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Abstract. In this paper we present some remarks on the following problem: Let X be a (real
or complex) Banach space, 2 C X be an open convex subset and f : @ — Q be an operator.
We suppose that: (i) f € CY(X,X); (ii) the differential of f at z, df(xz) : X — X is a Picard
operator for all z € €; (ii) the fixed point set of f, Fy # (. The problem is in which conditions
f is a Picard operator? In the case X := R™ or X := C™, this problem is in connection with a
LaSalle Conjecture (J.P. LaSalle, The Stability of Dynamical Systems, SIAM, No. 25, 1976) and
with the Belitskii-Lyubich Conjecture (G.R. Belitskii and Yu.I. Lyubich, Matriz Norms and their
Applications, Birkhauser, 1988).

We also formulate the following conjecture:

Let X be a Banach space, 2 C X be an open convex subset and f : 2 — 2 be an operator. We
suppose that: (i) f € CY(Q, X); (i) df*(x) is a Picard operator, V o € Q, V k € N*; (iii) Fy # 0.
Then f is a Picard operator.

Some research directions are also presented.
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1. INTRODUCTION

In [33], J.P. LaSalle formulated four conjectures. One of them is the following:

LaSalle Conjecture. Let f: R™ — R™ be such that:
(1) there exists x* € R™ with f(z*) = x*;
(ii) f € CYR™ R™);
(#it) the spectral radius of the differential of f at x, p(df(x)) < 1, for all z € R™.
Then:
(a) Fy={z"}, where Fy :={x € R™ | f(x) = x};
(0) f™(xz) = z* asn — o0,V eR™
It is well known that (see [33], [47], ...), by definition a function f as in (a) and
(b) is a Picard function, and also, by definition a fixed point z* as in (a) and (b) is
globally asymptotically stable.
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There are many papers on the above conjecture. The results are as follow:

e counterexamples to LaSalle Conjecture: [12], [13], [14], [35], ...

e classes of functions for which LaSalle Conjecture is a theorem: [13], [2], [15], [16],
[18], [35], ...

e to study the dynamic generated by a function f € CY(R™,R™), with p(df(z)) <
1,VzeR™: [3],[10], [32], [33], [35], ...

The aim of this paper is to present some remarks on the LaSalle Conjecture and
of the following question:

Problem 1.1. Let X be a (real or complex) Banach space, @ C X be an open convex
subset and f : Q — Q be an operator. We suppose that:

(i) feCH,X);

(i) df(x): X = X is Picard for all x € Q;

(it) Fr # 0.

The problem is in which conditions f is Picard operator.
Remark 1.1. It is clear that, p(df (z)) < 1, ¥V x € Q implies the condition (it).

The plan of the paper is the following:

2. Heuristic point of view

3. Metrical point of view

4. Classes of functions for which the LaSalle Conjecture is a theorem
5. Other research directions

5.1. Belitskii-Lyubich Conjecture

5.2. The case of a real Banach space

5.3. The case of a complex Banach space

5.4. Picard operators with Ostrowski property

5.5. Stability of Picard operators under operator perturbation

2. HEURISTIC POINT OF VIEW
Let (X, —) be an L-space ((X,7) - topological space, —; (X, d) - metric space, i;
(X, |I) - normed space, U, —,...)and f: X — X be an operator. By definition
(see [47]) f is Picard operator (PO) if:
(1) Fr=A{z"};
() f"(x) = x*asn— o0, VaoelX.
Also, by definition the unique fixed point of a Picard operator is a global attractor
(see [36]).
From the above definition it follows:
Lemma 2.1. If f is Picard operator, then:
(a) Ff=Fpm ={z*},VneN":={1,2,...,n,...};
(b) all iterates, f*, k € N*, of f are Picard operators.

Lemma 2.2. If f is continuous and there exists k € N* such that f* is Picard
operator, then f is Picard operator.

