), (2.6)

then there exists a unique orthogonally ring derivation d : A → B such that

‖f(x)− d(x)‖ ≤ L
1+j
2

1− L
ψ(x, ux),

‖g(x)− g(0)− d(x)‖ ≤ L
1+j
2

1− L
ψ(x, ux) + ϕ(x, 0), (2.7)

‖h(x)− h(0)− d(x)‖ ≤ L
1+j
2

1− L
ψ(x, ux) + ϕ(0, x).

Proof. Let E = {e : A → B | e(0) = 0}. For any fixed x ∈ A and some ux ∈ A with
x ⊥ ux, define m : E × E → [0,∞] by

m(e1, e2) = inf
{
K ∈ R+ : ‖e1(x)− e2(x)‖ ≤ Kψ(x, ux)

}
.
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As usual inf O = ∞. It is easy to see that (E,m) is a complete generalized metric
space. Let us consider the linear mapping T : E → E, Te(x) = 1

2j e(2
jx) for all

x ∈ A. T is a strictly contractive mapping with the Lipschitz constant L. Indeed, for
given e1 and e2 in E such that m(e1, e2) <∞ and any K > 0 satisfying m(e1, e2) < K
and any fixed x ∈ A and some ux ∈ A with uαx = αux (α ∈ R) and x ⊥ ux, we have

‖e1(x)− e1(x)‖ ≤ Kψ(x, ux)

⇒ ‖ 1

2j
e1(2jx)− 1

2j
e2(2jx)‖ ≤ 1

2j
Kψ(2jx, 2jux)

⇒ ‖ 1

2j
e1(2jx)− 1

2j
e2(2jx)‖ ≤ LKψ(x, ux)

⇒ m(Te1, T e2) ≤ LK.

Put K = m(e1, e2)+ 1
n for positive integers n. Then m(Te1, T e2) ≤ L(m(e1, e2)+ 1

n ).
Letting n→∞ gives

m(Te1, T e2) ≤ Lm(e1, e2)

for all e1, e2 ∈ E.
Since ϕ(0, 0) = φ(0, 0) = 0, putting x, y = 0 in (2.1) and (2.2), we get

f(0) = 0, g(0) + h(0) = 0. (2.8)

For every x, y ∈ A, x, y ⊥ 0. So we can put y = 0 and x = 0 in (2.1), respectively, to
obtain

‖f(x)− g(x)− h(0)‖ ≤ ϕ(x, 0),

‖f(y)− g(0)− h(y)‖ ≤ ϕ(0, y)

and by (2.8), we conclude that

‖f(x)−
(
g(x)− g(0)

)
‖ ≤ ϕ(x, 0), (2.9)

‖f(y)−
(
h(y)− h(0)

)
‖ ≤ ϕ(0, y) (2.10)

for all x, y ∈ A.
Let x ∈ A be fixed. By (O4) there exists ux ∈ A such that x ⊥ ux, x+ux ⊥ x−ux

and uαx = αux for all α ∈ R. Hence

‖f(x+ ux)− g(x)− h(ux)‖ ≤ ϕ(x, ux). (2.11)

By (O3), x ⊥ −ux and so

‖f(x− ux)− g(x)− h(−ux)‖ ≤ ϕ(x,−ux). (2.12)

Replacing x and y by x+ ux and x− ux in (2.1), we have

‖f(2x)− g(x+ ux)− h(x− ux)‖ ≤ ϕ(x+ ux, x− ux). (2.13)

Substituting x+ux for x in (2.9) and x−ux for y in (2.10), respectively, one gets the
inequalities

‖f(x+ ux)−
(
g(x+ ux)− g(0)

)
‖ ≤ ϕ(x+ ux, 0), (2.14)

‖f(x− ux)−
(
h(x− ux)− h(0)

)
‖ ≤ ϕ(0, x− ux). (2.15)
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Thus the triangle inequality and inequalities (2.13), (2.14) and (2.15) yield

‖f(2x)− f(x+ ux)− f(x− ux)‖ ≤ ‖f(2x)− g(x+ ux)− h(x− ux)‖ (2.16)

+ ‖f(x+ ux)−
(
g(x+ ux)− g(0)

)
‖

+ ‖f(x− ux)−
(
h(x− ux)− h(0)

)
‖

≤ ϕ(x+ ux, x− ux) + ϕ(x+ ux, 0) + ϕ(0, x− ux).

