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Abstract. The purpose of this paper is to establish a general existence of equilibrium for generalized

game in abstract convex space, where the preference correspondence has unionly open lower section
and the constraint correspondence is transfer open valued. New notions of UA-mapping and UA-

majorized mapping are introduced, in which the lower sections are unionly open. We first prove

some new fixed point theorems for set-valued mapping in noncompact abstract convex space. Next,
we obtain two existence theorems of maximal element for UA-mapping and UA-majorized mapping.

Lastly, we establish new equilibrium existence theorems for qualitative game and generalized game.
Besides, we can get more general results than that in the recent literature.
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1. Introduction

The existence of equilibrium plays an important part in the study of markets.
Since the existence of equilibrium in a generalized game with compact strategy sets
in Rn was proved in a seminal paper of Debreu [3], there are many generalizations
of Debreu’s theorem from two main respects. On one hand, the convexity structure
of underlying space has lots of generalizations. Some existence theorems of general-
ized game were obtained by Yuan and Tarafdar [39], Ding and Yuan [9], Mehta et
al. [20], Lin and Ansari [18], Yuan [37], Hou[15] and Yuan [38] in topological vec-
tor space. Since Horvath [13, 14] introduced H-space by replacing convex hull by
contract subset, there are many generalizations of the concept of convex subsets of
topological vector space, for example, G-convex space [30] and FC-space [4]. As a
result, many authors established existence theorems of generalized game in H-space,
G-convex space and FC-space, respectively, for example, Tan et al. [31], Wu [34],
Chowdhury et al. [2], Ding and Xia [8], Ding [5], Ding and Wang [7], Ding and Feng
[6]. In 2006, Park [22] introduced the abstract convex space, which include convex
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subsets in topological vector space, H-space, G-convex space and FC-space as spe-
cial case. Abstract convex space will be the framework of this paper. On the other
hand, the lower section of the preference correspondence or constrained correspon-
dence is majorized by some characteristics of mapping. Since Borglin and Keiding [1]
introduced the notion of KF -majorized mapping which was majorized by the corre-
spondence with open lower section, there have appeared many majorized mappings
with open, compactly open, transfer open or transfer compactly open lower section,
for example, Yuan and Tarafdar [39], Ding and Yuan [9], Mehta et al.[20], Lin and
Ansari [18], Yuan [37], Tan et al. [31], Wu [34], Chowdhury et al. [2], Ding and Xia
[8], Ding [5], Ding and Wang [7], Ding and Feng [6], Du and Deng [10], Yang and
Deng [35]. In 2010, Luc [19] introduced the notion of unionly open valued mapping,
which includes open valued mapping and transfer open valued mapping as special
case. In the paper, by using approximate technique for unionly open set-valued map-
ping in abstract convex space, We should introduce new notions of UA,θ-mapping and
UA,θ-majorized mapping which are majorized by some mappings with unionly open
lower section. Firstly, We prove new fixed point theorems in abstract convex space.
Secondly, we obtain the existence theorems of maximal element for UA-mapping and
UA-majorized mapping. Finally, we apply these results to establish general existence
theorems of equilibrium for qualitative game and generalized game with infinite set
of players, without compactness hypotheses in the abstract convex space. Our results
unify the corresponding results in the existing literatures.

2. Preliminaries

Let X be a nonempty subset of topological space E. We shall denote by 2X the
family of all subsets of X, by 〈X〉 the family of all nonempty finite subsets of X, by
intE(X) the interior of X in E, and by clE(X) the closure of X in E.

If X and Y are topological space and T, S : X → 2Y are two mappings, for any
D ⊂ X and y ∈ Y , let S(D) = ∪x∈DS(x) and S−(y) = {x ∈ X : y ∈ S(x)}. The dom
S denotes the domain of S, i.e., dom S = {x ∈ X : S(x) 6= ∅}, and T ∩ S : X → 2Y

is a mapping defined by (T ∩ S)(x) = T (x)∩ S(x) for each x ∈ X. The graph of T is
the set Gr(T ) = {(x, y) ∈ X × Y : y ∈ T (x)} and the mapping T̄ : X → 2Y is defined
by T̄ (x) = {y ∈ Y : (x, y) ∈ clX×Y (Gr(T ))}. The mapping cl T : X → 2Y is defined
by (cl T )(x) = clY (T (x)) for each x ∈ X.

Let X be a nonempty set and Y be a topological space. The mapping F : X → 2Y

is said to be transfer open valued on X if

∪x∈Y F (x) = ∪x∈X intY (F (x))

The mapping G : X → 2Y is said to be unionly open valued on X if

intY (∪x∈XG(x)) = ∪x∈X intY (G(x)).

It is easy to prove that transfer open valued mapping must be unionly open valued.
Moreover, we can obtain the following results.