From the above considerations, our first remark is the following:
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Remark 2.1. [t is reasonably (naturally) to look at f* when we choose conditions
which tmply that f is Picard operator. For a better understanding of this remark, here
are some examples.

Example 2.1 (Ostrowski Theorem (see [38])). Let f : R™ — R™ be such that:
(i) there exists x* € R™ with f(x*) = x*;

(ii) there exists a neighborhood V(z*) of z* such that f € CY(V(z*),R™);

(i) p(df (z7)) < 1.
Then there exists a neighborhood Vi (z*) of x* such that Vi(z*) C V(z*), f(Vi(z*)) C
Vi(z*) and f|V1(x*) :Vi(z*) = Vi(a*) is a Picard operator.

In this case p(df (z*)) < 1 implies that, p(df*(x*)) < 1, for all k € N*. Indeed, we
have

dff (@) = df (f* (@) df*~H(a) = ... = (df (a*)".

So, p(df*(«*)) = p((df (z*))*) = (p(df ()" < 1.

Example 2.2 (see [29]). We have a similar situation in the case of Kitchen Theorem,
which is a generalization of Ostrowski Theorem for an operator f: X — X where X
is a (real or complex) Banach space and f satisfies similar conditions.

We remember that if (X,||-||) is a complex Banach space and f : X — X is a
bounded linear operator with the spectrum o(f), then (see [4], [23], [28], [5])

= nf 1]

. T
p(f) = A%w = lim [lf*" = inf

If X is a real Banach space and f : X — X is a bounded linear operator, Xc the
complexification of X, fc : Xc¢ — Xc the complezification of f, then by definition,
p(f) = p(fec).

Example 2.3 (see [23], [27], [28]). Let X be a Banach space and f : X — X be a
bounded linear operator. If p(f) < 1, then f is a Picard operator. In this example,
df¥(x) = f¥, Vo € X and k € N*, and

pdf* () = p(f*) = (p(f))* < 1.
Example 2.4 (see [12]). The function, f : R3 — R? defined by,

X T T
(a1, @, x3) := (?1 + x3(z1 + T273)2, ?2 — (21 + 2273)?, ?3)7

is a counterexample to LaSalle Conjecture, i.e.,
p(df (z1,z2,23)) < 1, for all (x1,x0,23) € R3,

f(0) =0 and f is not a Picard function. In this case, for example, p(df?(2,0,2)) > 1.
Indeed, we have that

f/(xlax27x3) =

% + 2x5(x1 + x223) 223 (21 + w273) (21 + 29w3)? + 229w3(71 + T2w3)
= —2(:[}1 + 1‘2{1,‘3) % - 21‘3(1‘1 + 33‘25(13) —2$2($11+ ,’Bgl‘g)
0 0

2
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and
(fz)/(2’ 0,2) = f/(f(Q’ 0, 2))f/(27 0,2) = fl(gv -3, l)f/(Q, 0,2).
By a simple calculation we have that, p((f%)'(2,0,2)) > 1.

So, we have the second remark.

Remark 2.2. In the case of the LaSalle Conjecture, in general, p(df(x)) <1,V z €
R™, does not imply that p(df¥(x)) < 1,V z € R™, V k € N*. So, the reasonable
conjecture is the following:

Conjecture 2.1. Let f: R™ — R™ be such that:
(i) Fy #0;
(ii) f € CLR™,R™);
(ii7) p(df¥(z)) <1,V z € R™, V k € N*.

Then f is a Picard operator.

3. METRICAL POINT OF VIEW

A metrical condition which is invariant by iteration is nonexpansivity. If we put
this condition on f : R”™ — R™ with respect to a suitable norm on R™ we have the
following result.

Theorem 3.1. Let f: R™ — R™ be such that:
(1) there exists x* € R™ with, f(a*) = z*;
(ii) there exists a neighborhood V (z*) of z* such that f € CY(V(z*),R™);
(i) p(df (z)) <1;
(iv) f is nonexpansive with respect to a strict convex norm on R™.
Then:
(a) Fy = Fpn ={a*}, VneN;
(0) fl(z) = x* asn — o0, Vo € R™, ¥V X €]0,1], where fx is the Krasnoselskii
operator, fx(z) = (1 — Nz + \f(z).

