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1. Introduction

There are examples in literature which show that some principles used in order to
prove theorems for Banach spaces can be used in more abstract settings. For instance
in [2] the authors prove that the main results about some almost additive maps (i.e.
they can be approximate by additive maps) on Banach spaces can be extended to
maps defined on semigroups. Conversely, some results proved for some very abstract
structures can be used to derive classical results about Banach spaces. For instance,
Baranga applied in [1] the Tarski-Kantorovitch Theorem stated on some partial or-
dered sets in order to prove the Banach Contraction Principle, even the standard proof
for the Banach Contraction Principle uses standard properties of Banach spaces. In
the present paper we apply this strategy in order to obtain some information about
fixed points of some maps defined on abelian groups.

We will prove in Proposition 2.6 and Proposition 2.7 that the Banach Contrac-
tion Principle can be stated for torsion-free abelian groups which are complete and
Hausdorff in the p-adic topology (where p is a fixed prime). These results cannot be
extended to general abelian groups, cf. Remark 2.9.

In this paper all abelian groups are additive abelian groups, and the letter p will
denote a fixed prime number. If G is an abelian group and n ∈ N then nG = {nx |
x ∈ G} is a subgroup of G. All unexplained notions and results can be consulted in
[3] and [5].
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2. Banach contraction principle for abelian groups

Let G be an abelian group and let p be a prime. We recall that the p-adic topology
defined on G has a basis of neighborhoods for 0 the set {pnG | n ∈ N} and the addition
map is additive. This topological space is Hausdorff if and only if

⋂
n∈N pnG = 0, and

every group which is complete and Hausdorff in the p-adic toplogy is a Jp-module,
where Jp is the ring of p-adic integers.

Moreover, we can associate to every x ∈ G its p-height which is defined as the
positive integer |x|p with the property x ∈ p|x|pG \ p|x|p+1G, if such an integer exists.
If x ∈

⋂
n∈N pnG we define |x|p =∞. We recall that we use the convention ∞+ k =

k+∞ =∞. Moreover, a torsion-free group is p-reduced if it has no non-zero elements
of infinite p-height. Therefore, all torsion-free groups which are Hausdorff as p-adic
spaces are p-reduced.

The basic properties of p-heights are the following:

Lemma 2.1. Let G be an abelian group, and let p be a prime. The following are
true:

(1) If (q, p) = 1 then |qx|p = |x|p;
(2) If x ∈ G then |px|p ≥ |x|p + 1;
(3) If x, y ∈ G then |x + y|p ≥ min{|x|p, |y|p}.
(4) If x, y ∈ G and |x|p 6= |y|p then |x + y|p = min{|x|p, |y|p}.

Using a similar idea as that used in the definition of contraction maps defined on
Banach spaces, see [5], we introduce a notion of contraction which is connected to the
p-adic topology associated to a torsion-free abelian group.

Let G be a torsion free abelian group and U ⊆ G a nonempty subset of G. We say
that a map f : G→ G is a U -contraction if f(U) ⊆ U and

|f(x)− f(y)|p ≥ |x− y|p + 1

for all x, y ∈ U .
The reader can verify without many efforts the following basic property:

Lemma 2.2. Let G be a torsion-free abelian group and U ⊆ G. If f and g are
U -contractions then f ◦ g is a U -contraction.

Remark 2.3. Let G be a torsion-free abelian group, and let f : G → G be a U -
contraction for a subset U ⊆ G. Fix an element x ∈ U .

If |f(x)|p < |x|p then

|f2(x)− f(x)|p > |f(x)|p + 1 > min{|f2(x)|p, |f(x)|},
and it follows that |f2(x)|p = |f(x)|p.

If |f(x)|p = |x|p, suppose |f2(x)|p 6= |f(x)|p. Then

|f(x)|p ≥ min{|f2(x)|p, |f(x)|p} = |f2(x)− f(x)|p ≥ |f(x)− x|p + 1

≥ min{|f(x)|p, |x|p}+ 1 ≥ |f(x)|p + 1,

a contradiction. It follows that |f2(x)|p = |f(x)|p.
Therefore, we can assume w.l.o.g. that the restriction f|U does not decrease the

p-heights, i.e. |x|p ≤ |f(x)|p for all x ∈ U .
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Lemma 2.4. Let G be a p-reduced torsion free abelian group and U ⊆ G a nonempty
subset of G. If f : G → G is a U -contraction such that f|U does not decrease the
p-heights. Then

|fn(x)− fm(y)|p ≥ min{|x|p, |y|p}+ m

for all x, y ∈ U and all 0 < m < n ∈ N.

Proof. In order to prove this we will use the induction on m.
For m = 1 we have

|fn(x)− f(y)|p ≥ |fn−1(x)− y|p + 1

≥ min{|fn−1(x)|p, |y|p}+ 1.

Since f do not decrease the p-heights, it follows that

|fn(x)− f(y)|p ≥ min{|x|p, |y|p}+ 1.

Suppose that |fn(x)− fm(y)|p ≥ min{|x|p, |y|p}+ m for a fixed m and all n > m.
If n > m + 1 we obtain, in the same way as before,

|fn(x)− fm+1(y)|p = |f(fn−1(x))− f(fm(y))|p ≥ |fn−1(x)− fm(y)|p + 1

≥ min{|x|p, |y|p}+ m + 1,

and the induction step is complete. �

Using this we can find the set of fixed points of f which lie in U .