Proposition 2.1. Let X be a nonempty subset of topological space E and Y be a
topological space. If the mapping S : X → 2Y is unionly open valued with Y = S(X),
then the mapping S is transfer open valued on X.
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Proof. Since S is unionly open valued onX, then intY (∪x∈XS(x)) = ∪x∈X intY (S(x)).
By Y = S(X) = ∪x∈XS(x), thus ∪x∈XS(x) = ∪x∈X intY (S(x)), S is transfer open
valued on X. This completes the proof. �

Proposition 2.2. Let X be a nonempty subset of topological space E and Y be a
topological space. For each i ∈ I = {1, 2, · · · , n}, the mapping Si : X → 2Y is unionly
open valued on X, then the mapping ∩ni=1Si is also unionly open valued on X.

Proof. It is clear that ∪x∈X intY (∩ni=1Si(x)) ⊂ intY (∪x∈X(∩ni=1Si(x))), thus we only
need to prove that intY (∪x∈X(∩ni=1Si(x))) ⊂ ∪x∈X intY (∩ni=1Si(x)).
If z /∈ ∪x∈X intY (∩ni=1Si(x)), for each x ∈ X,

z /∈ intY (∩ni=1Si(x)), z ∈ clY (Y \(∩ni=1Si(x))) = clY (∪ni=1(Y \Si(x))),

then for each neighborhood Nz of z, there exists a i0 ∈ I, such that

Nz ∩ (Y \Si0(x)) 6= ∅.

That is z ∈ clY (Y \Si0(x)), i.e. z /∈intY (Si0(x)).
Since Si0 is unionly open, then z /∈ ∪x∈X intY (Si0(x)) = intY (∪x∈X(Si0(x))),
but ∪x∈X(∩ni=1Si(x)) ⊂ ∪x∈XSi0(x), thus z /∈ intY (∪x∈X(∩ni=1Si(x))).
That is intY (∪x∈X(∩ni=1Si(x))) ⊂ ∪x∈X intY (∩ni=1Si(x)). This completes the proof.

�

The following notions and lemmas were introduced by Park in [22, 23, 24].

Definition 2.1. An abstract convex space (E,D; Γ) consists of a topological space E,
a nonempty set D and a mapping Γ : 〈D〉 → 2E with nonempty value ΓA := Γ(A) for
each A ∈ 〈D〉.

For any D′ ⊂ D, the Γ-convex hull of D′ is denoted and defined by

coΓD
′ = ∪{ΓA|A ∈ 〈D′〉} ⊂ E

A subset X of E is called a Γ-convex subset of (E,D; Γ) relative to D′ if for any
N ∈ 〈D′〉, we have ΓN ⊂ X, that is coΓD

′ ⊂ X. Then (X,D′; Γ|〈D′〉) is called a
Γ-convex subspace of (E,D; Γ).

When D ⊂ E, the space is denoted by (E ⊃ D; Γ). In such a case, a subset X of
E is said to be Γ-convex if coΓ(X ∩D) ⊂ X; in other words, X is Γ-convex relative
to D′ = X ∩D. If E = D, let (E; Γ) = (E,E; Γ).

Definition 2.2. [23] Let (E,D; Γ) be an abstract convex space. If a mapping G :
D → 2E satisfies

ΓA ⊂ G(A) =
⋃
y∈A

G(y) for all A ∈ 〈D〉

then G is called a KKM mapping.

Definition 2.3. [23] The partial KKM principle for an abstract convex space
(E,D; Γ) is the statement that, for any closed-valued KKM mapping G : D → 2E, the
family {G(y)}y∈D has the finite intersection property.
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Lemma 2.1. [24] Let (E,D; Γ) be an abstract convex space and (X,D′; Γ′) be an
Γ-convex subspace. If (E,D; Γ) satisfies the partial KKM principle, then so does
(X,D′; Γ′).

Lemma 2.2. [23] Let (E,D; Γ) be an abstract convex space satisfying the partial
KKM principle and S : D → 2E be a mapping such that
(i) for each z ∈ X, S(z) is open;
(ii) E =

⋃
z∈M S(z) for some M ∈ 〈D〉.

Then there exists a finite subset N ∈ 〈D〉 such that ΓN ∩
⋂
z∈N S(z) 6= ∅.

By using the notion of unionly open mapping, we should introduce new notions of
UA,θ-mapping and UA,θ-majorized mapping, that are majorized some mappings with
unionly open lower section.

Definition 2.4. Let X be a topological space and Y be a nonempty subset of an
abstract convex space (E; Γ). Let θ : X → Y be a single valued mapping and P : X →
2Y be a set-valued mapping. Then
(i) P is said to be UA,θ-mapping if there exists a mapping ψ : X → 2Y such that

(a) for each x ∈ X, P (x) ⊂ ψ(x) and θ(x) /∈ co Γ(ψ(x)) ⊂ Y ;
(b) the mapping ψ− : Y → 2X is unionly open valued on Y .

(ii) (ψx;Nx) is said to be an UA,θ-majorant of P at x ∈dom P if Nx is an open
neighborhood of x in X and the mapping ψx : X → 2Y satisfies

(a) for each z ∈ Nx, and θ(z) /∈ coΓ(ψx(z));
(b) for each z ∈ X, P (z) ⊂ ψx(z);
(c) the mapping ψ−x : Y → 2X is unionly open valued on Y .

