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1. Introduction

In [1] it is considered the following problem

Dr
cu(x, y) ∈ F (x, y, u(x, y), G(x, y, u(x, y))) a.e. (x, y) ∈ Π, (1.1)

u(x, 0) = ϕ(x), u(0, y) = ψ(y) (x, y) ∈ Π, (1.2)

where Π = [0, a] × [0, b], ϕ(.) : [0, a] → Rn, ψ(.) : [0, a] → Rn are given absolutely
continuous functions with ϕ(0) = ψ(0), F (., .) : Π × Rn × Rn → P(Rn), G(., .) :
Π×Rn → P(Rn) are given set-valued maps and Dr

c is the Caputo fractional derivative
of order r = (r1, r2) ∈ (0, 1]× (0, 1].

The authors state that they prove the arcwise connectedness of the solution set of
this problem. As we can see afterwards, in general, this is not true.

Since a continuous function u(., .) : Π → Rn is a solution of problem (1.1)-(1.2) if
and only if u(., .) is a solution of the problem

u(x, y) = µ(x, y) +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1ξ(s, t)dsdt, (1.3)

ξ(x, y) ∈ F (x, y, u(x, y), G(x, y, u(x, y))) a.e. (Π), (1.4)

where µ(x, y) = ϕ(x) +ψ(y)−ϕ(0) and Γ(.) is Euler’s Gamma function, it is enough
to obtain the desired properties for the solution set of problem (1.3)-(1.4).
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The same authors consider in [2] the similar problem

u(x, y) = µ(x, y) +
1

Γ(r1)Γ(r2)

∫ a

0

∫ b

0

(x− s)r1−1(y − t)r2−1f(x, y, s, t, ξ(s, t))dsdt,

(1.5)
ξ(x, y) ∈ F (x, y, u(x, y), G(x, y, u(x, y))) a.e. (Π). (1.6)

Since the crossing from problem (1.3)-(1.4) to problem (1.5)-(1.6) is obvious and
since the result in [2] contains the same errors as in [1], in what follows we are
concerned only with problem (1.3)-(1.4).

The paper is organized as follows: in Section 2 we present some definitions and pre-
liminary results needed for our considerations and in Section 3 we present a discussion
of the result in [1].

2. Preliminaries

Let (X, d) be a metric space. The Pompeiu-Hausdorff distance of the closed subsets
A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},
where d(x,B) = inf{d(x, y); y ∈ B}. Let Z be a metric space, let X be a nonempty
set and let F : X → P(Z) be a set-valued map. The multifunction F is called
Hausdorff continuous if for any x0 ∈ X and every ε > 0 there exists δ > 0 such that
x ∈ X, dX(x, x0) < δ implies dH(F (x), F (x0)) < ε. A nonempty set K ⊂ L1(T,X) is
called decomposable if, for every u, v ∈ K and every A ∈ F , one has χA.u+χT\A.v ∈
K where χB , B ∈ F indicates the characteristic function of B.

We denote by C(Π,Rn) the Banach space of all continuous functions u : Π → Rn
endowed with the norm

|u|C = sup
(x,y)∈Π

||u(x, y)||.

Given a continuous strictly positive function d : Π → R we denote by L1(Π,Rn) the
Banach space of all (equivalence classes of) Lebesgue measurable functions σ : Π →
Rn, endowed with the norm

|σ|1 =

∫ ∫
Π

d(x, y)||σ(x, y)||dxdy.

By M we mean the linear subspace of C(Π,Rn) consisting of all µ ∈ C(Π,Rn) such
that there exist continuous functions ϕ(.) : [0, a] → Rn, ψ(.) : [0, a] → Rn with
ϕ(0) = ψ(0) satisfying µ(x, y) = ϕ(x) + ψ(y)− ϕ(0). M, equipped with the norm of
C(Π,Rn), is a separable Banach space.
Definition 2.1. a) The left-sided mixed Riemann-Liouville integral of order r =
(r1, r2) ∈ (0, 1]× (0, 1] of f(., .) ∈ L1(Π,Rn) is defined by

(Ir0f)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t)dsdt,

where Γ(.) is the (Euler’s) Gamma function defined by

Γ(α) =

∫ ∞
0

tα−1e−tdt, α > 0.
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b) The Caputo fractional-order derivative of order r of f(., .) ∈ L1(Π,Rn) is defined
by

(Dr
cf)(x, y) =

(
I1−r
0

∂2f

∂x∂y

)
(x, y).

