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1. Introduction

For two set-valued mappings Ψ,Φ : X ⇒ Y acting in some sets X and Y a
coincidence point is a point ξ ∈ X such that Ψ(ξ)∩Φ(ξ) 6= ∅. The covering mappings
theory was developed for the investigation of coincidence points (see, for instance,
[1, 2, 3, 16] in the case when X and Y are metric spaces. For example, in [1] it
was proved that under additional assumptions a covering mapping Ψ and a Lipscitz
mapping Φ has a coincidence point ξ ∈ X, i.e., Ψ(ξ) ∩ Φ(ξ) 6= ∅. A local analogue of
this result was obtained in [3]. The properties of covering mappings are studied in
detail in the above mentioned works as far as in [5, 14, 15] and some other papers.
The results of the covering mappings theory are used for the investigation of ordinary
differential equations, control systems, integral Volterra equations (see, for instance,
[6, 7, 8, 9, 12]).

In applications it is more natural to use the property of local covering. This concept
was developed in [3, 16] and some other investigations. In the papers devoted to cov-
ering and locally covering mappings there were introduced various definitions of local
covering. Here we will discuss the definitions that frequently appear in publications
and compare the corresponding concepts.

2. Discussion of some definitions and results

Let (X, ρX), (Y, ρY ) be metric spaces with metrics ρX and ρY , respectively, Ψ, Φ :
X ⇒ Y be set-valued mappings that assign closed sets Ψ(x) ⊆ Y and Φ(x) ⊆ Y to
every x ∈ X. Moreover, let numbers α > 0, β ≥ 0 and sets U ⊆ X, V ⊆ Y be given.
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Denote by BX(x,R) and OX(x,R) the closed and, respectively, open ball in X
centered at x ∈ X with a radius R ≥ 0, i.e.,

BX(x,R) = {u ∈ X : ρX(x, u) ≤ R}, OX(x,R) = {u ∈ X : ρX(x, u) < R}.

Further, set

BX(M,R) =
⋃
x∈M

BX(x,R), OX(M,R) =
⋃
x∈M

OX(x,R),

dist(M,N) = inf{ρX(x, u) : x ∈M, u ∈ U}
for arbitrary M,N ⊂ Y. Denote by gph(Ψ) the graph of Ψ, i.e., gph(Ψ) = {(x, y) :
x ∈ X, y ∈ Ψ(x)}. Everywhere in the sequel we assume that X × Y is a metric
space with a metric defined by formula ρ

(
(x, y), (u, v)

)
= ρX(x, u) + ρY (u, v) for each

(x, y), (u, v) ∈ X × Y.
Let us recall definitions of covering from [1, 2, 3].

Definition 2.1. A set-valued mapping Ψ : X ⇒ Y is called α-covering with respect
to the sets U ⊂ X and V ⊂ Y, if

BX(x, r) ⊂ U ⇒ BY
(
Ψ(x), αr

)
∩ V ⊂ Ψ

(
BX(x, r)

)
.

A set-valued mapping Ψ is called locally α-covering in a neighborhood of the point
(x0, y0), if there exist neighborhoods U and V of the points x0 and y0, respectively,
such that Ψ is α-covering with respect to U and V. Set-valued mapping Ψ is called
(globally) α-covering if it is α-covering with respect to X and Y.

As it was mentioned above, the concept of covering is used to investigate coinci-
dence points of two mappings. For instance, Theorem 2 from [1] states that if

(A1): a set-valued mapping Ψ is α-covering and has a closed graph,
(A2): a set-valued mapping Φ satisfies the Lipschitz condition with Lipschitz

constant β < α,
(A3): at least one of the graphs gph(Ψ) or gph(Φ) is complete,

then for every x0 ∈ X, for every ε > 0 there exists ξ ∈ X such that Ψ(ξ) ∩ Φ(ξ) 6= ∅
and ρX(x0, ξ) ≤ (α− β)−1dist(Ψ(x0),Φ(x0)) + ε.

Let us discuss this result. Note that the set of all coincidence points ξ ∈ X of
the set-valued mappings Ψ and Φ is the fixed points set of the mapping Ψ−1(Φ(·)) :
X ⇒ X (if the inverse Ψ−1 : Y ⇒ X, Ψ−1(y) ≡ {x ∈ X : y ∈ Ψ(x)} exists). Under
the assumptions (A1)-(A3) the inverse mapping Ψ−1 exists and satisfies Lipschitz
inequality with Lipschitz constant α−1. Thus, the set-valued mapping Ψ−1(Φ(·)) is
the contraction with Lipschitz constant α−1β < 1. However, in order to prove the
existence of the desired coincidence point ξ one cannot apply the Nadler theorem,
since the values of the set-valued mapping Ψ−1(Φ(·)) may not be closed. Consider
the corresponding example.
Example 2.1. Let X = [0, 1], Y = {0} ∪ [1,+∞) Ψ,Φ : X ⇒ Y, Ψ(x) = {1/x}
if x 6= 0, Ψ(0) = 0, Φ(x) = [1,+∞) for each x. The assumptions (A1)-(A3) are
satisfied, in particular, Ψ is 1-covering. However,

Ψ−1(Φ(x)) = (0, 1] ∀x,

so, the values of Ψ−1(Φ(·)) are not closed.
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Note also that the set of all coincidence points ξ ∈ X of the set-valued mappings
Ψ and Φ is the set of all solutions of the equation f(x) = 0, where f : X → R,
f(x) = dist(Ψ(x),Φ(x)) for all x ∈ X. However, in order to prove the existence
of the desired coincidence point ξ one cannot apply theorems about solvability of
the equation f(x) = 0 based on the iterative procedure of solution finding (see, for
instance, [4], Theorem 1) because the function f may not be lower semi-continuous.
Moreover, there can exist a point x ∈ X and a sequence {xn} ⊂ X such that xn → x,
f(xn)→ 0 as n→∞ and f(x) > 0. Consider the corresponding example.
Example 2.2. Let X = R, Y = [0,∞), Ψ(x) = {(x − n)−1 − 1} for every
x ∈ (n, n + 1] and for every integer n, Φ(x) ≡ [1,∞). The assumptions (A1)-
(A3) are satisfied, in particular, Ψ is 1-covering. However, if a sequence of pos-
itive numbers xn converges to 0 as n → ∞, then f(xn) also converges to 0 as
n → ∞, since f(xn) = dist

(
Ψ(xn), [1,∞)

)
= 0 for sufficiently large n. Neverthe-

less, f(0) = dist
(
{0}, [1,∞)

)
= 1 > 0.

Let us turn back to Definition 2.1. Let (Z, ρZ) be a metric space. It is easy to
observe that if a set-valued mapping Ψ : X ⇒ Y is α-covering and a set-valued
mapping Θ : X ⇒ Y is γ-covering, then their composition Θ(Ψ(·)) : X → Z is αγ-
covering. However, the composition of locally covering mappings is not necessarily
locally covering. Consider the corresponding example.
Example 2.3. Assume that X = Y = Z = R, Ψ : X ⇒ Y, Ψ(x) = {x, 2} for each
x ∈ R, Θ : Y ⇒ Z, Φ(y) = {1 − |y − 1|} for every y ∈ R, and x0 = y0 = z0 = 0.
Then Ψ is locally 1-covering in a neighborhood of (x0, y0), Θ is locally 1-covering in
a neighborhood of (y0, z0). Further, Θ(Ψ(x)) = {1− |x− 1|, 0} for each x ∈ R. Take
an arbitrary neighborhoods U of x0 and W of z0. It is obvious that there exists a
closed ball BX(x, r) ⊂ (0, 1) such that BX(x, r) ⊂ U and Θ(Ψ(BX(x, r))) ⊂ V. Then
Θ(Ψ(BX(x, r))) = {z0}∪ [x− r, x+ r] and z0 /∈ [x− r, x+ r]. Thus, any neighborhood
of z0 is not included in Θ(Ψ(BX(x, r))). So, Θ(Ψ(·)) is not locally α-covering in a
neighborhood of (x0, z0) for every α > 0.