(iii) P is said to be an UA,θ-majorized mapping if for each x ∈ dom P , there exists
an UA,θ-majorant (ψx;Nx) of P at x.

Remark 2.1. The notion of UA,θ-mapping (resp., UA,θ-majorized mapping), which
includes the notion of a mapping being of class L (resp., L -majorized mapping)
introduced by Yuan [38], and the notion of a mapping being of class L ∗θ,Fc

(resp.,

L ∗θ,Fc
-majorized mapping) introduced by Ding and Xia [8] as special case. These

notions also generalize the corresponding notions in Tan et al. [31], Hou [16], Yang
and Deng [35], Ding and Yuan [9].

In this paper, we shall deal mainly with either the case (I) X = Y and X is an
abstract convex space and θ = IX , which is the identity mapping on X, or the case
(II) X = Πi∈IXi and θ = πi : X → Xi is the projection of X onto Xi and Xi is an
abstract convex space. In both case (I) and (II), we shall write UA in place of UA,θ .

3. Fixed point theorems

Let X be a topological space and T : X → 2X be a mapping. A point x̂ ∈ X is
called a fixed point of T if there exists a point x̂ ∈ X such that x̂ ∈ T (x̂).

In the section, we should prove some new fixed point theorems in noncompact
abstract convex space.

Theorem 3.1. Let (X; Γ) be an abstract convex space satisfying the partial KKM
principle and the mappings S, T : X → 2X be such that
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(i) for each x ∈ X, S(x) ⊂ T (x);
(ii) the mapping S− : X → 2X is transfer open valued and for each x ∈ K, S(x) 6= ∅;
(iii) there exists a nonempty compact subset K of X such that either (a) or (b) hold.
(a) and (b) are expressed as follows.

(a) X\K ⊂
⋃
{intX(T−(z)), z ∈M} for some M ∈ 〈X〉;

(b) for each N ∈ 〈X〉, there exists a compact Γ-convex subset LN of X containing
N such that

LN\K ⊂
⋃
{intX(T−(x)) : x ∈ LN}.

then there exists a point x̂ ∈ X such that x̂ ∈coΓ(T (x̂)).

Proof. By (ii) and (i), K ⊂ ∪z∈X(S−(z)) = ∪z∈X intX(S−(z)) ⊂ ∪z∈X intX(T−(z)),
then there exists a finite set N ∈ 〈X〉 such that

K ⊂ ∪{intX(T−(z)) : z ∈ N}. (3.1)

By (iii), if (a) holds, then

X = ∪{intX(T−(z)) : z ∈M ∪N}.

By Lemma 2.2, there exists a set A ∈ 〈X〉, such that ΓA ∩
⋂
z∈A intX(T−(z)) 6= ∅.

Put x̂ ∈ ΓA ∩
⋂
z∈A intX(T−(z)), then for each z ∈ A, x̂ ∈ intX(T−(z)) ⊂ T−(z),

that is A ⊂ T (x̂), thus ΓA ⊂ coΓ(T (x̂)). Since x̂ ∈ ΓA, then x̂ ∈ coΓ(T (x̂)).
If (b) holds, there exists a compact Γ-convex subset LN of X containing N such

that

LN\K ⊂ ∪{intX(T−(z)) : z ∈ LN}.
By (3.1),

LN ∩K ⊂ ∪{intX(T−(z)) : z ∈ N} ⊂ ∪{intX(T−(z)) : z ∈ LN}

then

LN ⊂ ∪{intX(T−(z)) : z ∈ LN}.
Since LN is compact, thus there exists a finite set A ∈ 〈LN 〉 such that

LN = ∪{intX(T−(z)) ∩ LN : z ∈ A}.

Define Γ′ : 〈LN 〉 → 2LN , by Γ′C = ΓC ∩ LN for each C ∈ 〈LN 〉, then (LN ; Γ′) is an
Γ-convex subspace of (X; Γ) and satisfies the partial KKM principle by Lemma 2.1.
Let T ′ : LN → 2LN by T ′(z) = intX(T−(z))∩LN for each z ∈ LN , It is easy to prove
that the all the hypotheses of Lemma 2.2 are satisfied. By Lemma 2.2, there exists
a finite set B ∈ 〈LN 〉 such that Γ′B ∩

⋂
z∈B T

′(z) 6= ∅. Let x̂ ∈ Γ′B ∩
⋂
z∈B T

′(z),
then for each z ∈ B, x̂ ∈ T ′(z) = intX(T−(z)) ∩ LN ⊂ T−(z), that is B ⊂ T (x̂) and
ΓB ⊂coΓ(T (x̂)). Since x̂ ∈ Γ′B = ΓB ∩ LN ⊂ ΓB , thus x̂ ∈coΓ(T (x̂)). This completes
the proof. �

Remark 3.1. Theorem 3.1 extends Theorem 3.1 of Ding and Wang [7] from FC-
space to abstract convex space. It is easy to check that Theorem 3.1 also generalizes
Theorem 2.3 of Chowdhury et al. [2], Theorem 4.1 of Park [25] and Corollary 12.1 of
Park [26] with more weaker hypotheses.
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For a topological space (X, τ), the compactly generated extension of the topology
τ is the new topology consisting of all compactly closed [resp., open] subsets. In this
way, we have the following modified form of Theorem 3.1.

