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1. Introduction

Fixed point theorems in topological spaces have been widely applied in solving
many types of equations, variational inequalities, complementarity problems, opti-
mization problems, equilibrium problems, and others (see [4, 5], [14] and [17]). There
are two important aspects in fixed point theory in topological spaces in general, in
particular in metric spaces. The first one is the existence of fixed points of maps on
the considered spaces; and the second one is the approximation of an existing fixed
point. Regarding to the second issue, many algorithms have been developed. The
most common techniques for the estimations of fixed points are selecting some iter-
ating processes, such as the well-known Mann scheme and Ishikawa scheme, where
the continuity or a certain type of semi-continuity of the considered maps must be
applied (see [2] and [14]).

For the case that the underlying spaces are equipped with an ordering relation
without topological structures, such as, preordered sets, posets, lattices and vector
lattices, many fixed point theorems have been proved without applying topological
continuity of the considered maps (see [3], [10], [12, 13] and [16]). These theorems
have been used to solve vector or ordered variational inequalities (see [6, 7, 8, 9, 10])
and to solve equilibrium problems in game theory in ordered sets (see [3] and [11]).
Due to the importance of approximation of fixed points by topological convergent
sequences in fixed point theory, that the underlying spaces with topological structures,
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it is a naturally extension to study this topic on the underlying spaces with ordering
structures.

In this paper, we provide some iterative fixed point theorems for maps and their
applications to ordered variational inequalities in vector lattices. This paper is or-
ganized as below. In section 2, we recall the concept of order-continuity of maps
in vector lattices and prove some properties, which are similar to that in ordinary
analysis. These properties lay a foundation of their applications to the proof of the
existence of fixed points on vector lattices. In section 3, we prove some iterative fixed
point theorems and provide a Mann type scheme for approximation of fixed points
of some maps in vector lattices. In section 4, we introduce the concept of ordered
Lipschitz condition of maps on vector lattices, which is applied in the proof of a theo-
rem for the existence of fixed points. In section 5, we apply the fixed point theorems
proved in section 4 to solve some ordered variational inequalities on vector lattices.

2. The order-continuity of maps in vector lattices

In this section, we recall some concepts of ordered sets and some properties of
order-limits. For more details, the readers are referred to [1], [3], [12] and [14]. Then
we recall the concept of order-continuity of maps on vector lattices and provide some
properties that are similar to the properties of ordinary limits in analysis. These
properties will be frequently used throughout this paper.

A binary relation < on a nonempty set P is called a lattice order, if it is reflexive,
antisymmetric and transitive, such that, for every pair of elements x, y ∈ P, x∨ y and
x ∧ y both exist. A nonempty set P with a lattice order < on it is called a lattice;
and it is denoted by (P,<).

In this paper, all considered vector spaces are real vector spaces. A vector space
X equipped with a lattice order <X is called a Riesz space or a vector lattice, which
is written as (X,<X), if the following (order-linearity) properties hold:

1. x <X y implies x+ z <X y + z, for all x, y, z ∈ X.
2. x <X y implies αx <X αy, for all x, y ∈ X and α > 0.
In this case, as usual, for any x ∈ X,x+= x∨0, x−= (−x)∨0 and |x|= x+∨x− all

are well-defined.
A sequence {xn} in a vector lattice (X,<X) is said to be order-decreasing, which

is denoted by xn↓, whenever m > n implies xm4X xn. We denote xn ↓ x, whenever
xn ↓ holds and ∧{xn} exists, such that ∧{xn} = x. Order-increasing and the notation
xn↑ are analogously defined for sequence {xn}; and xn ↑ x, if and only if, xn ↑ holds
and ∨{xn} exists, such that ∨{xn} = x. We refer order-decreasing or order-increasing
sequences as order-monotonic sequences.
Definition 2.2. A sequence {xn} in a vector lattice (X,<X), is said to order-converge
to a vector x, which is denoted by xn o−→x, whenever there exists another sequence {ξn}
in (X,<X) with ξn ↓ 0 such that

|xn − x| 4X ξn holds, for each n. (2.1)

In this case, x is called an order-limit of the sequence {xn}. Next lemma provides
the connections between the notions ↑, ↓, and order-limits.
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Lemma 2.3. Let {xn} be a sequence in a vector lattice (X,<X). Either xn ↓ x or
xn ↑ x implies xn o−→x.
Proof. Suppose xn ↑ x; that is, xn ↑ and ∨{xn} = x. Take ξn = x − xn, for all n. It
is clear to see that ξn ↓ holds. Under the hypothesis ∨{xn} = x, we have

∧{ξn} = ∧{x− xn} = x− ∨{xn} = x− x = 0.