3. Main results

Let us recall the definition of local covering from [16].
Definition 3.1. A set-valued mapping Ψ : X ⇒ Y is called α-covering on the set
U ⊂ X relative to the set V ⊂ Y, if

BX(x, r) ⊂ U ⇒ BY
(
Ψ(x) ∩ V, αr

)
⊂ Ψ

(
BX(x, r)

)
.

The set-valued mapping Ψ is called locally α-covering in a neighborhood of the point
(x0, y0), if there exist neighborhoods U and V of the points x0 and y0, respectively,
such that Ψ is α-covering on U relative to V.

Let us compare Definitions 2.1 and 3.1.
Theorem 3.1. 1) If the set-valued mapping Ψ is locally α-covering in a neighborhood
of (x0, y0) in the sense of Definition 3.1, then this mapping is locally α-covering in a
neighborhood of (x0, y0) in the sense of Definition 2.1.

2) Let x0 be not an isolated point of X. If the set-valued mapping Ψ is locally α-
covering in a neighborhood of (x0, y0) in the sense of Definition 2.1, then this mapping
is locally α-covering in a neighborhood of (x0, y0) in the sense of Definition 3.1.
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If x0 is an isolated point of X, then a locally α-covering mapping in the sense of
Definition 2.1 may not be locally α-covering in the sense of Definition 3.1. Consider
the corresponding example.
Example 3.1. Let X = {x0}, Y = R, Ψ : X ⇒ Y, Ψ(x0) = [−1, 1], y0 = 0 and
U ⊂ X, V ⊂ R be arbitrary neighborhoods of x0 and y0, respectively. For each α > 0
set r = 2α−1. It is obvious that BX(x0, r) ⊂ U. Moreover,

BY (Ψ(x0) ∩ V, αr) = BY (Ψ(x0) ∩ V, 2) ⊃ BY (y0, 2) = [−2, 2].

Since Ψ(BX(x0, r)) = [−1, 1], we have BY (Ψ(x0)∩V, αr) * Ψ(BX(x0, r)). Therefore,
Ψ is not locally α-covering in a neighborhood of a point (x0, y0) in the sense of
Definition 3.1 for every α > 0. However, for V = (−1, 1) we have

BY (Ψ(x), αr) ∩ V = BY (Ψ(x0), αr) ∩ V = (−1, 1) ⊂ Ψ(BX(x0, r)) = Ψ(BX(x0, r))

for each BX(x, r) ⊂ U. So, Ψ is locally α-covering in a neighborhood of (x0, y0) in the
sense of Definition 2.1 for every α > 0.

Let us recall the definition of local covering from [15].
Definition 3.2. The set valued mapping Ψ : X ⇒ Y is called locally α-covering in

a neighborhood of the point (x0, y0), if there exist neighborhoods U ⊂ X and V ⊂ Y
of the points x0 and y0, respectively, and a number R > 0 such that

OY (y, αr) ⊂ Ψ
(
OX(x, r)

)
∀x ∈ U, ∀ y ∈ Ψ(x) ∩ V, ∀ r ∈ (0, R). (3.1)

Theorem 3.2. 1) If the set-valued mapping Ψ is locally α-covering in a neighborhood
of (x0, y0) in the sense of Definition 3.2, then this mapping is locally (α− ε)-covering
in a neighborhood of (x0, y0) in the sense of Definition 2.1 for each ε ∈ (0, α).

2) If the set-valued mapping Ψ is locally α-covering in a neighborhood of (x0, y0) in
the sense of Definition 2.1, then this mapping is locally α-covering in a neighborhood
of (x0, y0) in the sense of Definition 3.2.

In [8] there was introduced a definition of covering on a family. Let us present a
set-valued analogue of this definition. Assume that a set A ⊂ X × R+ is given.
Definition 3.3. We will say that the set-valued mapping Ψ : X ⇒ Y α-covers the
set V on the family A, if

(x, r) ∈ B ⇒ BY (Ψ(x), αr) ∩ V ⊂ Ψ
(
BX(x, r)

)
.