Theorem 3.2. Let (X; Γ) be an abstract convex space satisfying the partial KKM
principle and the mappings S, T : X → 2X be such that
(i) for each x ∈ X, S(x) ⊂ T (x);
(ii) the mapping S− : X → 2X is transfer compactly open valued on X and for x ∈ K,
S(x) 6= ∅ ;
(iii) there exists a nonempty compact subset K of X such that either (a) or (b). (a)
and (b) are expressed as follows.

(a) X\K ⊂
⋃
{intX(T−(z)), z ∈M} for some M ∈ 〈X〉;

(b) for each N ∈ 〈X〉, there exists a compact Γ-convex subset LN of X containing
N such that

LN\K ⊂
⋃
{intX(T−(x)) : x ∈ LN}.

then there exists a point x̂ ∈ X such that x̂ ∈coΓ(T (x̂)).

Proof. Replace the topology of X by its compactly generated extension, then (X; Γ)
with this new topology is another abstract convex space. All the hypotheses of
Theorem 3.1 are satisfied. By Theorem 3.1, there exists a point x̂ ∈ X such that
x̂ ∈coΓ(T (x̂)). �

Remark 3.2. Theorem 3.2 generalizes Theorem 3.1 of Ding and Feng [6] and Theo-
rem 2.4 of Chowdhury [2].

By using Proposition 2.1 and Theorem 3.1, we can derive the following fixed pointed
theorem.

Corollary 3.1. Let (X; Γ) be an abstract convex space satisfying the partial KKM
principle and the mappings S, T : X → 2X be such that
(i) for each x ∈ X, S(x) 6= ∅ and S(x) ⊂ T (x);
(ii) the mapping S− : X → 2X is unionly open valued on X and X = S(X);
(iii) there exists a nonempty compact subset K of X such that either (a) or (b). (a)
and (b) are expressed as follows.

(a) X\K ⊂
⋃
{intX(T−(z)), z ∈M} for some M ∈ 〈X〉;

(b) for each N ∈ 〈X〉, there exists a compact Γ-convex subset LN of X containing
N such that

LN\K ⊂
⋃
{intX(T−(x)) : x ∈ LN}.

then there exists a point x̂ ∈ X such that x̂ ∈coΓ(T (x̂)).

Remark 3.3. Corollary 3.1 generalizes Theorem 3.3 of Park [27] and Theorem 5.4
of Park [28] under weaken assumptions.

4. Existence of maximal element

Let X be a topological space and T : X → 2X be a mapping. A point x̂ ∈ X is
called a maximal element of T if T (x̂) = ∅.
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In the section, we shall establish some new existence theorems of maximal element
for UA-mapping and UA-majorized mapping defined on noncompact abstract convex
space.

Theorem 4.1. Let (X; Γ) be an abstract convex space satisfying the partial KKM
principle and K be a nonempty compact subset of X. Suppose that P : X → 2X is
an UA-mapping such that

(i) for each N ∈ 〈X〉, there exists a compact Γ-convex subset LN of X containing
N such that

LN\K ⊂
⋃
{intX(P−(y)) : y ∈ LN}.

Then there exists a point x̂ ∈ X such that P (x̂) = ∅.

Proof. Since P is an UA-mapping, then there exists a mapping ψ : X → 2X such that
(a) for each x ∈ X, P (x) ⊂ ψ(x) and x /∈ co Γ(ψ(x)) ⊂ X;
(b) the mapping ψ− : X → 2X is unionly open valued on X.
Suppose for each x ∈ X, P (x) 6= ∅. By (a), ψ(x) 6= ∅ for each x ∈ X, then

X = ψ(X). By (i) and (a), for each N ∈ 〈X〉, there exists a compact abstract
convex subset LN of X containing N such that LN\K ⊂ ∪{intX(P−(y)) : y ∈ LN} ⊂
∪{intX(ψ−(y)) : y ∈ LN}. Therefore, P and ψ satisfy all the hypotheses of Corollary
3.1. By Corollary 3.1, there exists a point x̄ ∈ K such that x̄ ∈coΓ(ψ(x̄)), that
contradicts with condition (a). Hence there exists a point x̂ ∈ X such that P (x̂) = ∅.
This completes the proof. �

Remark 4.1. The condition (i) of Theorem 4.1 can be replaced by the following
statement: (i)′ for each N ∈ 〈D〉, there exists a compact abstract convex subset LN
of X containing N such that for each x ∈ LN\K, there exists a point ȳ ∈ LN such
that x ∈ intX(P−(ȳ)).
Indeed, for each N ∈ 〈D〉, there exists a compact abstract convex subset LN
of X containing N such that for each x ∈ LN\K, there exists ȳ ∈ LN such
that x ∈intX(P−(ȳ)), thus x ∈ ∪{intX(P−(y)) : y ∈ LN}, that is LN\K ⊂
∪{intX(P−(y)) : y ∈ LN}. Thus Theorem 4.1 includes Theorem 3.1 of Yang and
Deng [35] as special case. Moreover, Theorem 4.1 generalizes Theorem 1 of Kim [17],
Theorem 5.1 of Ding and Wang [7] and Theorem 3.1 of Chowdhury et al. [2].

