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1. Introduction

The differential equations and variational problems with nonstandard growth con-
ditions have been studied in recent years. Some results on these problems have been
obtained. For example, we refer to [6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 26, 27, 29]
and references therein.

In the last decade, the second order differential systems driven by p-Laplacian op-
erators (or p-Laplacian-like operators) have attracted increasing interest. Many works
were carried out with various techniques employed, such as Pino-Elgueta-Manasevich
[23], Manasevich-Mawhin [21], Zhang [28], Aizicovici-Papageorgiou-Staicu [1] with the
Leray-Schauder degree, Kyritsi-Matzakos-Papageorgiou [19], Papalini [22], Zhang-Li
[30] with fixed points of the multivalued maps, Bader-Papageorgiou [4], Papageorgiou-
Staicu [25] with the method of upper-lower solutions etc.

The goal of this paper is to extend the works of Del Pino-Elgueta-Manasevich [23]
and Zhang [28] to a larger class of differential inclusion problems, which involve the
p(x)-Laplacian, that is{

− div(|∇u|p(x)−2∇u) ∈ F (x, u(x)), in Ω,

u(x) = 0, on ∂Ω,
(P )

where Ω is bounded smooth domain in RN , p(x) ∈ C(Ω), 1 < p− ≤ p(x) < +∞ and
F : Ω× R→ 2R\∅ is a multifunction.

Our method will be based on the techniques from multivalued analysis and non-
linear analysis. For the convenience of the readers, in the next section we recall the
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basic notions and results from these areas that we will need in the sequel. For further
details we refer to the books of Barbu [2] and Hu-Papageorgiou [18].

2. Preliminary results

In this section we first review some facts on variable exponent spaces Lp(x)(Ω) and
W k,p(x)(Ω). We refer [12] for the details.

Let Ω and p be as in Section 1. Denote by S(Ω) the set of all measurable real
functions defined on Ω. Note that two measurable functions are considered as the
same element of S(Ω) when they are equal almost everywhere.

Define the variable exponent Lebesgue space Lp(x)(Ω) by

Lp(x)(Ω) = {u ∈ S(Ω) :

∫
Ω

|u(x)|p(x)dx < +∞},

with the norm |u|Lp(x)(Ω) = |u|p(x) = inf{λ > 0 :
∫

Ω
|u(x)
λ |

p(x)dx ≤ 1}, and the variable

exponent Sobolev space W 1,p(x)(Ω) by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},

with the norm ‖u‖ = |u|p(x) + |∇u|p(x).

Denote by W
1,p(x)
0 (Ω) the closure of C∞0 (Ω) in W 1,p(x)(Ω). |∇u|p(x) is an equiv-

alent norm on W
1,p(x)
0 (Ω). The spaces Lp(x)(Ω), W 1,p(x)(Ω) and W

1,p(x)
0 (Ω) are all

separable and reflexive Banach space(see [12]).

Hereafter, let p∗(x) =

{
Np(x)
N−p(x) , p(x) < N,

+∞, p(x) ≥ N.
Lemma 2.1. [12]

(1) Poincaré inequality in W
1,p(x)
0 (Ω) holds, that is, there exists a positive constant

C such that

|u|p(x) ≤ C|∇u|p(x),∀u ∈W
1,p(x)
0 (Ω).

(2) The conjugates space of Lp(x)(Ω) is Lq(x)(Ω), where 1
p(x) + 1

q(x) = 1. For any

u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω),∫
Ω

|uv|dx ≤
(

1

p−
+

1

q−

)
|u|p(x)|v|q(x).

(3) If q ∈ C(Ω) and 1 < q(x) < p∗(x) for any x ∈ Ω, then the embedding from

W
1,p(x)
0 (Ω) to Lq(x)(Ω) is compact and continuous.