Noticing ξn = x− xn <X 0, for all n, we have

|xn − x| = x− xn = ξn, for each n.

It implies xn o−→x. In case if xn ↓ x, taking ξn = xn − x, then under the hypothesis

∧{xn} = x, we have ξn ↓ and

∧{xn} = ∧{xn − x} = ∧{xn} − x = x− x = 0.

Noticing ξn = xn − x <X 0, for all n, we have

|xn − x| = xn − x = ξn, for each n.

It implies xn o−→x.
Lemma 2.3. Let {xn}, {yn} be two sequences in an arbitrary vector lattices (X,<X).
The following properties hold:

1. xn ↓ 0 implies axn ↓ 0, for every real number a > 0.
2. xn ↓ 0 and yn ↓ 0 imply (xn + yn) ↓ 0.
3. xn o−→x and yn o−→y imply axn + byn o−→ax+ by, for any real numbers a and b.

Proof. To show Part 1, we need to prove that axn ↓ holds and ∧{axn} = 0. It is
trivial for a = 0. So we assume that a > 0. From the order linearity of vector lattices,
the condition xn ↓ 0 and a > 0 imply axn ↓ and axn <X 0, for every n. So 0 is a lower
bound of the sequence {axn}. Assume, by the way of contribution, that {axn} has a
lower bound z �X 0; that is, axn <X z, which is equivalent to xn <X a−1z, for all
n. It implies that a−1z is a lower bound of the set {xn}. It is clear that a−1z �X 0.
This is a contradiction to the hypothesis ∧{xn} = 0 (Note that xn ↓ 0 means that
xn ↓ and ∧{xn} = 0).

To show Part 2, we first clearly see that (xn + yn) ↓ and (xn + yn) <X 0, for
all n. Assume, on the contrary, that {xn + yn} has a lower bound z �X 0; that is,
xn + yn <X z, for all n. From the conditions xn ↓ and yn ↓, it implies that either
xn <X 2−1z or yn <X 2−1z, for all n; that is, 2−1z is a lower bound of either the set
{xn} or the set {yn}. Since a−1z �X 0, this is a contradiction to either the hypothesis
∧{xn} = 0 or the hypothesis ∧{yn} = 0.

To show Part 3, from xn o−→x and yn o−→y, there are sequences {ξn} and {zn} in X

with xn ↓ 0 and xn ↓ 0, such that

|xn − x| 4X ξn and |yn − y| 4X ζn both hold, for each n. (2.2)
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For any real numbers a and b, we have

|axn − ax| = |a(xn − x)|
= (a(xn − x)) ∧ (−a(xn − x))

= (|a|(xn − x)) ∧ (−|a|(xn − x))

= (|a|(xn − x)) ∧ (|a|(−(xn − x)))

= |a|((xn − x) ∧ (−(xn − x)))

= |a| · |xn − x|.
Then from (2.2), it implies

|(axn + byn)− (ax+ by)| = |(axn − ax) + (by−nby)|
4X |axn − ax|+ |byn − by|
4X |a| · |xn − x|+ |b| · |yn − y|
4X |a|ξn + |b|ζn, for each n.

By Parts 1 and 2, and from the conditions ξn ↓ 0 and ζn ↓ 0, it implies (|a|ξn +
|b|ζn) ↓ 0. From the above order-inequalities, it follows that axn + byn o−→ax+ by.

Lemma 2.3. If a sequence {xn} in a vector lattice (X,<X) is order-convergent, then
its order-limit is unique.
Proof. Let x and y be order-limits of {xn}. Then there are sequence {ξn} and {ζn}
in X with ξn ↓ 0 and ζn ↓ 0 such that

|xn − x| 4X ξn and |xn − y| 4X ζn, for each n.

Then it follows that

|x− y| 4X ξn + ζn, for each n.

So, |x− y| is a lower bound of {ξn + ζn}. Applying Part 2 of Lemma 2.4, we have
0 4X |x− y| 4 ∧(ξn + ζn) = 0. It implies y − x = 0.
Definition 2.6. A vector lattice (X,<X) is said to be generalized Archimedean if and
only if for any given element x <X 0 and any decreasing sequence of positive numbers
{an} with limit 0, we have

anx ↓ 0.