Proof. (a). Let ||-|]| be a strict convex norm on R™ such that

[f (@) = FWll < llz —yll, ¥ 2,y € R™.

This condition implies that F is a convex subset of R™. On the other hand, by
Ostrowski Theorem, condition (éii) implies that z* is an isolated fixed point, i.e.,
Fy = {az*}. Since, z* € Fyn, f is nonexpansive and p(df™(z*)) < 1, we have that
Fpn ={2*}, ¥V n e N*.

(b). Let for z € R™, r > 0 be such that z € B(z*,r). It is clear that, f\(B(z*,r)) C
B(z*,r). By a Ishikawa theorem (see [9]), fx : B(0,r) — B(0,r) is asymptotically
regular. But {f{},en has a convergent subsequence, f{'(xz) — y* € Fy. Since fy is
nonexpansive it follows that (see [6], [9])

f(z) > y* =2x%, asn — 0.

So, fx is a Picard operator for each A €]0,1][. O
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Remark 3.1. For more considerations on Krasnoselskii operator see: [6], [9], [48],
[54], ...

A way to have nonexpansivity for the function f is to use the singular values of
df (x). So, we have

Theorem 3.2. Let f: R™ — R™ be such that:
(i) Fy #0;
(”) f c Cl(Rm,Rm);
(iii) p((df(x))Tdf(x)) <1,V x € R™.
Then:
(a) f is contractive with respect to the |2 norm on R™;
(b) Fy = Fpn = {2*}, ¥ n € N;
(¢) f"(x) = z* asn — o0, VxeR™
Proof. We consider on R™ the |||z norm. The condition (i7¢) imply that (see [5],
[28], [38], [42]), |ldf (x)]]2 < 1, V 2 € R™. So, we have (a). Since (i) and (a) imply
that Fy = {z*} and f(B(z*,r)) C B(z*,r), V r > 0, from the Niemytzki-Edelstein
theorem (see [49], p.38) we have (b) and (c) O

Remark 3.2. For more considerations on contractive operators see: [7], [38], [42],
[43], [49], ...

If we take on R™ the ||-|| oo norm, then from the Mean-Value Theorem (for a function
from R™ to R) we have the following result.

Theorem 3.3. Let f € C*(R™,R™), f = (f1,..., fm), be such that

3 |8J(;’“(“T)| <1, VzeR™ k=Tm.
Jj=1 i

Then f is contractive with respect to ||:||co norm on R™. Moreover if in addition,
Fy # 0, then f is a Picard operator.

4. CLASSES OF FUNCTIONS FOR WHICH LASALLE CONJECTURE IS A THEOREM

4.1. TRIANGULAR FUNCTIONS

Let f: R™ — R™, f(x1,...,2m) = (fi(z1), fo(x1,22),. .., fm(@1,...,Zm)) be a
triangular function. In [13] the authors prove that for this class of functions the
LaSalle Conjecture is a theorem. Other results for triangular functions are given in
[2], [16] and [18]. From the following abstract result we have a new result in which
the condition, F'y # (), does not appear.

Fiber Contraction Theorem (see [45], [47], [49], [52]). Let (X, dk) be a complete
metric space, k =1,m. Let fr, : Xy x...xXp = X, k=1,mand f = (f1,..., fm):

m m
H X — H Xi.. We suppose that:
k=1 k=1

(i) f1 is a Picard operator;
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(i) fr(x1,...,xk-1,°) : Xk = Xg is lp-contraction, k = 2,m, ¥V (x1,...,x5_1) €
RA-T,
Then:

(a) Fy={z"};
(b) if f is continuous in x*, then f is a Picard operator.