Lemma 2.2. [12] If we denote ρ(u) =
∫

Ω
|u(x)|p(x)dx, ∀u ∈W 1,p(x), then

(1) for u 6= 0, |u|p(x) = λ⇔ ρ(uλ ) = 1;
(2) |u|p(x) < 1(= 1, > 1)⇔ ρ(u) < 1(= 1, > 1);

(3) |u|p(x) > 1⇒ |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x),

|u|p(x) < 1⇒ |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x);

(4) |u|p(x) → 0⇔ ρ(u)→ 0, |u|p(x) →∞⇔ ρ(u)→∞.
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Consider the following function:

J(u) =

∫
Ω

1

p(x)
|∇u|p(x)dx, u ∈W 1,p(x)

0 (Ω).

We know that (see [5]), J ∈ C1(W
1,p(x)
0 ,R) and p(x)−Laplacian operator −∆p(x)u =

−div(|∇u|p(x)−2∇u) is the derivative operator of J in the weak sense. We denote

A= J ′ : W
1,p(x)
0 (Ω)→ (W

1,p(x)
0 (Ω))∗, then

〈A(u), v〉 =
∫

Ω
(|∇u(x)|p(x)−2(∇u(x),∇v(x))RNdx,∀u, v ∈W 1,p(x)

0 (Ω).

Lemma 2.3. [13] Set X = W
1,p(x)
0 (Ω), A is as above, then

(1) A : X → X∗ is a continuous, bounded and strictly monotone operator;

(2) A : X → X∗ is a mapping of type (S)+, i.e., if un
w→ u in X and

lim sup
n→∞

〈A(un), un − u〉 ≤ 0, implies un → u in X;

(3) A : X → X∗ is a homeomorphism.
Secondly, we give briefly some notions and results from multivalued analysis and

the theory of nonlinear operators of monotone type.
Let E,E1 be Banach spaces, and let
Pf = {M ⊆ E : M is nonempty and closed},
Pk = {M ⊆ E : M is nonempty and compact},
P(w)kc = {M ⊆ E : M is nonempty (weakly) compact and convex}.
A multivalued map T : E → 2E1 \∅ is said to be upper semicontinuous (usc) if and

only if the inverse image T−1(C) = {x ∈ E : T (x ∩ C) 6= ∅} is closed for each closed
subset C of E1.

In this paper, we will need the multivalued generalization of the Leray-Schauder
alternative theorem, due to Bader [3], that is:
Theorem 2.1. If E,E1 are Banach spaces, T : E → Pwkc(E1) is usc from E into
E1 endowed with weak topology, Ψ : E1 → E is completely continuous and Φ = Ψ ◦ T
maps bounded sets into relatively compact sets, then one of the following statements
holds:

(1) the set S = {x ∈ E : x ∈ µΦ(x), 0 < µ < 1} is unbounded, or
(2) Φ has a fixed point, i.e. there exists a x ∈ E, such that x ∈ Φ(x).

Remark 2.1. We emphasize that the composition Φ need not have convex values.
This makes Theorem 2.1 suitable for nonlinear problems (compare with a similar
multivalued alternative theorem in Dugundji-Granas [7], p. 98).

3. Existence theorems

In this section we shall prove a sufficient condition for the existence of solutions
for (P ). We shall need the following conditions:
H(F) : F : Ω× R→ Pkc a multifunction with the following properties:

(i) (x, t)→ F (x, t) is graph measurable;
(ii) for almost all x ∈ Ω, t→ F (x, t) has a closed graph;

(iii) there exist α ∈ C(Ω) (1 < α− ≤ α+ < p−), a ∈ Lα′(x)(Ω)
(

1
α(x) + 1

α′(x) = 1
)

,

and a positive constant c such that

|w| ≤ a(x) + c|t|α(x)−1 for all w ∈ F (x, t);
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In the following, for any u ∈ X, we will use the notations:

F (u)(x) = F (x, u(x)) and NF (u) = {v ∈ V ∗ : v(x) ∈ F (x, u(x))},

where V = Lα(x)(Ω) and V ∗ its topological dual.
Now, we turn to study the multivalued map NF . For the sake of completeness, we

write their proofs in detail below.
Lemma 3.1. If hypothesis H(F) holds, then ∀u ∈ X, NF (u) is a nonempty, closed
and convex subset of V ∗, and NF is husc (which means NF is usc from X into V ∗

endowed with weak topology), and bounded on bounded sets.
Proof. The closedness and convexity of the value of NF (·) are clear. To prove the
nonemptyness, let u ∈ X, and {un}n≥1 ⊆ Lp(x)(Ω) be a sequence of step function
such that

un → u in Lp(x)(Ω),

|un(x)| ≤ |u(x)|, un(x)→ u(x) a.e. on Ω.

Then by virtue of hypothesis H(F)(i), for every n ≥ 1, x → F (x, un(x)) is measur-
able from Ω into Pkc(R). So applying the Kuratowski and Ryll-nardzewski selection
theorem (see [20]), we obtain a measurable

vn : Ω→ R such that vn(x) ∈ F (x, un(x)) for x ∈ Ω.

From H(F)(iii),

|vn(x)| ≤ a(x) + c|un(x)|α(x)−1 ≤ a(x) + c|u(x)|α(x)−1.

So, {vn}n≥1 ⊆ V ∗ is bounded and thus, we assume that vn ⇀ v in V ∗.
Then from Theorem 3.1 in [24] and H(F)(ii) it follows that

v(x) ∈ convlim{vn(x)}n≥1 ⊆ convlimF (x, un(x)) ⊆ F (x, u(x)) a.e. on Ω.

Since v ∈ V ∗, v ∈ NF (u) and this proves that NF has nonempty values.
Now we prove the upper semicontinuity of NF from X → V ∗w . For this we need to

show that

N−F (C) = {u ∈ X : NF (u) ∩ C 6= ∅}
is closed for any weakly closed subset of V ∗.

So let {un}n≥1 ⊆ N−F (C) and assume that un → u in X. Because the embedding
X ↪→ V is continuous, we can find M > 0 such that

|un|α(x) ≤M for all n ≥ 1.

Let vn ∈ NF (un) ∩ C, then by H(F)(iii) we have

|vn(x)| ≤ a(x) + c|un(x)|α(x)−1 a.e. on Ω,

and evidently {vn}n≥1 ⊆ V ∗ is bounded. Hence, we can assume that vn ⇀ v in V ∗.
As above we can easily check that v ∈ NF (u). Also v ∈ C and so v ∈ NF (u) ∩ C,
i.e., u ∈ N−F (C), which proves the desired upper semicontinuity of NF . Finally, from
H(F)(iii) it follows that NF is bounded. �
Theorem 3.1. If hypothesis H(F) holds, then problem (P ) has at least one weak
solution in X.
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Proof. From Lemma 3.1, we have NF (·) has values in Pwkc(V
∗) and is usc into V ∗w .

Then problem (P ) is equivalent to the following abstract fixed point problem:

u ∈ (−∆p(x))
−1NF (u).

By virtue of H(F)(iii) and (−∆p(x))
−1 : V ∗ → X is completely continuous, the

multifunction u 7→ (−∆p(x))
−1NF (u) is compact.

Claim:

S = {u ∈ X : u ∈ λ(−∆p(x))
−1NF (u) for some λ ∈ (0, 1)}

is bounded.
Let u ∈ S. We have

−∆p(x)

(u
λ

)
∈ NF (u)

⇒−∆p(x)

(u
λ

)
= v with v ∈ NF (u)

⇒
〈
−∆p(x)

(u
λ

)
,
u

λ

〉
X∗X

=
〈
v,
u

λ

〉
V ∗V ∗

,

(3.1)

since embedding X ↪→ V is continuous. Thus,〈
−∆p(x)

(u
λ

)
,
u

λ

〉
X∗X

=

∫
Ω

∣∣∣∣∇(u(x)

λ

)∣∣∣∣p(x)

dx ≥ 1

λp−

∫
Ω

|∇u(x)|p(x)dx. (3.2)

From (3.1) and (3.2), we have∫
Ω

|∇u|p(x)dx ≤λp
−
〈v, u〉X∗X

≤λp
−
|v|α′(x)|u|α(x)

≤λp
−
c0|v|α′(x)‖u‖

≤c0|v|α′(x)‖u‖.

(3.3)

On the other hand, from H(F)(iii) we have

|v|α′(x) ≤|a(x) + c|u|α(x)−1|α′(x)

≤|a|α′(x) + c||u|α(x)−1|α′(x).
(3.4)

Let us prove that

||u|α(x)−1|α′(x) ≤ |u|α
+−1
α(x) + 2. (3.5)

Indeed, one has:

(a) If |u|α(x) ≥ 1, then ||u|α(x)−1|α′(x) ≤ |u|α
+−1
α(x) .

This is seen as follows: According to Lemma 2.2, to prove (a), it is equivalent to prove
that |u|α(x) ≥ 1 implies∫

Ω

|u(x)|(α(x)−1)α′(x)

|u|(α
+−1)α′(x)

α(x)

=

∫
Ω

|u(x)|α(x)

|u|(α
+−1)α′(x)

α(x)

≤ 1.
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This inequality is justified as follows. Since |u|α(x) ≥ 1 and

(α+ − 1)α′(x)− α(x) = α+α′(x)− (α(x) + α′(x))

= α+α′(x)− α(x)α′(x)

= α′(x)(α+ − α(x))

≥ 0,

we infer that

|u(x)|α(x)

|u|(α
+−1)α′(x)

α(x)

=
|u(x)|α(x)

|u|α(x)
α(x)

1

|u|(α
+−1)α′(x)−α(x)

α(x)

≤ |u(x)|α(x)

|u|α(x)
α(x)

,

which implies that ∫
Ω

|u(x)|(α(x)−1)α′(x)

|u|(α
+−1)α′(x)

α(x)

≤
∫

Ω

|u(x)|α(x)

|u|α(x)
α(x)

= 1,

and the prove of (a) is complete.

(b) If |u|α(x) < 1, then ||u|α(x)−1|α′(x) < 2.

Indeed, by |u|α(x) <

∫
Ω

|u(x)|α(x)dx+ 1 and Lemma 2.2 (3), one has:

||u|α(x)−1|α′(x) <

∫
Ω

|u(x)|(α(x)−1)α′(x) + 1 =

∫
Ω

|u(x)|α(x) + 1 < 1 + 1 = 2.

Clearly, (3.5) is a consequence of (a) and (b).
Hence, by (3.4) and (3.5), we have

|v|α′(x) ≤ c|u|α
+−1
α(x) + 2c+ |a|α′(x). (3.6)

From (3.3) and (3.6), we have∫
Ω

|∇u(x)|p(x)dx ≤ c0[c|u|α
+−1
α(x) + 2c+ |a|α′(x)]‖u‖. (3.7)

Since X ↪→ V is a compact embedding, so there exists a c1 > 0 such that |u|α(x) ≤
c1‖u‖. Therefore ∫

Ω

|∇u|p(x)dx ≤ c0[c2‖u‖α
+−1 + c3]‖u‖,

for positive constants c2, c3.
Without loss of generality, we may assume that ‖u‖ = |∇u|p(x) > 1, otherwise, S is
bounded set. Thus ∫

Ω

|∇u(x)|p(x)dx ≥ ‖u‖p
−
,

that is
‖u‖p

−−1 ≤ c0c2‖u‖α
+−1 + c0c3,

so ‖u‖ is bounded (since α+ < p−). This proves that S ⊆ W
1,p(x)
0 (Ω) is bounded.

Employing the Leray-Schauder alternative principle, we know that u0 ∈ W 1,p(x)
0 (Ω),

such that
u0 ∈ (−∆p(x))

−1NF (u0),
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that is, u0 is a weak solution of problem (P ). �
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