It follows from (2.1), (2.10), (2.11), (2.12), oddness of f and triangle inequality that

‖2f(x)− f(x+ ux)− f(x− ux)‖
≤ ‖f(x+ ux)− g(x)− h(ux)‖+ ‖f(x− ux)− g(x)− h(−ux)‖
+ 2‖f(x)−

(
g(x)− g(0)

)
‖+ ‖f(ux)− g(0)− h(ux)‖

+ ‖f(−ux)− g(0)− h(−ux)‖
≤ ϕ(x, ux) + ϕ(x,−ux) + 2ϕ(x, 0) + ϕ(0, ux) + ϕ(0,−ux). (2.17)

Now, combining (2.16) and (2.17), we have

‖f(2x)− 2f(x)‖ ≤ ϕ(x+ ux, x− ux) + ϕ(x+ ux, 0)

+ ϕ(0, x− ux) + ϕ(x, ux) + ϕ(x,−ux)

+ 2ϕ(x, 0) + ϕ(0, ux) + ϕ(0,−ux). (2.18)

Using (2.5) and (2.6), we can reduce (2.18) to

‖f(x)− 1

2
f(2x)‖ ≤ 1

2
ψ(2x, 2ux) ≤ Lψ(x, ux),

that is, m(f, Tf) ≤ L = L1 < ∞. Moreover, replacing x in (2.18) by x
2 implies the

appropriate inequality for j = −1∥∥∥f(x)− 2f
(x

2

)∥∥∥ ≤ ψ(x, ux),

that is, m(f, Tf) ≤ 1 = L0 <∞. By Theorem 1.3, there exists a mapping d : A → B
which is the fixed point of T and satisfies

d(x) = lim
n→∞

f(2njx)

2nj
,

since lim
n→∞

m(Tnf, d) = 0. The mapping d is the unique fixed point of T in the set

M = {e ∈ E : m(f, e) <∞}. Using Theorem 1.3 we get

m(f, d) ≤ 1

1− L
m(f, Tf)

which yields

‖f(x)− d(x)‖ ≤ L
1+j
2

1− L
ψ(x, ux).
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Further, inequalities (2.9) and (2.10) imply that

‖g(x)− g(0)− d(x)‖ ≤ ‖f(x)−
(
g(x)− g(0)

)
‖+ ‖f(x)− d(x)‖

≤ L
1+j
2

1− L
ψ(x, ux) + ϕ(x, 0),

‖h(x)− h(0)− d(x)‖ ≤ ‖f(x)−
(
h(x)− h(0)

)
‖+ ‖f(x)− d(x)‖

≤ L
1+j
2

1− L
ψ(x, ux) + ϕ(0, x)

as desired.
It follows from the inequalities (2.9) and (2.10) that

‖2−njf(2njx)− 2−nj
(
g(2njx)− g(0)

)
‖ ≤ 2−njϕ(2njx, 0),

‖2−njf(2njx)− 2−nj
(
h(2njx)− h(0)

)
‖ ≤ 2−njϕ(0, 2njx)

for all x ∈ A and n ∈ N, whence

d(x) = lim
n→∞

g(2njx)− g(0)

2nj
= lim
n→∞

h(2njx)− h(0)

2nj
. (2.19)

Let x, y ∈ A with x ⊥ y. (O3) ensures 2njx ⊥ 2njy for all n ∈ N and from (2.1), (2.3)
and (2.19), we obtain

‖2−njf
(
2nj(x+ y)

)
− 2−nj

(
g(2njx)− g(0)

)
− 2−nj

(
h(2njy)− h(0)

)
‖

= ‖2−njf
(
2nj(x+ y)

)
− 2−njg(2njx)− 2−njh(2njy)‖

≤ 2−njϕ(2njx, 2njy).