Theorem 4.1. Let f: R™ — R™ be a triangular function. We suppose that:
(i) fi € C(R,R) and there exists Iy € [0,1] such that, |fi(z1)] <11,V 1 € R;
(44) a%kfk(wl,...,xk,l,) € CR,R), ¥V (z1,...,75_1) € RF71 &k = 2'm and
there exists l, € [0, 1] such that

|ifk(m1,...,xk)’ <lp, ¥ (x1,...,2) €R* k=2 m;
6l‘k

(#i1) f is continuous.
Then:
(a) Fy = Fpmn ={z*}, Vn e N¥;
(b) f*(x) > z* asn — oo, V€ R™.

Proof. From the Mean-Value Theorem for the functions fi(z1,...,25_1,) we are in
the conditions of the Fiber Contraction Theorem. O

4.2. THE CLASS OF FUNCTIONS
f:Rm %Rm’ f('rlw"’xm) = (I27"'axm7h(‘rlv"'7xm))

In [15] the authors consider the class of functions f : R™ — R™ defined by,
flxr, .. xm) == (z2,...,&m, h(z1,...,2m)), where h is a function from R™ to R.
A. Cima, A. Gasull and F. Mafosas ([15]) present counterexamples to the LaSalle
Conjecture (i.e., the third LaSalle conjecture in [33]). On the other hand they prove
that if instead of p(%ﬂf;ﬂ)) < 1 one put p(’%ﬁ” < 1, then the conjecture is a
theorem, i.e., the fourth LaSalle conjecture is a theorem for this class of functions.

On the other hand in the theory of difference equations appears this class of func-

tions (see [46] for example). The difference equation
Todm = MTny .o Tngm—1), " EN, (zg,...,Tm-1) € R™,
was studied by many authors. See for example: [7], [38], [44], [46], [51], [52], [56], ...

The following question arises.

Problem 4.1. To apply these metric results to find classes of functions for which
LaSalle Conjecture is a theorem.
For example, the following result is given in [15].

Theorem 4.2. We suppose that:
(i) h € C*(R™,R);
(73) there exists x* € R™ with f(z*) = x*;

(iii) \8;—(%)\ <1,VzeR™
=1 9
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(a) Fy={a"};

(b) f*(x) > z* asn — oo, Ve R™.

Using Lemma 2.2 and Theorem 3.3 we shall give a new proof for Theorem 4.2. To
do this we remark that f™ satisfies the conditions of the Theorem 3.3. Indeed, first we
remark that, }(ﬁ)’(u)‘ <1,Yu € R, where h : R — Ris defined by h(u) := h(u, ..., u).
So, h is a contractive function. On the other hand we have that

(1,...,xm) €EFy & 1=... =2y, =uc F;.

The contractivity of & implies, Fr={z*}.
Now we shall prove that the condition (i#¢) implies that

Z| \<1 VaeR™ k=T1,m.

For a better understanding of the proof and for simplicity we shall present the proof
in the case m = 2 and m = 3.
In the case m = 2 we have that

P (z1,m2) = ()1, (f)2) = (hlz1,22), h(z2, h(z1,22))

and
2
A(f?)2 oh oh oh
; oz, (z1,22) Ds (z2, h(z1, 22)) - a—xl(ﬂchxz) + 871(:62711(961,%2)) +

Oh Oh

+ a5 B (w2, h(w1,72)) = Tﬁ(%ﬁ(%@z)) +
oh Oh Oh

+ — 91 (ZZ?Q, h($1,$2)) [87331(561,1‘2) + 671_2(1‘1, 132)]

From the condition (iii) we have that

o(f Oh
Z| g% (z1,22)| < |87$1(5027h(5517932))| +

j=1

oh oh
+ ‘371‘2(*%'23 h(wl7x2))‘ |87I1

oh
($1,$2)| + ’8732(%7902” <
oh oh
< |87x1<.’1?2,h(:1}1,$2))| + |87x2($(}2,h($1,$2>)‘ <1,V (:1?1,:1)2) € R2.