Theorem 4.2. Let (X; Γ) be a Housdorff and paracompact abstract convex space
satisfying the partial KKM principle and K be a nonempty compact subset of X. Let
P : X → 2X be an UA-majorized mapping such that

(i) for each N ∈ 〈X〉, there exists a compact Γ-convex subset LN of X containing
N such that

LN\K ⊂
⋃
{intX(P−(y)) : y ∈ LN}.

then there exists a point x̂ ∈ X such that P (x̂) = ∅.

Proof. Suppose P (x) 6= ∅ for each x ∈ X, that is dom P = X. Since P is an UA-
majorized mapping, for each x ∈ X, let Nx be an open neighborhood of x in X and
ψx : X → 2X be mapping such that
(1) for each z ∈ Nx, z /∈ coΓ(ψx(z));
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(2) for each z ∈ X, P (z) ⊂ ψx(z);
(3) the mapping ψ−x : X → 2X is unionly open valued on X.

Since X is Housdorff and paracompact, then X is regular. For each x ∈ X, there
exists an open neighborhood Gx of x in X such that clXGx ⊂ Nx. By Theorem
VIII.1.4 of Dugundji [11], the open covering {Gx} of X has an open precise neighbor-
hood finite refinement {G′x}. Given any x ∈ X, we define the mapping ψ′x : X → 2X

by

ψ′x(z) =

{
ψx(z) if z ∈clXG

′
x;

X if z ∈ X\clXG
′
x.

then we have
(i) by (3.1), P (z) ⊂ ψ′x(z) for each z ∈ X;
(ii) for each y ∈ X, the set

(ψ′x)−(y) = {z ∈ clXG
′
x : y ∈ ψx(z)} ∪ {z ∈ X\clXG

′
x : y ∈ X}

= [(clXG
′
x) ∩ ψ−x (y)] ∪ (X\clXG

′
x)

= ψ−x (y) ∪ (X\clXG
′
x)

By dom P = X and (2), then dom ψx = X, thus ψ−x is transfer open valued by
Proposition 2.1. It is easy to check that (ψ′x)− is transfer open valued. Now define
ψ : X → 2X by

ψ(z) = ∩
x∈X

ψ′x(z) for each z ∈ X

(a) For each z ∈ X, then there exists a point x ∈ X such that z ∈clXG
′
x, so that

ψ′x(z) = ψx(z) and hence ψ(z) ⊂ ψx(z). By (3.1), we have z /∈coΓ(ψ(z)).
(b) Now we prove that P (z) ⊂ ψ(z) for each z ∈ X. Indeed, for each x ∈ X, if
z ∈ X\clXG

′
x, then ψ′x(z) = X, so P (z) ⊂ ψ′x(z); if z ∈clXG

′
x, we have z ∈clXG

′
x ⊂

clXGx ⊂ Nx, by (3.1), P (z) ⊂ ψx(z) ⊂ ψ′x(z). It follows that P (z) ⊂ ψ′x(z) for all
x ∈ X, thus P (z) ⊂ ∩x∈Xψ′x(z) = ψ(z).
(c) Finally we show that the mapping ψ− : X → 2X is transfer open valued on X.
Indeed, let y0 ∈ X be such that ψ−(y0) 6= ∅. Given a point u such that

u ∈ ψ−(y0) = {z ∈ X : y0 ∈ ψ(z)}.
Since {G′x} is a neighborhood finite refinement, there exists an open neighborhood
Mu of u in X such that {x ∈ X : Mu ∩ G′x 6= ∅} = {x1, x2, · · · , xn}. Note that for
each x ∈ X with x /∈ {x1, x2, · · · , xn}, ∅ = Mu ∩G′x = Mu ∩ clXG

′
x, so ψ′x(z) = X for

z ∈ Mu. Then we have ψ(z) = ∩x∈Xψ′x(z) = ∩ni=1ψ
′
xi

(z) for all z ∈ Mu. It follows
that

ψ−(y0) = {z ∈ X : y0 ∈ ψ(z)} = {z ∈ X : y0 ∈ ∩
x∈X

ψ′x(z)}

⊃ {z ∈Mu : y0 ∈ ∩
x∈X

ψ′x(z)}

= {z ∈Mu : y0 ∈
n
∩
i=1

ψ′xi
(z)}

= Mu ∩ {z ∈ X : y0 ∈
n
∩
i=1

ψ′xi
(z)}

= Mu ∩ [
n
∩
i=1

(ψ′xi
)−(y0)]
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then Mu ∩ (∪y∈X intX [
n
∩
i=1

(ψ′xi
)−(y)]) ⊂ ∪y∈X intX(ψ−(y)). Since (ψ′xi

)− is transfer

open valued on X by (iii), then ∩ni=1(ψ′xi
)− is transfer open by Proposition 2.2, that

is ∪y∈X intX [
n
∩
i=1

(ψ′xi
)−(y)] = ∪y∈X [

n
∩
i=1

(ψ′xi
)−(y)]. Note y0 ∈ ψ(u) = ∩ni=1(ψ′xi

)(u),

u ∈ ∩ni=1(ψ′xi
)−(y0), then u ∈Mu∩(∪y∈X [

n
∩
i=1

(ψ′xi
)−(y)]), thus u ∈ ∪y∈X intX(ψ−(y)).