Therefore from n → ∞, one establishes d(x + y) − d(x) − d(y) = 0. Hence d is
orthogonally additive.

In addition, we claim that the mapping d satisfies the functional equation (1.1).
Define r : A×A → B by r(x, y) = f(xy)− xg(y)− h(x)y for all x, y ∈ A with x ⊥ y.
Condition (2.4) implies that

lim
n→∞

r(2njx, y)

2nj
= 0. (2.20)

Utilizing the relations (2.19) and (2.20), one obtains

d(xy) = lim
n→∞

f
(
2nj(xy)

)
2nj

= lim
n→∞

f
(
(2njx)y

)
2nj

= lim
n→∞

2njxg(y) + h(2njx)y + r(2njx, y)

2nj

= lim
n→∞

(
xg(y) +

h(2njx)

2nj
y +

r(2njx, y)

2nj

)
= xg(y) + d(x)y + lim

n→∞

h(0)

2nj
y. (2.21)
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Set x = 0 in (2.21). Since d(0) = 0 and 0 ⊥ y for all y ∈ A, we may conclude that

lim
n→∞

h(0)

2nj
y = 0.

Hence

d(xy) = xg(y) + d(x)y (2.22)

for all x, y ∈ A with x ⊥ y.
Now, let x, y ∈ A with x ⊥ y and n ∈ N be fixed. Using (2.22) and orthogonal

additivity of d, one can easily show that

xg(2njy) + 2njd(x)y = xg(2njy) + d(x)2njy

= d
(
x(2njy)

)
= d
(
(2njx)y

)
= 2njxg(y) + d(2njx)y

= 2njxg(y) + 2njd(x)y.

If we compare the above relation with (2.22), we get

x
g(2njy)

2nj
= xg(y) (2.23)

and so

d(xy) = x
g(2njy)

2nj
+ d(x)y.

Taking the limit as n→∞, we see that

d(xy) = xd(y) + lim
n→∞

x
g(0)

2nj
+ d(x)y. (2.24)

Letting y = 0 in (2.24), we may infer that lim
n→∞

x g(0)2nj = 0.

Therefore, d(xy) = xd(y) + d(x)y. The proof of Theorem 2.1 is now complete.
In particular, given ϕ(x, y) = ε(‖x‖p + ‖y‖p) and φ(x, y) = θ‖x‖q‖y‖s for ε, θ ≥ 0

and some real numbers p, q, s in the main theorem, one gets the following corollary
(as a consequence of Rassias theorem).

Corollary 2.2. Let j ∈ {−1, 1} and f, g, h : A → B be mappings satisfying

‖f(x+ y)− g(x)− h(y)‖ ≤ ε(‖x‖p + ‖y‖p),

‖f(xy)− xg(y)− h(x)y‖ ≤ θ‖x‖q‖y‖s

for all x, y ∈ A with x ⊥ y, ε, θ ≥ 0 and real numbers p, q, s such that p, q < 1 for
j = 1 and p, q > 1 for j = −1. If f is an odd mapping, then there exists a unique
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orthogonally ring derivation d : A → B such that

‖f(x)− d(x)‖ ≤ 2
j(1+j)(p−1)

2

1− 2j(p−1)
ε (2‖x+ ux‖p + 2‖x− ux‖p + 4‖x‖p + 4‖ux‖p) ,

‖g(x)− g(0)− d(x)‖

≤ ε

{
2

j(1+j)(p−1)
2

1− 2j(p−1)
(2‖x+ ux‖p + 2‖x− ux‖p + 4‖x‖p + 4‖ux‖p) + (‖x‖p)

}
, (2.25)

‖h(x)− h(0)− d(x)‖

≤ ε

{
2

j(1+j)(p−1)
2

1− 2j(p−1)
(2‖x+ ux‖p + 2‖x− ux‖p + 4‖x‖p + 4‖ux‖p) + (‖x‖p)