Lemma 2.7. Let (X,<X) be a generalized Archimedean vector lattice. Then for any
given element x <X 0 and any decreasing sequence of positive numbers {an} with
limit 0, we have

anx o−→0.

This lemma immediately follows from Definition 2.6 and Lemma 2.3.
Let (X,<X), (U,<U ) be vector lattices and let C be a nonempty subset of X. Let

T : C → 2U \ {∅} be a set-valued map. T is said to be order-increasing upward, if
x 4X y in C implies that, for any z ∈ T (x), there is a w ∈ T (y) such that z 4U w. T is
said to be order-increasing downward, ifx 4X y in C implies that, for any w ∈ T (y),
there is a z ∈ T (x) such that z 4U w. If T is both order-increasing upward and
downward, then T is said to be order-increasing. A single-valued map T from C to
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U is said to be order-preserving (order-reversing) if and only if for any elements x, y
in C, x <X y implies Tx <U Ty(Tx 4U Ty).
Definition 2.8. Let (X,<X), (U,<U ) be two vector lattices and C a nonempty subset
of X. A single-valued map T : C → 2U \ {∅} is said to be (sequentially) order-
continuous if and only if, for any sequence {xn} with xn o−→x in X, for some x ∈ C,
implies Txn o−→Tx in U.

The following definition is an extension of the order-continuity from single-valued
maps to set-valued map.
Definition 2.9. Let (X,<X), (U,<U ) be two vector lattices and C a nonempty subset
of X. A set-valued map T : C → 2U \{∅} is said to be order-continuous whenever, for
any order-convergent sequence {xn} in X, with xn o−→x, for some x ∈ C, and un ∈ Txn,
for n = 1, 2, · · · , if {un} is also an order-convergent sequence in U, then un o−→u in U,

for some u ∈ Tx.
A nonempty subset C of a vector lattice (X,<X) is said to be chain-complete if

and only if for any chain {xα} in C,∨{xα} and ∧{xα} both exist. Next, we define a
special case of chain-complete subsets, which is frequently applied in the sequel.
Definition 2.10. Let C be a nonempty subset of a vector lattice (X,<X). C is said to
be (sequentially) conditionally chain-complete if and only if for any order-monotonic
sequence {xn} in C, the following properties hold:

1. If xn ↓ and {xn} has a lower bound, then ∧{xn} exists and ∧{xn} ∈ C; that is
xn ↓ ∧{xn} in C;

2. If xn ↑ and {xn} has an upper bound, then ∨{xn} exists and ∨{xn} ∈ C; that
is, xn ↑ ∨{xn} in C.

It is clearly to see that the first case in Definition 2.10 implies xn o−→∧{xn} and the

second one implies xn o−→ ∨ {xn}. We define the order-Cauchy completeness in vector

lattices, analogously to the Cauchy completeness in ordinal analysis.
Definition 2.11. Let (X,<X) be a vector lattice. A sequence {xn} in X is called
an order-Cauchy sequence if there is a sequence {ξn} in X with ξn ↓ 0 such that, for
every positive integer n, we have

|xn − xm| 4X ξn, for all m > n. (2.3)

Definition 2.12. A nonempty subset C of a vector lattice (X,<X) is said to be
order-Cauchy complete if every order-Cauchy sequence {xn} ⊂ C order-converges to
a vector x in C; that is, {xn} has an order-limit x ∈ C.

The following results are similar to the corresponding results related to Cauchy
sequences in ordinary analysis.
Lemma 2.13. In an arbitrary vector lattice, we have

1. Every order-convergent sequence is an order-Cauchy sequence;
2. Every order-Cauchy sequence is order-bounded.
The proof of this lemma is straightforward, and it is omitted here.

3. Several iterative fixed point theorems in vector lattices

In [10], Li provided several fixed point theorems for set-valued maps on chain-
complete posets, which are extensions of the Abian-Brown Fixed Point Theorem. In
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[12], Ok proved several iterative fixed point theorems for single-valued order-increasing
(order-preserving) maps on finite posets, where the order-continuity is not used. In
this section, we apply the order-continuity property to prove some iterative fixed point
theorems for order-increasing maps on vector lattices.
Theorem 3.1. Let (X,<X) be a vector lattice and let C be a chain-complete
nonempty subset of X. Let T : C → 2C \ {∅} be an order-continuous and order-
increasing upward set-valued map. If there is an x0 ∈ C and u0 ∈ Tx0 satisfying
x0 4X u0, then T has a fixed point.
Proof. For the given points x0 ∈ C, u0 ∈ Tx0 with x0 4X u0, since T : C → 2C \ {∅}
is order-increasing upward, there is u1 ∈ Tu0 such that u0 4X u1. By iterating this
process, for every positive integer n, there is un+1 ∈ Tun such that un 4X un+1. Hence
we get an order-increasing sequence {un} ⊂ C, with un+1 ∈ Tun, for n = 0, 1, 2, · · · ,
such that un ↑ holds.