An analogue of the presented definition for single-valued mappings was introduced
in [8]. Definition 3.3 is sufficiently broad, since it generalizes various definitions of
covering which frequently appear in publications. For example,

1) if A = {(x, r) : BX(x, r) ⊂ U}, then the set-valued mapping Ψ α-covers the set
V on the family A if and only if this mapping is α-covering with respect to the sets
U and V (see Definition 2.1);

2) if B = X × R+, W = Y, then the set-valued mapping Ψ α-covers the set V on
the family A if and only if this mapping is α-covering (see Definition 2.1);

3) in [14] if A 6= ∅ is such that

(x, r) ∈ A and r′ + ρX(x, x′) ≤ r ⇒ (x′, r′) ∈ A,

then the set-valued mapping Ψ that α-covers the V on the family A is called α-covering
the set V on the complete system B.
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These statements follow directly from the introduced definitions, so we omit their
proofs.

To complete this section we will compare Definition 3.3 and the concept of ordered
covering from [10, 11]. Let (X,�), (Y,�) be partially ordered sets, W ⊂ Y. For
arbitrary x ∈ X denote

ΩX(x) = {u ∈ X : u � x}.
Definition 3.4. The set-valued mapping Ψ : X ⇒ Y is called orderly covering the
set W, if

OY
(
Ψ(x)

)
∩W ⊂ Ψ

(
OX(x)

)
∀x ∈ X.

This definition was introduced in [11]. In this paper it was proved that orderly
covering and monotone mappings have a coincidence point under certain assumptions.

Let now (X, ρX), (Y, ρY ) be metric spaces, A ⊂ X ×R+. Define a partial order in
A as follows:

(x, r) � (x, r) ⇔ ρX(x, x) + r ≤ r.
We define a partial order � in Y × R+ analogically. For the set-valued mapping
Ψ : X ⇒ Y define the set-valued mapping Ψα : A ⇒ Y × R+ by formula

Ψα(x, r) = {(y, αr) : y ∈ Ψ(x)} ∀ (x, r) ∈ A.

Proposition 3.1. If the set-valued mapping Ψ : X ⇒ Y α-covers the set V on
the family A, then the set-valued mapping Ψα : A ⇒ Y × R+ orderly covers the set
W = V × R+.

This proposition follows directly from Definitions 3.3 and 3.4, so we omit its proof.

4. Proofs of the main results

In order to prove Theorem 3.1 let us consider the following auxiliary statement.
Lemma 4.1. If x0 is not an isolated point of X, then there exists a sequence of
numbers Rj > 0, j = 1, 2, ..., such that Rj → 0 as j →∞ and

BX(x, r) ⊂ BX(x0, Rj) ⇒ r ≤ 3Rj .

for every j.
Proof. Since x0 is not an isolated point of X, there exists a sequence {xj} ∈ X
such that xj → x0 as j → ∞ and xj 6= x, j = 1, 2, ... . Set Rj = 2−1ρX(xj , x),
j = 1, 2, ... . Take an arbitrary ball BX(x, r) ⊆ BX(x0, Rj). Since xj /∈ BX(x0, Rj)
and BX(x, r) ⊂ BX(x0, Rj), we have xj /∈ BX(x, r), and, therefore, ρX(x, xj) > r.
Thus,

r < ρX(x, xj) ≤ ρX(x, x0) + ρX(x0, xj) ≤ Rj + 2Rj = 3Rj . �

Proof of Theorem 3.1. 1) Let Ψ be locally α-covering in a neighborhood of (x0, y0)in
the sense of Definition 3.1. Then there exists R > 0 such that

BX(x, r) ⊂ BX(x0, R) ⇒ BY (Ψ(x) ∩BY (y0, αR), αr) ⊂ Ψ(BX(x, r)), (4.1)

i.e., Ψ is α-covering on BX(x0, R) relative to BY (y0, αR).
At first let us assume that x0 is not an isolated point of X. Then according to