}
for any fixed x ∈ A and some ux ∈ A with x ⊥ ux.
Proof. Let ϕ(x, y) = ε(‖x‖p + ‖y‖p) and φ(x, y) = θ‖x‖q‖y‖s.
Clearly, ϕ(0, 0) = φ(0, 0) = 0. It follows from the hypotheses of the corollary that

lim
n→∞

ϕ(2njx, 2njy)

2nj
= lim
n→∞

ε2nj(p−1)(‖x‖p + ‖y‖p) = 0,

lim
n→∞

φ(2njx, y)

2nj
= lim
n→∞

θ 2nj(q−1)|x‖q‖y‖s = 0

for all x, y ∈ A with x ⊥ y, that is, the conditions (2.3) and (2.4) in the Theorem 2.1
are sharp here. Since the inequality

2−jψ(2jx, 2jux) = 2j(p−1)ε (2‖x+ ux‖p + 2‖x− ux‖p + 4‖x‖p + 4‖ux‖p)

≤ 2j(p−1)ψ(x, ux)

holds for any fixed x ∈ A, some ux ∈ A with x ⊥ ux, ε ≥ 0 and real numbers p such
that p < 1 for j = 1 and p > 1 for j = −1, we see that the inequality (2.6) in the
Theorem 2.1 holds with L = 2j(p−1). Now, by (2.7) we conclude the assertion of this
corollary.

Next, we are going to establish the hyperstability of the orthogonal Pexider ring
derivation.

Corollary 2.3. Assume that f, g, h : A → B are mappings satisfying the system

‖f(x+ y)− g(x)− h(y)‖ ≤ ϕ(x, y),

‖f(xy)− xg(y)− h(x)y‖ ≤ φ(x, y),

where ϕ, φ : A×A → [0,∞) are mappings such that

lim
n→∞

ϕ(2njx, 2njy)

2nj
= 0,

lim
n→∞

φ(2njx, y)

2nj
= lim
n→∞

φ(x, 2njy)

2nj
= 0 (2.26)

for all x, y ∈ A with x ⊥ y, where j ∈ {−1, 1}. Let g(0) = h(0) = 0 and B be a
Banach A-bimodule without order, i.e. Ax = 0 or xA = 0 implies that x = 0. If f
is an odd mapping, ϕ(0, 0) = φ(0, 0) = 0 and there exists 0 < L = L(j) < 1 such that
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for any fixed x ∈ A and some ux ∈ A with x ⊥ ux, the mapping ψ ((2.5) in Theorem
2.1) has the property

ψ(x, ux) ≤ L2jψ(
x

2j
,
ux
2j

),

then the mappings g, h are orthogonally ring derivations. Moreover, if either ϕ(0, x) =
0 or ϕ(x, 0) = 0 for all x ∈ A, then f is orthogonally ring derivation.
Proof. According to Theorem 2.1, there exists an orthogonally ring derivation d :
A → B such that

d(x) = lim
n→∞

f(2njx)

2nj
= lim
n→∞

g(2njx)

2nj
= lim
n→∞

h(2njx)

2nj
(2.27)

for all x ∈ A, Since g(0) = h(0) = 0. By applying (2.27) in (2.23) we conclude that
x
(
d(y)− g(y)

)
= 0 for all x, y ∈ A. Therefore, g = d.

Let x, y ∈ A with x ⊥ y and r be the mapping defined in Theorem 2.1. It follows
from (2.26) that

lim
n→∞

r(x, 2njy)

2nj
= 0.

Using the above relation and (2.27), we obtain

d(xy) = xd(y) + h(x)y. (2.28)

Similarly to the corresponding proof of Theorem 2.1, we have

h(2njx)

2nj
y = h(x)y.

By applying (2.27) in the previous relation we conclude that h = d.
Now, we only need to show that f is orthogonally ring derivation. Applying the

last hypothesis of this corollary to the either relation (2.9) or relation (2.10), we get
indeed the desired result.