Since C is a chain complete subset of X, then ∨{un} exists, which is denoted by x∗.
It follows that un ↑ x∗. From Lemma 2.3, un order-converges to an element x∗ ∈ C.
That is

un o−→x
∗.

From un+1 ∈ Tun, for n = 0, 1, 2, · · · , and by applying the order-continuity of the
set-valued map T, this order-convergent sequence {un+1} must order-converges to an
element in Tx∗, say y, that is

un+1 o−→y ∈ Tx
∗.

From Lemma 2.5, we get x∗ = y ∈ Tx∗. Hence x∗ is a fixed point of T.
It is well-known that the Lipschitz condition has been widely applied in the ordinal

analysis, fixed point theory, differential equations, etc, to prove the existence and
the uniqueness of fixed point of maps or the solutions to some equations. In this
section, we introduce the ordered Lipschitz condition on vector lattices and prove
some existence theorems for fixed points of maps with this condition.
Definition 3.2. Let C be a nonempty subset of a vector lattice (X,<X). A single-
valued map T : C → X is said to have ordered Lipschitz property on C whenever
there exists a positive number k < 1, such that

|Tx− Ty| 4X k|x− y|, for all x, y ∈ C. (3.1)

Similarly to ordinary analysis, it is worthy of noting that if a single valued map has
the ordered Lipschitz property, then it is order-continuous.
Theorem 3.3. Let (X,<X) be a generalized Archimedean vector lattice and let C
be an order-Cauchy complete subset of X. If a map T : C → C holds the ordered
Lipschitz property on C with a positive number k < 1, then T has a unique fixed
point.
Proof. Let k be the given positive number with k < 1 satisfying (3.1) for the map T.
Then, taking any x0 ∈ C, we have

|Tn+1x0 − Tnx0| 4X k|Tnx0 − Tn−1x0|, for all positive integer n.

Iterating the above order-inequality yields

|Tn+1x0 − Tnx0| 4X kn|Tx0 − x0|, for all positive integer n. (3.2)
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Applying the order-triangle inequality (see Theorem 1.9 in [1]) and (3.2), for any
positive integer i, we get

|Tn+ix0 − Tnx0| 4X |Tn+ix0 − Tn+i−1x0|+ |Tn+i−1x0 − Tn+i−2x0|
+ · · ·+ |Tn+1x0 − Tnx0|

4X kn+i|Tx0 − x0|+ kn+i−1|Tx0 − x0|+ · · ·+ kn|Tx0 − x0|
= kn(ki + ki−1 + · · ·+ 1)|Tx0 − x0|

4X
kn

1− k
|Tx0 − x0|, for all positive integer n.

(3.3)

Take ξn = kn

1−k |Tx0−x0|, for every positive integer n. Since (X,<X) is generalized

Archimedean, from Lemma 2.7, it follows that ξn ↓ 0. From (3.3), we have

|Tmx0 − Tnx0| 4X ξn, for all positive integer n and for all m > n.

It implies that {Tnx0} is an order-Cauchy sequence in the order-Cauchy complete
subset C. Hence, {Tnx0} has an order-limit, say x∗ C; that is,

Tnx0 o−→x
∗.

Since the map T : C → C has the ordered Lipschitz property, so it is order-
continuous. It implies

Tn+1x0 o−→Tx
∗.

From Lemma 2.5, the uniqueness of order-limit, or from the ordered Lipschitz
property of the map T, it implies Tx∗ = x∗. Thus x∗ is a fixed point of T. The
uniqueness of the fixed point of T can be proven by using standard methods.
Theorem 3.4. Let (X,<X) be a generalized Archimedean vector lattice and let C
be an order-Cauchy complete convex subset of X. Suppose that a map T : C → C is
order-continuous and has the ordered Lipschitz property on C with a positive number
k < 1. For any given x0 ∈ C, and for an arbitrary number a ∈ (0, 1), an iterative
sequence is defined by

xn = aTxn−1 + (1− a)xn−1, for all positive integern.