In the definition above by 1− r we mean (1− r1, 1− r2) ∈ (0, 1]× (0, 1].
Definition 2.2. A function u(., .) ∈ C(Π,Rn) is said to be a solution of problem
(1.1)-(1.2) if there exists f(., .) ∈ L1(Π,Rn) such that

f(x, y) ∈ F (x, y, u(x, y), G(x, y, u(x, y))) a.e. (Π), (2.1)

Dr
cu(x, y) = f(x, y) (x, y) ∈ Π, (2.2)

u(x, 0) = ϕ(x), u(0, y) = ψ(y) (x, y) ∈ Π, (2.3)

where F (x, y, u,G(x, y, u)) = ∪v∈G(x,y,u)F (x, y, u, v).
Lemma 2.3. ([1]) u(., .) ∈ C(Π,Rn) is a solution of problem (2.2)-(2.3) if and only
if u(., .) satisfies

u(x, y) = µ(x, y) + (Ir0f)(x, y), (x, y) ∈ Π,

where µ(x, y) = ϕ(x) + ψ(y)− ϕ(0).
We denote by S(µ) the solution set of problem (1.3)-(1.4).
The key tool in the attempt of proving the result in [1] is the next result of Marano

and Staicu, concerning the arcwise connectedness of the fixed point set of nonclosed
nonconvex contractions.

Let (T,F , µ) be a finite, positive, nonatomic measure space, S a separable Banach
space, let (X, |.|X) be a real Banach space and E = L1(T,X).
Lemma 2.4. ([5]) Assume that φ : S × E → P(E) and ψ : S × E × E → P(E)
are Hausdorff continuous multifunctions with nonempty, closed, decomposable values,
satisfying the following conditions

a) There exists L ∈ [0, 1) such that, for every s ∈ S and every u, u′ ∈ E,

dH(φ(s, u), φ(s, u′)) ≤ L|u− u′|E .
b) There exists M ∈ [0, 1) such that L + M < 1 and for every s ∈ S and every

(u, v), (u′, v′) ∈ E × E,

dH(ψ(s, u, v), ψ(s, u′, v′)) ≤M(|u− u′|E + |v − v′|E).

Set Fix(Γ(s, .)) = {u ∈ E;u ∈ Γ(s, u)}, where Γ(s, u) = ψ(s, u, φ(s, u)), (s, u) ∈
S × E. Then

1) For every s ∈ S the set Fix(Γ(s, .)) is nonempty and arcwise connected.
2) For any si ∈ S, and any ui ∈ Fix(Γ(s, .)), i = 1, ..., p there exists a continuous

function γ : S → E such that γ(s) ∈ Fix(Γ(s, .)) for all s ∈ S and γ(si) = ui, i =
1, ..., p.

The next technical result is due to De Blasi, Pianigiani and Staicu [4].
Lemma 2.5. Let ξ ∈ (0, 1) and let N : Π → R be a positive integrable function.
Then there exists a continuous strictly positive function d : Π → R which, for every
(x, y) ∈ Π, satisfies ∫ ∫

R(x,y)

N(ξ, η)d(ξ, η)dξdη = ξ(d(x, y)− 1), (2.4)
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where R(x, y) = [x, a]× [y, b].

3. A discussion of the result in [1]

In this section we discuss the unique result in [1]; namely, Theorem 4.2, whose
statement follows in our ”Theorem 3.2”.
Hypothesis 3.1. Let F : Π × Rn × Rn → P(Rn) and G : Π × Rn → P(Rn) be two
set-valued maps with nonempty closed values, satisfying the following assumptions

i) The set-valued maps (x, y)→ F (x, y, u, v) and (x, y)→ G(x, y, u) are measurable
for all u, v ∈ Rn.

ii) There exists l ∈ L1(Π,R) such that, for every u, u′ ∈ Rn,

dH(G(x, y, u), G(x, y, u′)) ≤ l(x, y)||u− u′|| a.e. (Π).

iii) There exist m ∈ L1(Π,R) and η ∈ [0, 1) such that, for every u, v, u′, v′ ∈ Rn,

dH(F (x, y, u, v), F (x, y, u′, v′)) ≤ m(x, y)||u− u′||+ η||v − v′|| a.e. (Π).

iv) There exist f1, f2 ∈ L1(Π,R) such that

d({0}, F (x, y, {0}, {0})) ≤ f1(x, y), d({0}, G(x, y, {0})) ≤ f2(x, y) a.e. (Π).