3. The orthogonal Pexider Jordan ring derivation

In this section, we will apply the fixed point method for proving the Hyers–Ulam
stability and hyperstability of the orthogonal Pexiderized Jordan ring derivation sys-
tem of equations.

Theorem 3.1. Suppose that f, g, h : A → B are mappings satisfying the following
system of functional inequalities

‖f(x+ y)− g(x)− h(y)‖ ≤ ϕ(x, y), (3.1)

‖f(xy + yx)− xg(y)− h(x)y − yg(x)− h(y)x‖ ≤ φ(x, y), (3.2)

where ϕ, φ : A×A → [0,∞) are mappings such that

lim
n→∞

ϕ(2njx, 2njy)

2nj
= 0,

lim
n→∞

φ(2njx, y)

2nj
= lim
n→∞

φ(x, 2njy)

2nj
= 0 (3.3)
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for all x, y ∈ A with x ⊥ y, where j ∈ {−1, 1}. If f is an odd mapping, ϕ(0, 0) =
φ(0, 0) = 0 and there exists 0 < L = L(j) < 1 such that for any fixed x ∈ A and some
ux ∈ A with x ⊥ ux, the mapping ψ ((2.5) in Theorem 2.1) has the property

ψ(x, ux) ≤ L2jψ(
x

2j
,
ux
2j

),

then there exists a unique orthogonally Jordan ring derivation d : A → B such that

‖f(x)− d(x)‖ ≤ L
1+j
2

1− L
ψ(x, ux),

‖g(x)− g(0)− d(x)‖ ≤ L
1+j
2

1− L
ψ(x, ux) + ϕ(x, 0),

‖h(x)− h(0)− d(x)‖ ≤ L
1+j
2

1− L
ψ(x, ux) + ϕ(0, x).

Proof. Letting x, y = 0 in (3.1) and (3.2), we get

f(0) = 0 , g(0) + h(0) = 0.

Applying the similar argument to the corresponding part of Theorem 2.1, we conclude
that there exists a unique orthogonally additive mapping d : A → B which is the fixed
point of T and satisfies

‖f(x)− d(x)‖ ≤ L
1+j
2

1− L
ψ(x, ux).

Moreover,

d(x) = lim
n→∞

f(2njx)

2nj
= lim
n→∞

g(2njx)− g(0)

2nj
= lim
n→∞

h(2njx)− h(0)

2nj
. (3.4)

Now, we are going to show that the mapping d satisfies the functional equation
(1.2). Define r : A×A → B by r(x, y) = f(xy+ yx)− xg(y)− h(x)y− yg(x)− h(y)x
for all x, y ∈ A with x ⊥ y. It follows from (3.3) that

lim
n→∞

r(2njx, y)

2nj
= 0. (3.5)

Making use of (3.4) and (3.5), we get

d(xy + yx) = lim
n→∞

f
(
2nj(xy + yx)

)
2nj

= lim
n→∞

f
(
(2njx)y + y(2njx)

)
2nj

= lim
n→∞

2njxg(y) + h(2njx)y + yg(2njx) + h(y)2njx+ r(2njx, y)

2nj

= lim
n→∞

(
xg(y) +

h(2njx)

2nj
y + y

g(2njx)

2nj
+ h(y)x+

r(2njx, y)

2nj

)
= xg(y) + d(x)y + yd(x) + h(y)x+ lim

n→∞

(
h(0)

2nj
y + y

g(0)

2nj

)
. (3.6)
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Let x = 0 in (3.6). Employing the orthogonal additivity of d and the fact that 0 ⊥ y
for all y ∈ A, one proves that limn→∞

(
h(0)
2nj y + y g(0)2nj

)
= 0. Hence,

d(xy + yx) = xg(y) + d(x)y + yd(x) + h(y)x (3.7)

for all x, y ∈ A with x ⊥ y.
Now let x, y ∈ A with x ⊥ y and n ∈ N be fixed. By (3.7) and orthogonal additivity

of d, it can be shown that

xg(2njy) + 2njd(x)y+2njyd(x) + h(2njy)x

= xg(2njy) + d(x)2njy + 2njyd(x) + h(2njy)x

= d
(
x(2njy) + (2njy)x

)
= d
(
(2njx)y + y(2njx)

)
= 2njxg(y) + d(2njx)y + yd(2njx) + h(y)2njx

= 2njxg(y) + 2njd(x)y + 2njyd(x) + h(y)2njx

and then

x
g(2njy)

2nj
+
h(2njy)

2nj
x = xg(y) + h(y)x.