Lemma 4.1 there exists positive number R ≤ 4−1R such that

BX(x, r) ⊂ BX(x0, R) ⇒ r ≤ 3R. (4.2)
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Let us show that Ψ is α-covering with respect to BX(x0, R) and BY (y0, αR). Take
an arbitrary ball BX(x, r) ⊂ BX(x0, R). For each z ∈ BY (Ψ(x), αr)∩BY (y0, αR) we
have ρY (y0, z) ≤ αR and there exists y ∈ Ψ(x) such that ρY (y, z) ≤ αr. So,

ρY (y0, y) ≤ ρY (y0, z) + ρY (z, y) ≤ α(R+ r) ≤ α(R+ 3R) ≤ α
(

1

4
R+

3

4
R

)
≤ αR.

Hence, y ∈ Ψ(x)∩BY (y0, αR) and, therefore, z ∈ BY (Ψ(x)∩BY (y0, αR), αr). Thus,
(4.1) implies that z ∈ Ψ(BX(x, r)) for every z ∈ BY (Ψ(x), αr) ∩ BY (y0, αR). So,
BY (Ψ(x), αr)∩BY (y0, αR) ⊂ Ψ

(
BX(x, r)

)
and, therefore Ψ is α-covering with respect

to BX(x0, R) and BY (y0, αR). Hence, Ψ is locally α-covering in a neighborhood of
(x0, y0) in the sense of Definition 2.1.

Assume now that x0 is an isolated point of X. Then there exists R > 0 such that
BX(x0, R) = {x0}. It is obvious that BX(x0, R) ⊂ BX(x0, R). So, (4.1) implies

BY (Ψ(x0) ∩BY (y0, αR), αR) ⊂ Ψ(BX(x0, R)) = Ψ(x0).

Since y0 ∈ Ψ(x0) ∩BY (y0, αR), we have

BY (y0, αR) ⊂ Ψ(x0).

Take an arbitrary ball BX(x, r) ⊂ BX(x0, R). Obviously B(x, r) = {x0}. Thus, if
follows from the above inclusion that

Ψ(BX(x, r)) ∩BY (y0, αR) = Ψ(x0) ∩BY (y0, αR) ⊂ Ψ(x0) = Ψ(BX(x, r)).

So, Ψ is α-covering with respect to BX(x0, R) and BY (y0, αR). Therefore, Ψ is locally
α-covering in a neighborhood of (x0, y0) in the sense of Definition 2.1.

2) Let Ψ be locally α-covering in a neighborhood of (x0, y0) in the sense of Definition
2.1. Then there exists R > 0 such that

BX(x, r) ⊂ BX(x0, R) ⇒ BY (Ψ(x), αr) ∩BY (y0, αR) ⊂ Ψ(BX(x, r)), (4.3)

i.e., Ψ is α-covering with respect to BX(x0, R) and BY (y0, αR). Lemma 4.1 implies
that there exists R ≤ 4−1R such that (4.2) holds.

Let us show that Ψ is α-covering on BX(x0, R) relative to BY (y0, αR). Take an
arbitrary ball BX(x, r) ⊂ BX(x0, R). For each point z ∈ BY (Ψ(x) ∩BY (y0, αR), αr)
there exists y ∈ Ψ(x) such that ρY (y0, y) ≤ αR and ρY (y, z) ≤ αr. Therefore, z ∈
BY (Ψ(x), αr) and, moreover,

ρY (y0, z) ≤ ρY (y0, y) + ρY (y, z) ≤ α(R+ r) ≤ α(R+ 3R) ≤ α
(

1

4
R+

3

4
R

)
≤ αR.

So, z ∈ BY (Ψ(x), αr)∩BY (y0, αr). In virtue of (4.3) we have z ∈ Ψ(BX(x, r)) for every
z ∈ BY

(
Ψ(x) ∩ BY (y0, αR), αr

)
. Hence, BY

(
Ψ(x) ∩ BY (y0, αR), αr

)
⊂ Ψ

(
BX(x, r)

)
and so Ψ is α-covering on BX(x0, R) relative to BY (y0, αR). Therefore, Ψ is locally
α-covering in a neighborhood of (x0, y0) in the sense of Definition 3.1. �
Proof of Theorem 3.2. 1) Assume that Ψ is locally α-covering in a neighborhood of
(x0, y0) in the sense of Definition 3.2. Then there exists R > 0 such that (3.1) holds
for U = OX(x0, R), V = OX(y0, αR).
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First let us assume that x0 is not an isolated point of X. Lemma 4.1 implies that
there exists positive R < 4−1R such that (4.2) holds. Take an arbitrary ε ∈ (0, α)
and show that Ψ is (α− ε)-covering with respect to BX(x0, R) and BY (y0, αR).