For the case m = 3 we have

a1, 22, 23) = (W21, 22, 23), (22, 23, (21, 2, 73)),

h(zs, h(z1, 2, 23), h(z2, T3, h(21, T2, 73))))
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3
o(f3 oh oh
Z {f )2(3?1,332,1‘3) = 87($27333,h($1,$2,$3)) : 87(301,96‘2,333) +
3 1

+ 768561 (z2, w3, h(21, 22, 3)) + 78853 (x2, 3, h(21, 2, 73)) - —;ZLQ (71,79, 73) +
+ — (w2, 3, h(21, 22, 3)) + = (w2, T3, h(w1, X2, 23)) - =—— (21, X2, 23)) =
Oxa 83;3

8.133
oh oh
= ~— (w2, 23, h(w1, 22, 73)) + 8762@2,953,/1(11@2@3)) +

8.’171
oh oh
+ 92s (w2, w3, h(x1,22,23)) [axl(%hwz,xs) +

From this it follows that

6$2

(@1, 2, 3) + %($1,$27$3) .

|6(f3)2
61‘]‘

(1’1, (EQ,.’Eg)’ < 1.

3
i=

1

Also we have
3

Z A(f?)s oh

= ax] (.13173,'2,1'3) = 871;2(333,h($17$2,$3),h($2,$3,h(m1,$27$3))) ’
By L T2 T3) F 5 Fs, T, B2, T3), W2, T3, AT, T2, T3
oh Oh

(172,I3,h($1,1‘2,273)) : 7('%179:271‘3) +

8;1@1

8303

oh
+37:E2(x37h(x17m25$3)a h($27x3ah(xl7x27m3))) : 7(1’1’1'27-7:3) +

(91’2
oh oh
+87$3(I37h(9517Iz»5173),h(zzaxs’h(ﬂﬂhxm%))) c (w2, w3, h(1, 22, 73)) +

8331

oh oh
+—(x3, h(z1, 22, x3), h(x2, 3, (21, T2, 23))) - 5— (T2, T3, h(x1, T2, x3)) -

81’3 ox

3
oh
.87:1;2(‘%17502,1’3) + Tm(x3’h(xl’x2’$3)’ h($2,$3,h($171’2,1‘3))) -+
oh oh
+87172(l'3,h<$1,372,$3), h($27l‘3,h(l’1,$27$3)>) : 7(5(:1’1"27-7/‘3) +

al’g

h oh
+7($3,h(’JJl,LL’Q,1173),h(ﬂ?g,‘rg,h(‘fl,l’g,xg))) : 7("1:2"%37}1(1‘171’2’373)) +
8.%‘3 6.272
oh oh
+o— (w3, (w1, w2, 23), h(w2, 23, h(21, T2, 73))) - 77— (T2, T3, h(T1, T2, 73)) -
81‘3 8Z3
oh oh
'T%(xlax27x3) = 7(1’3,h($1,$2,$3),h(l’g,l’g,h(l‘l,zQ,Ig))) :

(9.%2
oh Oh

oh oh
.[a—xl($17$27.%‘3) + 92, (.’L‘l,mg,l‘g,) + aixg(l‘hxg,xg)} +
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oh Oh
+—=— (23, h(x1, 22, x3), h(x2, 3, (21, T2, 23))) - 5— (T2, T3, h(x1, T2, 23)) -
Oxs Ox3

Oh
'[Tm(xhxmﬁ) + 671:2(%1,172,133) + 87%(1?1,952,503)} +

oh
+67.’,U3(x3’ h($1,$2,$3)7 h(iEQ,ZL'g, h(xla ‘r27x3))) : [

h
87331@27%’ h(xla x27x3)) +

oh
Ta, 3, h(w1, 22, 23))] + 72— (w3, h(21, B2, 23), h(w2, T3, h(T1, T2, 73))).