Comparing the above relation with (3.7), we get

d(xy + yx) = x
g(2njy)

2nj
+ d(x)y + yd(x) +

h(2njy)

2nj
x.

Sending n to infinity, we obtain

d(xy + yx) = xd(y) + lim
n→∞

x
g(0)

2nj
+ d(x)y + yd(x) + d(y)x+ lim

n→∞

h(0)

2nj
x. (3.8)

Putting y = 0 in (3.8), one gets

lim
n→∞

x
g(0)

2nj
+ lim
n→∞

h(0)

2nj
x = 0.

Whence, d(xy+ yx) = xd(y) +d(x)y+ yd(x) +d(y)x. This completes the proof of the
theorem.

As a special case, if one takes ϕ(x, y) = ε(‖x‖p + ‖y‖p) and φ(x, y) = θ‖x‖q‖y‖s
for ε, θ ≥ 0 and some real numbers p, q, s in Theorem 3.1, then one has the following
corollary (as a consequence of Rassias theorem).

Corollary 3.2. Let f, g, h : A → B be mappings satisfying

‖f(x+ y)− g(x)− h(y)‖ ≤ ε(‖x‖p + ‖y‖p),

‖f(xy + yx)− xg(y)− h(x)y − yg(x)− h(y)x‖ ≤ θ‖x‖q‖y‖s

for all x, y ∈ A with x ⊥ y, ε, θ ≥ 0 and real numbers p, q, s such that p, q < 1 for
j = 1 and p, q > 1 for j = −1. If f is an odd mapping, then there exists a unique
conditional Jordan ring derivation d : A → B such that (2.25) in Corollary 2.2 is
sharp here for any fixed x ∈ A and some ux ∈ A with x ⊥ ux, where j ∈ {−1, 1}.
Proof. The proof of this corollary is omitted as similar to the proof of Corollary 2.2.
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We now present the hyperstability result concerning the orthogonal Pexider Jordan
ring derivation. The proof is similar to that of Corollary 2.3 and we omit it.

Corollary 3.3. Assume that f, g, h : A → B are mappings satisfying the system

‖f(x+ y)− g(x)− h(y)‖ ≤ ϕ(x, y),

‖f(xy + yx)− xg(y)− h(x)y − yg(x)− h(y)x‖ ≤ φ(x, y),

where ϕ, φ : A×A → [0,∞) are mappings such that

lim
n→∞

ϕ(2njx, 2njy)

2nj
= 0,

lim
n→∞

φ(2njx, y)

2nj
= lim
n→∞

φ(x, 2njy)

2nj
= 0

for all x, y ∈ A with x ⊥ y, where j ∈ {−1, 1}. Let g(0) = h(0) = 0 and B be a
Banach A-bimodule without order, i.e. Ax = 0 or xA = 0 implies that x = 0. If f
is an odd mapping, ϕ(0, 0) = φ(0, 0) = 0 and there exists 0 < L = L(j) < 1 such that
for any fixed x ∈ A and some ux ∈ A with x ⊥ ux, the mapping ψ ((2.5) in Theorem
2.1) has the property

ψ(x, ux) ≤ L2jψ
( x

2j
,
ux
2j

)
,

then the mappings g, h are orthogonally Jordan ring derivations. Moreover, if ei-
ther ϕ(0, x) = 0 or ϕ(x, 0) = 0 for all x ∈ A, then f is orthogonally Jordan ring
derivation.

References
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