Then the sequence {xn} is an order-Cauchy sequence and its order-limit is the unique
fixed point of T.
Proof. From the selection of the sequence {xn} given in this theorem, we have

xn+1 − xn = a(Txn − Txn−1) + (1− a)(xn − xn−1). (3.4)

From Part 4 of Theorem 1.3 in [1], for every x, y ∈ X, and for any α > 0, we
have α(x ∨ y) = (αx) ∨ (αy), and α(x ∧ y) = (αx) ∧ (αy). Taking y = 0, it implies
αx+ = (αx)+ and αx−1 = (αx)−1. Then

α|x| = α(x+ + x−1) = αx+ + αx−1 = (αx)+ + (αx)−1 = |αx|. (3.5)
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Applying the order-triangle inequality and by (3.3), (3.4), (3.5), from the ordered
Lipschitz condition of T, we get

|xn+1 − xn| 4X a|Txn − Txn−1|+ (1− a)|xn − xn−1|
4X ak|xn − xn−1|+ (1− a)|xn − xn−1|
= (ak + (1− a))|xn − xn−1|, for all positive integer n.

(3.6)

Iterating the process (3.6) obtains

|xn+1 − xn| 4X (ak + (1− a))n|x1 − x0|, for all positive integer n. (3.7)

Since 0 < ak + (1 − a) < 1, from (3.7), similarly to the proof of Theorem 3.3, we
can show that {xn} is an order-Cauchy sequence in the order-Cauchy complete subset
C. Hence, {xn} has an order-limit, say x∗ ∈ C; that is,

xn o−→x
∗.

Since T : C → C is order-continuous, from Lemma 2.4, it implies

xn = aTxn−1 + (1− a)xn−1 o−→aTx
∗ + (1− a)x∗.

From Lemma 2.5, we obtain

x∗ = aTx∗ + (1− a)x∗.

It immediately follows that Tx∗ = x∗. Thus x∗ is a fixed point of T. The rest of the
proof is similar to the proof of Theorem 3.3 and is omitted.

4. Applications to ordered-variational inequalities on vector lattices

Let (X,<X) and (U,<U ) be two vector lattices. X+ and U+ denote the positive
cones of (X,<X) and (U,<U ), respectively; that is,

X+ = {x ∈ X : x <X 0} and U+ = {u ∈ U : u <U 0},
where, as usual, without confusion, both of the origins of X and U are denoted by 0.

Let L(X,U) denote the collection of all linear operators from X to U. A linear
operator f from X to U is called a positive (linear) operator from X to U whenever
x <X 0 in X implies f(x) <U 0 in U. The collection of all positive (linear) operators
from X to U is denoted by L+(X,U). One can see that a linear operator from X to
U is order-preserving if and only if, it is positive.

It is clear that L(X,U) is also a real vector space. We define a binary relation <L

on L(X,U) as follows: for every f, g ∈ L(X,U)

f <L g if and only if f(x) <U g(x), for all x ∈ X+. (4.1)

It has been shown (see Page 10 in [1]) that if both (X,<X) and (U,<U ) are
vector lattices (Riesz spaces), then <L is a partial order on L(X,U); and therefor,
(L(X,U),<L) is an ordered vector space. But, it is worthy of noting that it may not
be a vector lattice. In [11], Xie, Li, and Yang applied the Choquet-Kendall Theorem
and deeply studied the criteria for (L(X,U),<L) to be an ordered vector space or a
vector lattice.

Moreover, if (X,<X) and (U,<U ) are just ordered vector spaces and not vector
lattices; that is, the partial orders <X and <U are not lattice order, then the binary
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relation <L on L(X,U), defined by (4.1), holds the reflexive and transitive properties;
and it may not have the antisymmetric property. So it may not be a partial ordering
relation on L(X,U). This argument can be demonstrated by the following example.
Example 4.1. In R3, take K to be the closed convex cone as below:

K = {(x, y, 0) ∈ R3 : x > 0 and y > 0}.