Hence ∪y∈Xψ−(y) = ∪y∈X intX(ψ−(y)). This shows that ψ− : Y → 2X is transfer
open valued on X. Therefore, all the hypotheses of Theorem 3.1 are satisfied. By
Theorem 3.1, there exists a point x̄ ∈ X such that x̄ ∈coΓ(ψ(x̄)), that contradicts
with condition (a). Thus there exists a point x̂ ∈ X such that P (x̂) = ∅. This
completes the proof. �

Remark 4.2. Theorem 4.2 improves and generalizes Theorem 3.3 of Ding and Xia [8]
from G-convex space to abstract convex space. Theorem 4.2 also generalizes Theorem
3.3 of Yang and Deng [35], Theorem 2.3 of Ding and Yuan [9].

5. Equilibrium of abstract economy

Let I be a finite or infinite set of players. For each i ∈ I, let its strategy set Xi

be nonempty subset of an abstract convex space with X =
∏
i∈I Xi. Pi : X → 2Xi

be the preference correspondence of i-th player. Following the notion of Gale and
Mas-Colell [12], the collection Λ = (Xi;Pi)i∈I will be called a qualitative game. A
point x̂ ∈ X is said to be an equilibrium of the qualitative game, if Pi(x̂) = ∅ for each
i ∈ I.

A generalized game (=abstract economy) is a quadruples family

Λ = (Xi;Ai;Bi;Pi)i∈I

where I is a finite or infinite set of players such that for each i ∈ I, Xi is a nonempty
subset of an abstract convex space with X =

∏
i∈I Xi. Ai, Bi : X → 2Xi are the

constraint correspondences and Pi : X → 2Xi is the preference correspondence. When
I = {1, 2, · · · , N}, where N is a positive integer, Λ = (Xi;Ai;Bi;Pi)i∈I is also called
an N -person game. Particularly, if I = {1}, Λ = (X;A;B;P ) is said to be one person
game. An equilibrium of the generalized game Λ is a point x̂ ∈ X such that for each
i ∈ I, x̂i = πi(x̂) ∈ B̄i(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅.

The notion of abstract economy in abstract convex space is the natural extension
of the abstract economy introduced by Nash [21], Tarafdar [33], Yang and Deng [35],
Borglin and Keiding [1], Yannelis and Prabhakar[36].

The following Lemma shows the product of a family of abstract convex space is
also an abstract convex space.

Lemma 5.1. [23, 29] Let {(Xi, Di; Γi)}i∈I be a family of abstract convex spaces. Let
X := Πi∈IXi be equipped with the product topology and D := Πi∈IDi. For each i ∈ I,
let πi : D → Di be the projection. For each A ∈ 〈D〉, define Γ(A) := Πi∈IΓi(πi(A)).
Then (X,D; Γ) is an abstract convex space.

We now apply Theorem 4.1 to establish a new existence theorem of equilibrium for
one person game in abstract convex space.
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Theorem 5.1. Let (X; Γ) be an abstract convex space satisfying the partial KKM
principle and K be a compact subset of X. Suppose the mappings A,B, P : X → 2X

satisfy
(i) the mapping A− : X → 2X is transfer open valued on X;
(ii) dom P = X and P is an UA-mapping;
(iii) for each N ∈ 〈X〉, there exists a compact Γ-convex subset LN of X containing
N such that

LN\K ⊂
⋃
{intX((A ∩ P )−(y)) : y ∈ LN}.

Then there exists a point x̂ ∈ K such that x̂ ∈ B(x̂) and A(x̂) ∩ P (x̂) = ∅.

Proof. Let W = {x ∈ X : x /∈ B(x)}, then W is open in X. Define Q : X → 2X by

Q(x) =

{
P (x) if x ∈W ;
A(x) ∩ P (x) if x /∈W .

By (ii), P is an UA-mapping, then there exists a mapping ψ : X → 2X such that
(a) for each x ∈ X,P (x) ⊂ ψ(x) and x /∈coΓ(ψ(x));
(b) the mapping ψ− : X → 2X is unionly open valued on X.
Define Ψ : X → 2X by

Ψ(x) =

{
ψ(x) if x ∈W ;
A(x) ∩ ψ(x) if x /∈W .

Then we have
(a′) by (a), for each x ∈ X, Q(x) ⊂ Ψ(x), if x ∈ W , x /∈coΓ(ψ(x))=coΓ(Ψ(x)); if
x /∈W , by A(x)∩ψ(x) ⊂ ψ(x), x /∈coΓ(ψ(x)∩A(x)) =coΓ(Ψ(x)), thus x /∈coΓ(Ψ(x))
for each x ∈ X;
(b′) for each y ∈ X,

Ψ−(y) = {x ∈ X : y ∈ Ψ(x)} = {x ∈W : y ∈ ψ(x)} ∪ {x ∈ X\W : y ∈ A(x) ∩ ψ(x)}

= [ψ−(y) ∩W ] ∪ [(X\W ) ∩ ψ−(y) ∩A−(y)] = [W ∪A−(y)] ∩ ψ−(y).

By (i), we can obtain that W∪A−(y) is transfer open, then the mapping Ψ− : X → 2X

is unionly open valued on X by (b) and Proposition 2.2. This shows that Q is an
UA-mapping. By the definition of Q and condition (ii), for each N ∈ 〈X〉, there exists
a compact Γ-convex subset LN of X containing N such that

LN\K ⊂ ∪{intX((A ∩ P )−(y)) : y ∈ LN} ⊂ ∪{intX(Q−(y)) : y ∈ LN}.
Hence all the hypotheses of Theorem 4.1 are satisfied. By Theorem 4.1, there exists
a point x̂ ∈ X such that Q(x̂) = ∅. By the definition of Q and condition (iii), x̂ /∈W ,
that is x̂ ∈ B(x̂) and A(x̂) ∩ P (x̂) = ∅. This completes the proof. �

Remark 5.1. Theorem 5.1 improves Theorem 5.1 of Ding and Feng [6] from two
aspects.
(i) The underlying space changes from FC-space to abstract convex space;
(ii) The preference correspondence P is an UA-mapping mapping instead of the L ∗F
class mapping.
Moreover, Theorem 5.1 generalizes Theorem 3.2 of Ding and Yuan [9] from topological
vector space to abstract convex space under weaken assumptions.
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From Theorem 4.2, we can derive the following existence of equilibrium for quali-
tative game.

Theorem 5.2. Let Λ = (Xi;Pi)i∈I be a qualitative game, For each i ∈ I, suppose
the following conditions are satisfied
(i) (Xi; Γi)i∈I is a family of paracompact abstract convex space such that (X; Γ) sat-
isfies the partial KKM principle and K is a nonempty compact subset of X;
(ii) Pi : X → 2Xi is an UA-majorized mapping;
(iii) Wi = {x ∈ X : Pi(x) 6= ∅} is open in X;
(iv) for each N ∈ 〈X〉, there exists a compact Γ-convex subset LN of X containing N
such that

LN\K ⊂
⋃
{intX(P−i (πi(y))) : y ∈ LN}.

Then Λ has an equilibrium point in K.

Proof. For each x ∈ X, let I(x) = {i ∈ I : Pi(x) 6= ∅}. Define a mapping P ′i : X → 2X

by P ′i (x) = π−i (Pi(x)) = Πj∈I,j 6=iXi ⊗ Pi(x) for each x ∈ X, where the mapping
πi : X → Xi is projection ofX ontoXi. Furthermore, define the mapping P : X → 2X

by

P (x) =

{
∩

i∈I(x)
P ′i (x) if I(x) 6= ∅;

∅ if I(x) = ∅.
Then for each x ∈ X, P (x) 6= ∅ if and only if I(x) 6= ∅. We shall show that P is an
UA-majorized mapping. For each x ∈ X with P (x) 6= ∅, let i ∈ I(x) with Pi(x) 6= ∅,
by (ii) , let Nx be an open neighborhood of x in X and ψi,x : X → 2Xi be mapping
such that
(a) for each z ∈ Nx, zi /∈coΓ(ψi,x(z));
(b) for each z ∈ X, Pi(z) ⊂ ψi,x(z);
(c) the mapping ψ−i,x : Xi → 2X is unionly open valued on Xi.

By (iii), we may assume that Nx ⊂ Wi, hence Pi(z) 6= ∅ and i ∈ I(z) for all z ∈ Nx.
Now define the mapping ψx : X → 2X by

ψx(z) = π−i (ψi,x(z)) for each z ∈ X.
Then we have
(a′) for each z ∈ Nx, by (a), z /∈coΓ(ψx(z)) ;
(b′) for each z ∈ X, by (b), P (z) = ∩i∈I(z)P ′i (z) ⊂ P ′i (z) = π−i (Pi(z)) ⊂ π−i (ψi,x(z)) =
φx(z);
(c′) for each y ∈ X, ψ−x (y) = {z ∈ X : y ∈ ψx(z)} = {z ∈ X : yi ∈ ψi,x(z)} = ψ−i,x(yi)

is unionly open in X by (b).
(a), (b) and (c) show that P is an UA-majorized mapping. By P−(y) = P−i (πi(y))
and condition (iv), for each N ∈ 〈X〉, there exists a compact abstract convex subset
LN of X containing N such that

LN\K ⊂ ∪{intX(P−i (πi(y)) : y ∈ LN} = ∪{intX(P−(y)) : y ∈ LN}.
Hence all the hypotheses of Theorem 4.2 are satisfied. By Theorem 4.2, there exists
a point x̂ ∈ X such that P (x̂) = ∅. That implies that I(x̂) = ∅, thus Pi(x̂) = ∅ for
each i ∈ I. This completes the proof. �
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Remark 5.2. Theorem 5.2 generalizes Theorem 6.2 of Ding and Wang [7] in which
the LF -majorized mapping is replaced by UA-mapping mapping.