Oxo 01
From this we have that

3
0 3
Z’ g _)3(m1’x27$3)‘ <1,V (21,22,23) € R®.
= 9t

So, f™ is Picard operator. Now the proof follows from Lemma 2.2.

5. OTHER RESEARCH DIRECTIONS

5.1. BELITSKII-LYUBICH CONJECTURE

In [5] (p. 41) G.R. Belitskii and Yu.I. Lyubich formulated the following conjecture:

Let K:=R or C, Q C K™ be open subset, 21 C K™ be a compact convex subset
with Q1 C Q. Let f: Q — K™ be a function. We suppose that:
(i) f € CHQ,K™);
(@) f(Q1) C Q;
(731) p(df(x)) <1,V x e Q.
Then f|Ql : Q1 — Q4 is a Picard operator.

Commentaries:

(1) From Brouwer fixed point theorem it follows that, Fy # 0.

(2) In the paper [53], M.-H. Shih and J.-W. Wu have given a counterexample in
the case K := R and m := 2. For example, let 0y := {(x1,72) € R? | |21] + |z2| < 1}
and f:Q; — Qp be defined by, f(x1,22) := (©(22), p(x1)), where

4(t—3)? for i <t<1;
o(t):=<0 for |t| < %;
At +3)? for —1<t<—3.
We remark that:
(i) Fr ={(0,0)};
(@) p(f'(z1,22)) =0,V (z1,22) € .
On the other hand, Fy» = {(0,0),(0,1),(1,0)}. This implies that f is not a Picard

function (see Lemma 2.1).
In this counterexample,

p((f*)(0,1)) =4>1.
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Indeed we have

(f2)/(0, 1) = f/(f(oa 1))f/(03 1) = f/(lv O)f,(ov 1) =

(00865

(3) Shih and Wu ([53]) prove that the Belitskii-Lyubich Conjecture is a theorem
in the case K := C.
(4) In the same paper Shih and Wu give the following result:

Theorem 5.1. Let X be a complex Banach space, 0 C X be a nonempty, bounded,
open and convex subset and f : Q — Q be compact and holomorphic function with
f(z*) =a*. Then x* is globally asymptotically stable if and only if, p(df (z*)) < 1.

(5) From the Kitchen Theorem ([29]) and our heuristic point of view (see §2) the
following open problem arises:

Conjecture 5.1. Let X be a real Banach space, 2 C X be an open subset, 21 C )
be bounded, closed and conver and f € C1(Q, X). We suppose that:

(1) f(u) CQ;
(i) f|Ql : Q. — Qy is a compact operator;

(iii) p(dff(z)) <1,V x € Oy, V k€ N*.
Then f|Ql : Q1 — Qy is a Picard operator.

(6) References: [11], [24], [29], [30], [40], [53].
5.2. THE CASE OF A REAL BANACH SPACE

From the above considerations in this paper the following open problem arises:
Conjecture 5.2. Let X be a real Banach space and f: X — X be an operator. We
suppose that:

(i) feCHX,X);
(i1) p(df*(z)) <1,V re X,V keN*,
(43i) there exists x* € X with f(z*) = x™*.
Then f is a Picard operator.
Commentaries:
(1) We think it is useful to look to the following problems:

(A) There exist counterexamples to LaSalle Conjecture which satisfy the condi-
tions of Conjecture 5.27
(B) In which conditions the following implication holds:

feC X, X), p(df(z)) <1, VazeX = pldff(x)) <1, Vo eX, VkeN?

(C) There exist some connections between Conjecture 5.1 and Conjecture 5.27
(2) References: [12], [13], [14], [23], [28], [29], [35], [36], [39], [41].

5.3. THE CASE OF A COMPLEX BANACH SPACE
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The LaSalle Conjecture take the following form in this case.

Let X be a complex Banach space and f : X — X be an operator. We suppose
that:

(i) f is holomorphic operator;
(#) pldf(x)) <1, VzeX;
(iii) Fy # 0.
Then f is a Picard operator.

