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Abstract. In this paper, we consider a nonlinear higher order three-point boundary value problem
on time scales. We establish the criteria for the existence of one or two positive solutions for a higher
order boundary value problem on time scales by using a result from the theory of fixed point index.
Later, Leggett-Williams fixed-point theorem is used to investigate the existence of at least three
positive solutions for a higher order boundary value problem on time scales. As an application, to
demonstrate our results we also give an example.
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1. INTRODUCTION

The theory of time scales, which has received a lot of attention recently, was in-
troduced by Hilger [12] in his Phd thesis in 1988. A result for a dynamic equation
contains simultaneously a corresponding result for a differential equation, one for a
difference equation, as well as results for other dynamic equations in arbitrary time
scales. We refer the reader to the excellent introductory book by Bohner and Peterson
[7] and the volume edited [8] edited by them.

The study of three-point boundary value problems was initiated by Neuberger [18]
in 1966. The first result concerning existence of positive solutions for higher order
three-point boundary value problems was given by Eloe and McKelwey [10] in 1997.
They obtained sufficient conditions for the existence of at least one and two positive
solutions by using the fixed point theorem in a cone. Since then, by applying the cone
theory techniques, more general nonlinear three point boundary value problems have
been studied by several authors. We refer the reader to [2, 14, 17, 23].

In 2001, Agarwal and O’Regan [1] discussed the following boundary value problem
on a measure chain

WSS @) + (b u(o (1)) =0, € [a,],
u(a) =0 =u?(c (b))
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and then, in Remark 2.5, they left to the reader the details of the problem

Y22 () + fty(a(t) =0, t € [a,b],
ay(a) — By*(a) =0, y*(o(b)) =0, a>0, 8>0.

In this paper we are concerned with the existence of single and multiple positive
solutions to the following nonlinear higher order three-point boundary value problem
on time scales:

{ (—1)"yA" (1) = f(t,y(o(1), te[tits) CT, neN
yA (o) =0, ayt(t) = Byt () =yt (ta),

for 0 <i <n—1, where « > 0 and [ > 0 are given constants. We assume that
f i [tr,o(ts)] x [0,00) — [0,00) is continuous. Throughout this paper we suppose T
is any time scale and [t1,t3] is a subset of T such that [t1,¢5] = {t € T:t; <t < #3}.

In recent years, there has been much research activity concerning the second order
three-point boundary value problems for dynamic equations on time scales. We refer
the reader to the recent papers [3, 5, 9, 13, 19, 21, 22] and references cited therein.
However, there are few works on higher order three-point boundary value problems
on time scales (see [4, 6, 20, 24]).

We have organized the paper as follows. In Section 2, we give some lemmas which
are needed later. In Section 3, we use a result from the theory of fixed point index
to show the existence of one or two positive solutions for the three-point boundary
value problem (1.1). In Section 4, we establish the existence criteria of at least three
positive solutions of (1.1) by using Leggett-Williams fixed-point theorem.

(1.1)

2. PRELIMINARIES
The linear boundary value problem
—yA" (1) = h(t), 1 € [ta,15),
y2(0(t3)) =0, ay(t) — By>(tr) = y*(t2),

has the unique solution

o(ts) o(t3) a(ts)
y(t) = / (o(s) + g —t1)h(s)As + é / h(s)As + / (t —o(s))h(s)As.

If G(¢,s) is Green’s function for the boundary value problem
—yA (1) =0, t € [tr,ta],
y2(o(ts)) =0, ay(t) — By>(t1) = y>(t2),

then we have
Hl(tas)a tl S S S t27

G(t,s) = { (2.1)

H2(t78)7 t2 <s S t37
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where

o(s)+ L2 —t, o(s) <t
t+2—t,  t<s,

Hl(t,s) = {

and
o(s)+ % —t1, o(s)<t,

Hg(t,s) =
t+ 28—, t<s

To state the main results of this paper, we will need the following lemmas.

Lemma 2.1. If « > 0 and 8 > 0, then the Green’s function G(t,s) in (2.1) satisfies
the following inequality
t—1

G(t,s) > 70(753) —

G(o(ts), s)

for (t,s) € [t1,0(t3)] X [t1,13].
Proof. We proceed sequentially on the branches of the Green’s function G(t,s) in
(2.1).

(¢) Fix s € [t1,t2] and o(s) < t. Then

G(t,s) =o(s) + B_ t
!
and
Glts) _ o t=ti
G(O’(tg), 5) U(tg) — tl
(i7) Take s € [t1,t2] and ¢ < s. Then

G(t,S)Zt—Fé—tl
o

and
G(t,s)  t+2-1 t—t

Glo(ts),s)  o(s)+ 2 —t; " olts) —t1
(#4i) For s € (ta,t3] and o(s) < t, we have

1
Glt,s) = ols) + 5% —t
and
Glts) _ o t—ti
G(O’(t3), S) O'(tg) —t
(tv) Let s € (ta,t3] and t < s. Then
1
G(t, s) IR —t
!
and
G(t, s) t+ 2 gy t—t

Glo(ts)s)  o(s) + L 4, ~ olts)—t1
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Lemma 2.2. Let o > 0 and § > 0. Then the Green’s function G(t,s) in (2.1)
satisfies

0 < G(t,s) <G(a(s),s)
for (t,s) € [t1,0(t3)] X [t1,13].
Proof. