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Abstract. Let K be a nonempty, closed and convex subset of a uniformly convex real Banach space

E. Suppose that T : K → CB(K) is a multi-valued quasi-nonexpansive mapping. A Krasnoselskii-
type iteration sequence {xn} is constructed and shown to be an approximate fixed point sequence of

T , that is, lim
n→∞

dist(xn, Txn) = 0 holds. Convergence theorems are also proved under appropriate

additional conditions.
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1. Introduction

Iterative processes for nonexpansive mappings are the key tools in signal processing
and image restoration (see, e.g., Byrne [5]). Let T : K → K be a nonexpansive
mapping with nonempty fixed point set F (T ), K be a closed, convex nonempty subset
of a normed linear space E. Krasnoselskii [24] proved that if E is a uniformly convex
real Banach space, then for any x0 ∈ K fixed, the sequence {xn} generated by xn+1 =
1
2xn + 1

2Txn, n ≥ 0 converges strongly to a fixed point of T . More generally, for any
fixed element x0 ∈ K, Schaefer [33] extended the result of Krasnoselskii [24] by
considering the sequence {xn} generated by xn+1 = (1 − λ)xn + λTxn, n ≥ 0, λ ∈
(0, 1). Edelstein [13] observed that the result of Krasnoselskii [24] holds even in a
strictly convex real Banach space. The natural question of whether this result holds
in any Banach space more general than strictly convex real Banach space remained
open for many years. This question was answered in the affirmative by Edelstein
and O’Brien [12] where they showed that the sequence {‖xn − Txn‖} converges to 0
uniformly in any normed linear space provided K is bounded.
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Another scheme studied for approximating fixed points of nonexpansive mappings is
the Mann process: let x0 ∈ K be arbitrary but fixed,

xn+1 = (1− λn)xn + λnTxn, n ≥ 0, (1.1)

with λn ∈ (0, 1), lim
n→∞

λn = 0,
∑

λn =∞. Ishikawa [19] proved that for the sequence

{xn} generated by (1.1), with 0 ≤ λn ≤ b < 1, and
∑

λn =∞, lim
n→∞

‖xn−Txn‖ = 0

holds true in any Banach space provided {xn} is bounded.
Important generalizations of nonexpansive mappings which have been studied by var-
ious authors include the following:

I. The class of Lipschitz pseudo-contractive mappings introduced by Browder.
These mappings are intimately connected with the class of accretive operators
(see Browder [4], Kato [20]) which are connected with evolution equations.

II. The class of quasi-nonexpansive mappings which was introduced (in general
Banach spaces ) by Diaz and Metcalf [9].

Let K be a nonempty subset of E. A mapping T : K → K satisfying ‖Tx−Ty‖ ≤ ‖x−
y‖ for all x, y ∈ K is called a nonexpansive mapping. T is called quasi-nonexpansive
if (i) F (T ) 6= ∅ and (ii) ‖Tx − x∗‖ ≤ ‖x − x∗‖ for all x ∈ K, x∗ ∈ F (T ). It is clear
from this definition that every nonexpansive mapping with nonempty fixed point set
is quasi-nonexpansive. Suppose T satisfies the condition

‖Tx− Ty‖ ≤ a1‖x− y‖+ a2‖x− Tx‖+ a3‖y − Ty‖
+a4‖x− Ty‖+ a5‖y − Tx‖ ∀x, y ∈ K, (1.2)

with ai ≥ 0 and

5∑
i=1

ai < 1, then T is qusi-nonexpansive (see, e.g., (Hardy and Rogers

[17])). The following example [10] shows that the class of quasi-nonepansive mappings
contains properly the class of nonexpansive mappings with nonempty fixed point sets.
Example 1.1. ([10]) Let T : R→ R be defined by Tx = 1

2 sinx, x 6= 0, and T0 = 0.
For several years, the study of fixed point theory for multi-valued mappings has at-
tracted, and continues to attract, the interest of several mathematicians (see, for
example, Brouwer [3], Kakutani [16], Nash [28, 29], Geanakoplos [15], Nadler [27],
Downing and Kirk [11]). Interest in such studies stems, perhaps, mainly from the
usefulness of such fixed point theory in real-world applications, such as in Game The-
ory and Market Economy and in other areas of mathematics, such as in Non-Smooth
Differential Equations. For further details, see Chidume et al. [6].
Let D be a nonempty subset of a normed space E. The set D is called proximinal
(see e.g., [32, 30, 35]) if for each x ∈ E there exists u ∈ D such that

‖x− u‖ = inf{‖x− y‖ : y ∈ K} := dist(x,D).

Every nonempty, closed and convex subset of a real Hilbert space is proximinal. Let
CB(D), P (D) and K(D) denote the families of nonempty, closed and bounded subsets
of D, nonempty, proximinal and bounded subsets of D and nonempty compact subsets
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of D, respectively. The Hausdorff metric on CB(D) is defined by:

H(A,B) = max
{

sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)
}

for all A,B ∈ CB(D). Let T : D(T ) ⊆ E → CB(E) be a multi-valued mapping on
E. A point x ∈ D(T ) is called a fixed point of T if x ∈ Tx. The fixed point set of T
is denoted by F (T ) := {x ∈ D(T ) : x ∈ Tx}.
A multi-valued mapping T : D(T ) ⊆ E → CB(E) is called nonexpansive if

H(Tx, Ty) ≤ ‖x− y‖ ∀x, y ∈ D(T ). (1.3)

T is called quasi-nonexpansive if F (T ) 6= ∅ and

H(Tx, Tp) ≤ ‖x− p‖ ∀x ∈ D(T ), p ∈ F (T ). (1.4)

Let (X, ρ) be a metric space. A map T : X → K(X) is said to be ∗-nonexpansive [18]
if for all x, y ∈ X and ux ∈ Tx, with ρ(x, ux) = dist(x, Tx) there exists uy ∈ Ty with
ρ(y, uy) = dist(y, Ty) such that

ρ(ux, uy) ≤ ρ(x, y).

It is obvious that this notion reduces to the notion of nonexpansiveness for single-
valued mappings. However, for multi-valued mappings, ∗-nonexpansive mappings are
not comparable to nonexpansive mappings in general (see, e.g., [36]). Associated with
a map T : X → K(X) is the map PT : X → K(X) defined by PT (x) := {u ∈ Tx :
ρ(u, x) = dist(x, Tx)}. It is clear that from the definition of PT , PT (x∗) = {x∗} for
every fixed point x∗ of PT . It is also known that T is ∗-nonexpansive if and only if
PT is nonexpansive [2].
Several papers deal with the problem of approximating fixed points of multi-valued
nonexpansive mappings (see, for example [1, 21, 22, 32, 30, 35] and the references
therein) and their generalizations (see e.g., [8, 14]). Chidume et al. [6] proved strong
convergence theorems for strictly pseudo-contractive mappings, a proper superclass
of multi-valued nonexpansive mappings. For iterative approximation schemes of fixed
points for multi-valued maps on metric spaces, one can see Petruşel and Rus [31].
Kuhfittig [25] proved strong convergence result for a multi-valued mapping T which
is nonexpansive around a known fixed point. He generated a Krasnoselskii sequence
using the known fixed point and obtained strong convergence to additional fixed point.
More recently, Shahzad and Zegeye [34] proved strong convergence of the sequence of
Ishikawa-type iterates to a fixed point of a quasi-nonexpansive mapping on uniformly
convex Banach space. They extended and improved the results of Sastry and Babu
[32], Panyanak [30] and Son and Wang [35]. Furthermore, they proved the convergence
of Ishikawa-type sequence: x0 ∈ K fixed arbitrarily, αn, βn ∈ [0, 1],

yn = (1− βn)xn + βnzn, n ≥ 0, zn ∈ Txn,

xn+1 = (1− αn)xn + αnz
′
n, n ≥ 0, z′n ∈ Tyn,

to a fixed point of ∗-nonexpansive mapping.
Dotson [10] proved that lim

n→∞
‖xn − Txn‖ = 0 where T is a single-valued quasi-

nonexpansive mapping in the setting of a uniformly convex Banach space. Unlike in
the case of nonexpansive mappings, the following example of Chidume [7] shows that
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lim
n→∞

‖xn − Txn‖ = 0 does not hold for quasi-nonexpansive mappings in arbitrary

Banach space even when K is bounded, where {xn} is a Krasnoselskii sequence.
Example 1.2. (Chidume [7]) Let E := l∞ and B(0, 1) := {x ∈ l∞ : ‖x‖ ≤ 1}. Define

T : B(0, 1)→ B(0, 1)

by

Tx := {0, x21, x22, x23, · · · }
where x := {x1, x2, x3} ∈ l∞. Then (i) T is continuous, (ii) Tp = p if and only if
p = 0, (iii) ‖Tx − p‖ ≤ ‖x − p‖ for all x ∈ B(0, 1) and fixed point p and (iv) for all
n ≥ 0, there exists x ∈ B(0, 1) such that λ‖Txn−xn‖ = ‖Tn+1

λ x−Tnλ x‖ > λ2(1−λ)2,
for any λ ∈ (0, 1), where Tλ := (1−λ)I+λT with I being the identity map on B(0, 1).
Let K be a closed convex nonempty subset of a uniformly convex real Banach space
E and let T : K → CB(K) be a multi-valued quasi-nonexpansive mapping. It
is our purpose in this paper to prove that lim

n→∞
dist(xn, Txn) = 0 holds for quasi-

nonexpansive mappings T for which all its fixed points are strict fixed points (see,
e.g., [31]), i.e., Tx∗ = {x∗} for each fixed point x∗ of T , where {xn} is a Krasnoselskii
sequence.

2. Preliminaries

Lemma 2.1. (Xu [37]) Let E be a uniformly convex real Banach space and R > 0.
Then there exists a continuous, convex, strictly increasing function

g : [0,∞)→ [0,∞), g(0) = 0,

such that for all x, y ∈ B(0, R) := {u ∈ E : ‖u‖ < R} and λ ∈ (0, 1),

‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)g(‖x− y‖).

Lemma 2.2. (Xu [2]) Let X be a metric space and T : X → K(X) be a multi-valued
map. Then T is ∗-nonexpansive if and only if PT is nonexpansive.

Lemma 2.3. (Xu [2]) Let E be a uniformly convex real Banach space and let D be
a closed convex and bounded subset of E. Suppose T : D → K(D) is ∗-nonexpansive
multi-valued mapping. Then T has a fixed point.

3. Main results

We start this section by showing that the result of Edelstein [13] is easily extended to
the class of quasi-nonexpansive continuous mappings and for general λ ∈ (0, 1). We
use the method of Edelstein [13].

Theorem 3.1. Let K be a closed convex subset of a strictly convex real Banach space
E and T : K → K be a continuous quasi-nonexpansive mapping such that T (K) is
contained in a compact subset K1 of K. Then for each λ ∈ (0, 1) and for each x0 ∈ K,
the sequence {Tnλ x0}, where Tλ : K → K is defined by Tλx = ((1− λ)I + λT )x,
converges strongly to a fixed point of T .
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Proof. Clearly, the quasi-nonexpansiveness of T implies that of Tλ. Therefore, for
each x ∈ K \ F (T ), and x∗ ∈ F (T ),

‖Tλx− x∗‖ = ‖(1− λ)(x− x∗) + λ(Tx− x∗)‖ ≤ ‖x− x∗‖.

This implies ∥∥∥∥(1− λ)
(x− x∗)
‖x− x∗‖

+ λ
(Tx− x∗)
‖x− x∗‖

∥∥∥∥ ≤ 1.

Strict convexity of E and quasi-nonexpansiveness of T give∥∥∥∥(1− λ)
(x− x∗)
‖x− x∗‖

+ λ
(Tx− x∗)
‖x− x∗‖

∥∥∥∥ < 1.

Hence, for all x ∈ K \ F (T ), x∗ ∈ F (T ) we have,

‖Tλx− x∗‖ < ‖x− x∗‖. (3.1)

We note that {Tnλ x0} is contained in c̄o (K1 ∪ {x0}) which, by Mazur Theorem [26],
is compact. Therefore, {Tnλ x0} has a convergent subsequence {Tnj

λ x0} with limit
p ∈ K. By the quasi-nonexpansiveness of Tλ, we have that for any q ∈ F (T ) and for
any n ≥ 0,

‖Tn+1
λ x0 − q‖ ≤ ‖Tnλ x0 − q‖.

Hence, lim
n→∞

‖Tnλ x0−q‖ exists. Therefore, convergence of a subsequence of {Tnλ x0} to

an element of F (T ) implies the convergence of the whole sequence to the same element.
So, to prove the theorem, it suffices to show that the limit p of {Tnj

λ x0} belongs to
F (T ). We do this by contradiction. Suppose T (p) 6= p. Then no term of the sequence
{Tnλ x0} is a fixed point of T ; for if there exists N ≥ 1, such that TNλ x0 ∈ F (T ),
then Tnλ x0 = TNλ x0, ∀n ≥ N and so the whole sequence {Tnλ x0} converges to
TNλ x0 ∈ F (T ) which gives p ∈ F (T ), a contradiction.
Hence, from (3.1), for any member q ∈ F (T ) we have

‖Tn+1
λ x− q‖ < ‖Tnλ x− q‖, ∀n ≥ 1. (3.2)

By continuity of Tλ at p, setting r :=
1

2

(
‖p− q‖ − ‖Tλp− q‖

)
> 0, and B := {w ∈

K : ‖w−Tλ(p)‖ < r}, we obtain an open ball B′ centered at p such that Tλ(B′) ⊂ B.
Convergence of {Tnj

λ x0} to p guarantees the existence of k ≥ 1 such that T kλx0 ∈ B′.
So T k+1

λ x0 ∈ B. Using (3.2) we have for each i ≥ 1,

‖T k+iλ x0−q‖ < ‖T k+(i−1)
λ x0−q‖ < · · · < ‖T k+1

λ x0−q‖ ≤ ‖T k+1
λ x0−Tλp‖+‖Tλp−q‖.

Therefore,

‖T k+iλ x0 − q‖ < r + ‖Tλp− q‖ =
1

2

(
‖p− q‖+ ‖Tλp− q‖

)
.
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This now implies that for each i ≥ 1,

‖T k+iλ x0 − p‖ = ‖T k+iλ x0 − q + q − p‖
≥ ‖q − p‖ − ‖T k+iλ x0 − q‖

> ‖q − p‖ − 1

2

(
‖Tλp− q‖+ ‖p− q‖

)
=

1

2

(
‖p− q‖ − ‖Tλp− q‖

)
= r,

which contradicts the fact that {Tnj

λ x0} converges to p. Thus p ∈ F (T ) and the proof
is complete.

�

We now prove the main theorem of this paper.

Theorem 3.2. Let K be a nonempty, closed and convex subset of a uniformly con-
vex real Banach space E. Suppose that T : K → CB(K) is a multi-valued quasi-
nonexpansive mapping such that Tp = {p} for some p ∈ F (T ). Then for any fixed
x0 ∈ K and arbitrary λ ∈ (0, 1), define a sequence {xn} by

xn+1 = (1− λ)xn + λyn, n ≥ 0, (3.3)

where yn ∈ Txn. Then, lim
n→∞

dist(xn, Txn) = 0.

Proof. We first note that for any x, y, z ∈ K such that Ty = {z}, we have

H(Tx, Ty) = max

{
sup
u∈Tx

dist(u, Ty), sup
u∈Ty

dist(u, Tx)

}
= max{ sup

u∈Tx
‖u− z‖,dist(z, Tx)}

= sup
u∈Tx

‖u− z‖

≥ ‖u− z‖ ∀u ∈ Tx. (3.4)

We next show that {xn} is bounded. Let p ∈ F (T ) such that Tp = {p}. Then using
inequality (3.4) and the assumption on T we have

‖xn+1 − p‖ = ‖(1− λ)(xn − p) + λ(yn − p)‖
≤ (1− λ)‖xn − p‖+ λ‖yn − p‖
≤ (1− λ)‖xn − p‖+ λH(Txn, T yn)

≤ (1− λ)‖xn − p‖+ λ‖xn − p‖
= ‖xn − p‖, ∀n ≥ 0.

This implies that {xn} is bounded and, so {yn} is bounded. We also have that the
limit lim

n→∞
‖xn − p‖ exists.

To prove the assertion of the theorem, let R > 0 such that {xn}, {yn} are contained
in B(0, R). Then by Lemma 2.1, there exists a continuous, convex, and strictly
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increasing function g : [0,∞)→ [0,∞) with g(0) = 0 such that for all n ≥ 0 we have

‖xn+1 − p‖2 = ‖(1− λ)(xn − p) + λ(yn − p)‖2

≤ (1− λ)‖xn − p‖2 + λ‖yn − p‖2 − λ(1− λ)g (‖xn − yn‖)
≤ (1− λ)‖xn − p‖2 + λH (Txn, Tp)

2 − λ(1− λ)g (‖xn − yn‖)
≤ (1− λ)‖xn − p‖2 + λ‖xn − p‖2 − λ(1− λ)g (‖xn − yn‖)
= ‖xn − p‖2 − λ(1− λ)g (‖xn − yn‖) .

It then follows that

λ(1− λ)g (‖xn − yn‖) ≤ ‖xn − p‖2 − ‖xn+1 − p‖2, ∀n ≥ 0.

Since lim
n→∞

‖xn − p‖ exists and λ ∈ (0, 1), we have lim
n→∞

g (‖xn − yn‖) = 0. The fact

that g is strictly increasing and g(0) = 0, imply that lim
n→∞

‖xn − yn‖ = 0. Since

yn ∈ Txn, we have that lim
n→∞

dist(xn, Txn) = 0. This completes the proof. �

The following corollary follows.

Corollary 3.3. Let K be a nonempty, closed and convex subset of a uniformly convex
real Banach space E. Suppose that T : K → K is a quasi-nonexpansive mapping.
Then for any fixed x0 ∈ K and arbitrary λ ∈ (0, 1), define a sequence {xn} by

xn+1 = (1− λ)xn + λTxn. (3.5)

Then, lim
n→∞

‖xn − Txn‖ = 0.

A mapping T : K → CB(K) is called demicompact if, for any sequence {xn} in K,
{xn} bounded and dist(xn, Txn)→ 0 as n→∞ imply the existence of a convergent
subsequence {xnk

} of {xn}. We note that if K is compact, then every multi-valued
mapping T : K → CB(K) is demicompact.

Corollary 3.4. Let K be a nonempty, closed and convex subset of a uniformly convex
real Banach space E and let T : K → CB(K) be a multi-valued quasi-nonexpansive
mapping such that Tp = {p} for all p ∈ F (T ). Suppose that T is demicompact and
continuous with respect to the Hausdorff metric. Let {xn} be a sequence generated by
(3.3). Then, the sequence {xn} converges strongly to a fixed point of T .

Proof. From Theorem 3.2, we have that lim
n→∞

dist(xn, Txn) = 0. Since {xn} is

bounded and T is demicompact, there exists a subsequence {xnk
} of {xn} such

that xnk
→ q as k → ∞ for some q ∈ K. Since T is continuous, we also have

dist(xnk
, Txnk

) → dist(q, T q) as k → ∞. Therefore, dist(q, T q) = 0 and so, by
closedness of Tq, q ∈ F (T ). Setting p = q in the proof of Theorem 3.2, it follows from
(3.5) that lim

n→∞
‖xn− q‖ exists. So, {xn} converges strongly to q. This completes the

proof. �

Corollary 3.5. Let K be a nonempty, compact and convex subset of uniformly convex
real Banach space E and T : K → CB(K) be a multi-valued mapping such that
Tp = {p} for all p ∈ F (T ). Suppose that T is continuous with respect to the Hausdorff
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metric. Let {xn} be a sequence generated by (3.3). Then, the sequence {xn} converges
strongly to a fixed point of T .

Proof. The proof follows from Corollary 3.4 and the fact that compactness of K
implies demicompactness of T . �

Corollary 3.6. Let K be a nonempty, closed and convex subset of a uniformly convex
real Banach space E and T : K → CB(K) be a multi-valued nonexpansive mapping
with a nonempty fixed point set F (T ) such that Tp = {p} for all p ∈ F (T ). Suppose
that T is demicompact. Let {xn} be a sequence generated by (3.3). Then, the sequence
{xn} converges strongly to a fixed point of T .

Proof. Since T is nonexpansive with nonempty fixed point set, it is quasi-nonexpansive
and continuous with respect to the Hausdorff metric. So, the proof follows from
Corollary 3.4. �

A mapping T : K → CB(K) is said to satisfy Condition (I) if there exists a nonde-
creasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such
that

dist(x, T (x)) ≥ f(dist(x, F (T )) ∀x ∈ K.

Corollary 3.7. Let K be a nonempty, closed and convex subset of a uniformly con-
vex real Banach space E and T : K → P (K) be a multi-valued quasi-nonexpansive
mapping such that Tp = {p} for all p ∈ F (T ). Suppose that T satisfies condition
(I). Let {xn} be a sequence generated by (3.3). Then, the sequence {xn} converges
strongly to a fixed point of T .

Proof. From Theorem 3.2, we have that lim
n→∞

dist(xn, Txn) = 0. Using the fact that

T satisfies condition (I), it follows that lim
n→∞

f (dist (xn, F (T ))) = 0 which in turn,

using the nondecreasing property of f , gives lim
n→∞

dist (xn, F (T )) = 0. Thus there

exist a subsequence {xnk
} of {xn} and a sequence {pk} ⊂ F (T ) such that

‖xnk
− pk‖ <

1

2k
∀ k.

By setting p = pk and following the same arguments as in the proof of Theorem 3.2,
we obtain from inequality (3.5) that

‖xnk+1
− pk‖ ≤ ‖xnk

− pk‖ <
1

2k
.

We now show that {pk} is a Cauchy sequence in K. Notice that

‖pk+1 − pk‖ ≤ ‖pk+1 − xnk+1
‖+ ‖xnk+1

− pk‖

<
1

2k+1
+

1

2k

<
1

2k−1
.
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This shows that {pk} is a Cauchy sequence in K and thus converges strongly to some
q ∈ K. Using the fact that T is quasi-nonexpansive and pk → q, we have

dist(pk, T q) ≤ H(Tpk, T q)

≤ ‖pk − q‖,
so that dist(q, T q) = 0 and thus q ∈ Tq. Therefore, q ∈ F (T ) and {xnk

} converges
strongly to q. Setting p = q in the proof of Theorem 3.2, it follows from inequality
(3.5) that lim

n→∞
‖xn− q‖ exists. So, {xn} converges strongly to q. This completes the

proof. �

Corollary 3.8. Let D be a nonempty, closed and convex subset of a uniformly convex
real Banach space E and let T : K → K(D) be a multi-valued ∗-nonexpansive mapping
with nonempty fixed point set F (T ). Suppose λ ∈ (0, 1) and let {xn} be a sequence
defined by x0 ∈ D fixed and

xn+1 = (1− λ)xn + λyn, n ≥ 0, (3.6)

where yn ∈ PTxn. Then, lim
n→∞

dist(xn, PTxn) = 0. Moreover, if PT is demicompact

or it satisfies condition (I), then {xn} converges to a fixed point of T .

Proof. Using the fact that T is ∗-nonexpansive, we obtain by virtue of Lemma 2.2
that PT is nonexpansive. Since F (T ) 6= ∅ and F (T ) = F (PT ), it follows that PT is
quasi-nonexpansive. The results then follow from Theorem 3.2, Corollaries 3.4 and
3.7. �

Corollary 3.9. Let D be a nonempty, closed, convex and bounded subset of a uni-
formly convex real Banach space E and let T : K → K(D) be a multi-valued ∗-
nonexpansive mapping. Suppose λ ∈ (0, 1) and let {xn} be a sequence defined by
x0 ∈ D fixed and

xn+1 = (1− λ)xn + λyn, n ≥ 0, (3.7)

where yn ∈ PTxn. Then, lim
n→∞

dist(xn, PTxn) = 0. Moreover, if PT is demicompact

or it satisfies condition (I), then {xn} converges to a fixed point of T .

Proof. Using Lemma 2.3, the proof follows from Corollary 3.8. �

Ishikawa [19] proved that the if the Mann sequence {xn} is bounded, then it is an
approximate fixed point sequence. Observe that in this result of Ishikawa, one can
choose λn = λ ∈ (0, b], 0 < b < 1, ∀n ≥ 0 (which will not be the case in the Mann
process where limλn = 0 is required). If a nonexpansive mapping has a fixed point,
x∗ say, it is trivial to see that the sequence {‖xn − x∗‖} is monotone decreasing and
so {xn} is bounded. Consequently, to approximate a fixed point of a nonexpansive
mapping (using the Mann-type sequence) when existence is known, it can be assumed
by the above result of Ishikawa that lim

n→∞
‖xn−Txn‖ = 0. Also, Edelstein and O’Brien

[12] proved that for a nonexpansive map T : K → K, where K is a bounded convex
subset of an arbitrary normed linear space, the Krasnoselskii sequence always yields
lim
n→∞

‖xn − Txn‖ = 0 uniformly. Example 2 shows that the above result does not

hold if T is a quasi-nonepansive mapping. We have noted that the results holds for
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single-valued quasi-nonexpansive mappings in uniformly convex real Banach spaces
(Dotson [10]). This brings us to the following open question.
Question. Let K be nonempty closed convex subset of a real Banach space E and let
T : K → K be a quasi-nonexpansive continuous mapping. Let {xn} be defined by
x0 ∈ K,

xn+1 = (1− λ)xn + λTxn, n ≥ 0.

Is {xn} an approximate fixed point sequence in any Banach space E more general
than uniformly convex Banach spaces?

Remark 1. Theorem 3.2 extends this result of Dotson to the multi-valued quasi-
nonexpansive mappings on uniformly convex real Banach spaces.
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