Let <K be the partial order on R3 induced by the closed convex cone K. Since K
is not a base of R3, then according to Choquet-Kendall Theorem, <K is not a lattice
order on R3. Hence, (R3,<K) is an ordered vector space, but not a vector lattice.
Then we define linear operators f and g as following:

f(x1, x2, x3) = (2x1, 2x2, 3x3) and g(x1, x2, x3) = (2x1, 2x2, 4x1),

for any x = (x1, x2, x3) ∈ R3.
So it is clearly seen that f, g ∈ L(R3,R3). Notice that in the ordered vector space

(R3,<K), we have (R3)+ = K. From (11), we see that f <L g and g <L f both hold.
But it is clear that f 6= g. Hence, <L does not have the antisymmetric property; and
therefore, <L is not a partial order on L(R3,R3).
Definition 4.2. Let (X,<X) and (U,<U ) be two vector lattices. Let C be a nonempty
subset of X and let F : C → L(X,U) be a map. Then

1. the ordered variational inequality problem associated with C,F and U, denoted
by OV I(C,F, U), is to find an x∗ ∈ C such that

F (x∗)(x− x∗) <U 0, for all x ∈ C. (4.2)

2. the extended ordered variational inequality problem associated with C,F and U,
denoted by EOV I(C,F, U), is to find an y∗ ∈ C such that

F (y∗)(y − y∗) ⊀U 0, for all y ∈ C. (4.3)

Let C be a nonempty subset of a vector lattice (X,<X). For an arbitrary linear
operator f ∈ L(X,U), if the smallest (the minimum) element of the set {f(t) ∈ U :
t ∈ C}, with respect to the order <U on U, exists, which is denoted by min{f(t) ∈
U : t ∈ C}, then we define a set-valued map ψC : L(X,U)→ 2C \ {∅} by

ψCf = {s ∈ C : f(s) = min{f(t) ∈ U : t ∈ C}}, for every f ∈ L(X,U). (4.4)

Theorem 4.3. Let (X,<X) and (U,<U ) be vector lattices. Let C be a chain-complete
nonempty subsets of X. Let F : C → L(X,U)) be a map with the properties

v1. ψCF (x) 6= ∅, for every x ∈ C; that is, the map ψCF : C → \{∅} is well-defined;
v2. ψCF : C → 2C \ {∅} is an order-continuous and order-increasing upward

set-valued map;
v3. There are elements x0 ∈ C and u0 ∈ ψCF (x0) satisfying x0 4X u0.
Then the problem OV I(C,F, U) has a solution.

Proof. Define a set-valued map T : C → 2C \ {∅} as follows:

T (x) = ψCF (x), for all x ∈ C.

From condition v1, it follows that T : C → 2C\{∅} is well-defined. By condition v2,
T is an order-continuous and order-increasing upward set-valued map. The elements
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x0, u0 ∈ C, given in condition v3, satisfy u0 ∈ Tx0 and x0 4X u0. Then T satisfies all
conditions in Theorem 3.1. It follows that T has a unique fixed point in C, say x∗,
which satisfies x∗ ∈ T (x∗); that is,

x∗ ∈ ψCF (x∗).

From (4.4), we obtain F (x∗)(x∗) = min{F (x∗)(t) ∈ U : t ∈ U}. It implies

F (x∗)(x∗) 4U F (x∗)(x), for all x ∈ C.
Since F (x∗) ∈ L(X,U), from the order-linearity of the partial order 4U on vector
lattice (U,<U ), it yields

F (x∗)(x− x∗) <U 0, for all x ∈ C.
It follows that (4.2) holds for x∗. Hence x∗ is a solution to the problem

OV I(C,F, U).
To consider the problem EOV I(C,F, U), we introduce a notation similar to the

one defined in (4.4). Let C be a nonempty subset of a vector lattice (X,<X). For an
arbitrary linear operator f ∈ L(X,U), the set of minimal elements of {f(t) ∈ U : t ∈
C}, with respect to the order <U in U, is denoted by Min{f(t) ∈ U : t ∈ C}. Then
we define a set-valued map ψC : L(X,U)→ 2C \ {∅} as

ψCf = {s ∈ C : f(s) ∈Min{f(t) ∈ U : t ∈ C}}, for every f ∈ L(X,U). (4.5)

Theorem 4.4. Let (X,<X) and (U,<U )) be vector lattices. Let C be a chain-
complete nonempty subsets of X. Let F : C → L(X,U) be a map satisfying the
conditions

V1. ψCF (x) 6= ∅, for every x ∈ C; that is, the map ψCF : C → 2C \ {∅} is
well-defined;

V2. ψCF : C → 2C \ {∅} is an order-continuous and order-increasing upward
set-valued map;

V3. There are elements y0 ∈ C and v0 ∈ ψCF (y0) with y0 4X v0.
Then the problem EOV I(C,F, U) has a solution.
The proof of Theorem 4.4 is similar to the proof of Theorem 4.3 by applying

Theorem 3.1, (4.3) and the operator ψC defined in (4.5); and it is omitted here.
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