For an arbitrary ball BX(x, r) ⊂ BX(x0, R) and a point z ∈ BY (Ψ(x), (α− ε)r) ∩
BX(y0, αR) inequality ρY (z, y0) ≤ αR holds and there exists y ∈ Ψ(x) such that
ρY (y, z) ≤ (α− ε)r. Therefore,

ρY (y, y0) ≤ ρY (y, z) + ρY (z, y0) < αr + αR ≤ 4αR < αR,

and, thus, y ∈ V ∩ Ψ(x). Moreover, x ∈ U. Further, it follows from (3.1) that
OY (y, αr) ⊂ Ψ(OX(x, r)). Inequality ρY (y, z) ≤ (α−ε)r implies z ∈ OY (y, αr). Since
Ψ(OX(x, r)) ⊂ Ψ(BX(x, r)), we obtain z ∈ Ψ(BX(x, r)) for each z ∈ BY (Ψ(x), (α −
ε)r) ∩BX(y0, αR). Hence,

BY (Ψ(x), (α− ε)r) ∩BX(y0, αR) ⊂ Ψ(BX(x, r)).

Therefore, Ψ is (α− ε)-covering with respect to BX(x0, R) and BY (y0, αR). So, Ψ is
locally (α− ε)-covering in a neighborhood of (x0, y0) in the sense of Definition 2.1.

Assume now that x0 is an isolated point of X. Without loss of generality we will
assume that there exists R > 0 such that BX(x0, R) = {x0} and (3.1) holds. Then

OY (y0, αr) ⊂ Ψ(x0) ∀ r < R.

Take arbitrary numbers ε > 0, R < R and a ball BX(x, r) ⊂ BX(x0, R). It is
obvious that BX(x, r) = {x0}, x = x0. Thus,

BY (Ψ(x), (α− ε)r) ∩BX(y0, αR) ⊂ BX(y0, αR) ⊂ Ψ(x0) = Ψ(BX(x, r)).

Therefore, Ψ is (α− ε)-covering with respect to the balls BX(x0, R) and BY (y0, αR).
So, this mapping is locally (α− ε)-covering in a neighborhood of (x0, y0) in the sense
of Definition 3.2.

2) Let Ψ be locally α-covering in a neighborhood of (x0, y0) in the sense of Definition
2.1. Then there exists R > 0 such that (4.1) holds. Set

R =
R

2
, U = OX(x0, R), V = OY (y0, αR)

and prove that (3.1) holds.
Take arbitrary r ∈ (0, R), x ∈ U, y ∈ V ∩Ψ(x), z ∈ OY (y, αr). Set r = α−1ρY (y, z).

Then r < r, z ∈ BY (Ψ(x), αr) and

ρY (y0, z) ≤ ρY (y0, y) + ρY (y, z) < αR+ αr < 2αR < αR.

Therefore, z ∈ BY (Ψ(x), αr) ∩ BY (y0, αR). Moreover, ρX(x0, x) + r < R + R < R.
Thus, BX(x, r) ⊂ BX(x0, R). Formula (4.1) implies

z ∈ BY
(
Ψ(x), αr

)
∩BY (y0, αR) ⊂ Ψ

(
BX(x, r)

)
⊂ Ψ

(
OX(x, r)

)
.

for every z ∈ OY (y, αr). So, OY (y, αr) ⊂ Ψ
(
OX(x, r)

)
. Therefore, Ψ is locally α-

covering in a neighborhood of (x0, y0) in the sense of Definition 3.2. �
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