Theorem 3.2. Assume that Hypothesis 3.1 is satisfied. Then,
1) For every µ ∈M, the solution set S(µ) of (1.1)-(1.2) is nonempty and arcwise

connected in the space C(Π,Rn).
2) For any µi ∈ M and any ui ∈ S(µi), i = 1, ..., p, there exists a continuous

function s :M→ C(Π,Rn) such that s(µ) ∈ S(µ) for any µ ∈M and s(µi) = ui, i =
1, ..., p.

3) The set S = ∪µ∈MS(µ) is arcwise connected in C(Π,Rn).

Several remarks are in order.
Remark 3.3. If r1 = r2 = 1 then problem (1.1)-(1.2) reduces to the ”classical”
Darboux problem for hyperbolic differential inclusions of the form

uxy(x, y) ∈ F (x, y, u(x, y), G(x, y, u(x, y))) a.e. (x, y) ∈ Π, (3.1)

u(x, 0) = ϕ(x), u(0, y) = ψ(y) (x, y) ∈ Π, (3.2)

The arcwise connectedness of the solution set of problem (3.1)-(3.2) was obtained
in [3] under Hypothesis 3.1 and under the hypothesis that ξ ∈ (0, 1) is fixed such that
2ξ + η < 1 and the mapping d(., .) which defines the norm on L1(Π,Rn) is provided
by Lemma 2.5 and, obviously, depends on ξ.

Even if it is not specified in [1], the wish of the authors was to extend the result
in [3] to problem (1.1)-(1.2). Unfortunately, because of a superficial understanding of
the proof in [3], this extension fails.
Remark 3.4. At the beginning of the proof of Theorem 4.2 in [1], following [3], there
are taken ξ ∈ (0, 1) such that 2ξ + η < 1 and the corresponding mapping d(., .) given
by Lemma 2.5.

If in [3] such a choice is needed in order to obtain that certain Lipschitz constant
is less than 1, the choice in [1] is unjustified since it is not used, in any way, in the
next computations of the proof.
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Remark 3.5. Consider the set-valued maps α :M×L1(Π,Rn)→ P(L1(Π,Rn)) and
β :M× L1(Π,Rn)× L1(Π,Rn)→ P(L1(Π,Rn)) given by

α(µ, u) = {v ∈ L1(Π,Rn); v(x, y) ∈ G(x, y, uµ(x, y)) a.e. (Π)},
β(µ, u, v) = {w ∈ L1(Π,Rn); w(x, y) ∈ F (x, y, uµ(x, y), v(x, y)) a.e. (Π)},

where uµ(x, y) = µ(x, y) + (Ir0u)(x, y).
The crucial step of the proof consists in showing that these set-valued maps verify

the hypothesis of Lemma 2.4, especially the fact that the sum between the Lipschitz
constant (with respect to the second variable) of α and the Lipschitz constant (with
respect to the second and third variable) of β is less than 1.

In [1] is given an estimate of the Lipschitz constant of α. More exactly, this
Lipschitz constant is estimated as

L(r3) :=
ξr3N∗a(ω1+1)(1−r3)b(ω2+1)(1−r3)

(ω1 + 1)(1−r3)(ω2 + 1)(1−r3)Γ(r1)Γ(r2)
, (3.1)

with 0 < r3 < min{r1, r2},

ω1 =
r1 − 1

1− r3
, ω2 =

r2 − 1

1− r3
,

N∗ = sup
(x,y)∈Π

(N(x, y))
1−r3
r3 ,

N(x, y) = max{l(x, y),m(x, y)}, (x, y) ∈ Π.

Surprisingly, the Lipschitz constant of β is not computed!
If the estimates (3.1) are correct, then the Lipschitz constant of β follows to be

L(r3) + η. Therefore, Lemma 2.4 may be applied and Theorem 4.2 in [1] is true if, in
addition, L(r3) + L(r3) + η = 2L(r3) + η < 1.

Consequently, an open problem is: if (or when) one may found r3 such that 0 <
r3 < min{r1, r2} and 2L(r3) + η < 1?
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