Commentaries:

(1) Asin the real case, the LaSalle Conjecture is a theorem for a triangular function,
f:Ccm—=Cm.

(2) Tt is useful to study the connections between LaSalle Conjecture and Belitskii-
Lyubich Conjecture in a omplex Banach space.

(3) References: [11], [53], [1], [24], [30], [32], [40], [45], [55], [31], [57], [58].

5.4. PICARD OPERATORS WITH OSTROWSKI PROPERTY

Let (X,+,K, ||||) be a Banach space, f : X — X be a Picard operator.
By definition, f has the Ostrowski property (limit shadowing property in [17], [21],
[48], [49], [50], [59]; plus-global stability in [16]) if the following implication holds
(Fy ={z"}):
Yn € X, [Unt1 — flyn)| = 0asn =00 =y, = 2" as n — oo.
The problem is in which conditions a Picard operator has the Ostrowski property?

Commentaries:

(1) The notion operator with the Ostrowski property arise from Ostrowski Theorem
on contraction (see [38], p. 394). In [37] the authors prove this property for Schroder-
Perov contraction (see [49], [42]). Other examples of generalized contractions were
given in [49], [50], [6], [26], [37]. The following problem is an open one: Which
generalized contractions have the Ostrowski property?

(2) Let f € C*(X, X) be such that

(1) Fy #0;
(ii) p(dff(z)) <1,V z e X,V ke N*,
In which conditions the operator f is a PO with Ostrowski property?

(3) References: [6], [16], [17], [21], [26], [37], [38], [48], [49], [59].

5.5. STABILITY OF PICARD OPERATORS UNDER OPERATOR PERTURBATIONS

Let (X,+,K,|-|l) be a Banach space, f : X — X be an operator. There exist
notions of fixed points and of iteration processes stability under operator perturba-
tions. The problem is what we understand by stability, under operator perturbations,
of a global asymptotic stable fixed point? In other words, what we understand by
stability, under operator perturbation of a Picard operator?

Commentaries:
(1) From the dynamical system point of view the problem is the following:
Let f € C1(X, X) be such that:
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(i) pldf(a)) < 1,¥ o € X;
(ii) f is a Picard operator.
In which conditions the discrete dynamical system, (X, f) is structurally stable?
(2) Let (X,+,K,|||]) be a Banach space, f,g : X — X be two operators. We
suppose that:
(¢) f is Picard operator (Fy = {z*});
(i) || f(z) —g(z)]| <n, V2 € X, for some n € RY.
The problem is to give an estimate of ||¢g"(z) — z*||.
(3) Let f,g: X — X be such that:
(i) f.9 € CH (X, X);
(ii) p(df¥(z)) <1,Vz € X,V k€ N*,
In which conditions we have that
pld(f +¢)(x) <1, Vze X, VkeN?

(4) Following K. Goebel (1967), an operator g : (X, ||-]]) = (X,]|]|]) is called a
strong contraction if for every € > 0 there exists a norm, ||-||., on X equivalent with
||| such that

lg(x) =gl <ellz —yle, V o,y € X.

Let f: X — X be a Picard operator and g : X — X be a strong contraction. The
problem is in which conditions on f, f + g is Picard operator?

For example, let X := C[0, 1] with maz norm and f,g: X — X. We suppose that:

() there exists [ € [0,1] such that:
[f(@)(8) = F)@)] < () —y@)], V 2,y € X, t €[0,1];
(i1) g(z)(t) :== fot K(t,s)z(s)ds with K € C([0,1] x [0,1]), | K| < 1.
Then:
(a) f is a l-contraction with respect to

ol = goas, (l2(0)le?)
for all € > 0;
(b) g is a strong contraction (C[0,1],]]);
(¢) f+ gis (I + e)-Lipschitz with respect to ||||c, for all € > 0, i.e.,, f+ g is a
Picard operator.

(5) References: [6], [8], [19], [20], [22], [25], [31], [34], [39], [43], [48], [50].
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