Remark 2.5. Before we state the main result of the paper, let us note that in the
hypotheses of the previous lemma, if 0 ∈ U then |f(x)|p ≥ |x|p + 1 for all x ∈ U , so 0
is the only fixed point of f which belongs to U .

Proposition 2.6. Let G be a p-reduced torsion free abelian group and U ⊆ G a
nonempty subset of G. If f : G → G is a U -contraction such that f|U does not
decrease the p-heights, then⋂

n∈N fn(U) = {x ∈ U | f(x) = x},
and this set has at most one element.

Proof. Suppose that x, y ∈ U are fixed points for f . Since f is a U -contraction we
obtain |x − y|p ≥ |x − y|p + 1, and this is possible only if the p-height of x − y is
infinite. But G is p-reduced and torsion-free, and this implies x− y = 0.

Let z ∈
⋂

n∈N fn(U). Then for every n ∈ N there exists xn ∈ U such that fn(xn) =
z. If we choose n ∈ N and we evaluate the p-height of f(z)−z we obtain, using Lemma
2.4,

|f(z)− z|p = |fn+1(xn)− fn(xn)|p ≥ |xn|p + n.

Then |f(z) − z|p = ∞. But 0 is the only element of infinite p-height, since G is
p-reduced. It follows that f(z) = z.

Then
⋂

n∈N fn(U) ⊆ {x ∈ U | f(x) = x}. Since the converse inclusion is obvious,
the proof is complete. �

This result suggests us that it can be useful to study the sequences (fn(xn))n∈N,
where xn ∈ U .
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Proposition 2.7. Let G be a p-reduced torsion free abelian group and U ⊆ G a
nonempty subset of G. If f : G → G is a U -contraction such that f|U does not
decrease the p-heights, the following statements are true:

(1) For every x ∈ U the sequence (fn(x))n>0 is Cauchy in the p-adic topology.
(2) If G is reduced, x ∈ U and x∗ is the limit in the p-adic topology for the

sequence (fn(x))n>0 then f(x∗) = x∗.
(3) If G is reduced, U = G \ {0} and x∗ is the limit in the p-adic topology for the

sequence (fn(x))n>0 then x∗ = 0.

Proof. (1) Using Lemma 2.4 we obtain that

|fn(x)− fm(x)|p ≥ |x|p + m

for all 0 < m < n ∈ N, and the conclusion is now obvious.
(2) In order to prove that x∗ is a fixed point for f , it is enough to prove that f(x∗)

is also a limit for the sequence (fn(x))n.
Let us fix a positive integer k. It follows that there exists an integer u > 0 such

that fv(x)− x∗ ∈ pkG for all integers v ≥ u. Using the hypothesis we obtain

|fv+1(x)− f(x∗)|p ≥ |fv(x)− x∗|p + 1 ≥ k + 1,

hence f(x∗) is also a limit for (fn(x))n. Since our topological space is Hausdorff, it
follows that f(x∗) = x∗.

(3) Suppose that 0 6= x∗ ∈ G. Note that the p-height of x∗ is finite, and let
y∗ ∈ G be the (unique) element of G such that p|x|py = x∗. It is not hard to see that
y ∈ G \ pG, so |y|p = 0.

Applying the hypothesis we obtain that the inequality

|f(pz)− f(z)|p ≥ |pz − z|p + 1 = |z|p + 1

is valid for all z ∈ U such that pz ∈ U .
For the case z = y we obtain |f(py) − f(y)|p ≥ 1. If |f(py)|p > |f(y)|p then we

obtain |f(y)|p ≥ 1, and it follows that |f(x∗)|p > |x∗|p, a contradiction. Therefore
|f(py)|p = |f(y)|p. We can repeat the same steps for z = py, and we obtain

|f(p2y)|p = |f(py)|p = |f(y)|p.

If we continue in this way, we obtain |f(x)|p = |f(pky)|p for all k. But this implies
the f decrease some heights, a contradiction. �

Example 2.8. Let G be a p-reduced torsion-free group. Fix a nonzero element
g ∈ G \ pG, and we consider the set U = g + pG. It is easy to prove that the map

f : G→ G, f(x) = g + px

is a U -contraction such that f|U does not decrease the p-heights. If the sum
∑

n>0 p
ng

exists in G (for instance, in the case G is algebraically compact) then

g∗ = g +
∑
n>0

png

is a fixed point of f .
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Remark 2.9. If in the above example p > 2 and we suppose that G has elements of
order p− 1 then every solution of the equation (1− p)x = g is a fixed point for f .

Remark 2.10. The proof of Proposition 2.7 suggests us that we can also consider
a theory of (weakly) Picard operators associated to maps defined on abelian groups.
Recall that an operator f : X → X defined on a metric space (X, d) is called weakly
Picard if for every x ∈ X the sequence (fn(x))n is convergent and the limit is a fixed
point of f , [4]. It follows that the maps studied in Proposition 2.7 have a similar
property. Let f : G→ G be a map which does not decrease the heights. We say that
x ∈ G is a a weakly Picard point associated to f if the sequence (fn(x))n is a Cauchy
sequence with respect the p-adic topology. It would be nice to have more information
about the set of all weakly Picard points associated to f , but standard computations
show that this is not possible without some additional hypotheses.
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