By using Theorem 5.2, we can obtain the following equilibrium existence theorem
for a noncompact generalized game.

Theorem 5.3. Let Λ = (Xi;Ai;Bi;Pi)i∈I be a generalized game. Let K be a compact
subset of X. Suppose that for each i ∈ I,
(i) (Xi; Γi) is a paracompact abstract convex space such that (X; Γ) satisfies the partial
KKM principle;
(ii) for each y ∈ Xi, A

−
i (y) is transfer open in X;

(iii) Wi = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X;
(iv) dom Pi = X and Pi : X → 2Xi is an UA-majorized mapping;
(v) for each N ∈ 〈X〉, there exists a compact Γ-convex subset LN of X containing N
such that

LN\K ⊂
⋃
{intX((Ai ∩ Pi)−(πi(y))) : y ∈ LN}.

Then Λ has an equilibrium point x̂ in K.

Proof. For each i ∈ I, let Fi = {x ∈ X : xi /∈ Bi(x)}, then Fi is open in X. Define
Qi : X → 2Xi by

Qi(x) =

{
Pi(x) if x ∈ Fi;
Ai(x) ∩ Pi(x) if x /∈ Fi.

We shall prove that the qualitative game Λ′ = (Xi, Qi)i∈I satisfies all the hypotheses
of Theorem 5.2. For each i ∈ I, we have that the set

{x ∈ X : Qi(x) 6= ∅} = {x ∈ Fi : Pi(x) 6= ∅} ∪ {x ∈ X\Fi : (Ai ∩ Pi)(x) 6= ∅}
= Fi ∪ [(X\Fi) ∩Wi] = Fi ∪Wi

is open in X and hence the condition (iii) of Theorem 5.2 is satisfied. By (v), for each
x ∈ X, there exist an open neighborhood Nx of x in X and a mapping ψi,x : X → 2Xi

such that
(a) for each z ∈ Nx, zi /∈coΓ(ψi,x(z));
(b) for each z ∈ X, Pi(z) ⊂ ψi,x(z);
(c) the mapping ψ−i,x : Xi → 2X is unionly open valued on Xi.

Define Ψi,x : X → 2Xi by

Ψi,x(z) =

{
ψi,x(z) if z ∈ Fi;
Ai(z) ∩ ψi,x(z) if z /∈ Fi.

Now for each x ∈ X with Qi(x) 6= ∅, the set Ux = Nx is open in X. Then
(a′) by (a), for each z ∈ Ux, if z ∈ Ux ∩ Fi, z /∈coΓ(ψi,x(z)) =coΓ(Ψi,x(z)); if z ∈
Ux ∩ (X\Fi), by Ai(z) ∩ ψi,x(z) ⊂ ψi,x(z), z /∈coΓ(Ai(z) ∩ ψi,x(z)) =coΓ(Ψi,x(z)) ,
that is z /∈ co Γ(Ψi,x(z)) for each z ∈ Ux;
(b′) by (b), for each z ∈ X, Qi(z) ⊂ Ψi,x(z);
(c′) for each y ∈ Xi,

Ψ−i,x(y) = {z ∈ X : y ∈ Ψi,x(z)} = {z ∈ Fi : y ∈ ψi,x(x)}
∪ {z ∈ X\Fi : y ∈ ψi,x(z) ∩Ai(z)}
= ψ−i,x(y) ∩ [Fi ∪A−i (y)]
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By (i), it is easy to check that Wi ∪ A−i (y) is transfer open, then the mapping Ψ−i,x :

X → 2X is unionly open valued on X by (c) and Proposition 2.2. Thus Qi is an
UA-majorized mapping. By the definition of Q and condition (vi), for each N ∈ 〈X〉,
there exists a compact abstract convex subset LN of X containing N such that

LN\K ⊂ ∪{intX((Ai ∩ Pi)−(πi(y)) : y ∈ LN} ⊂ ∪{intX(Q−i (πi(y)) : y ∈ LN}.

Hence, all the hypotheses of Theorem 5.2 are satisfied. By Theorem 5.2, there exists
a point x̂ ∈ X such that Qi(x̂) = ∅(i ∈ I). By the definition of Qi, x̂ ∈ X\Fi, that is
for all i ∈ I, x̂i ∈ Bi(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅. This completes the proof. �

Remark 5.3. Theorem 5.3 greatly improves Theorem 2.2 of Hou [16] from three
aspects.
(i) The underlying space changes from topological vector space to abstract convex
space;
(ii) The preference correspondence Pi is an UA-majorized mapping instead of the
L ∗-majorized mapping;
(iii) The constraint correspondence Ai has transfer open lower section instead of
open.
Moreover, Theorem 5.3 also generalizes Theorem 3.1 of Yuan [38], Theorem 6.1 of
Yannelis and Prabhakar [36] under weaken hypotheses.
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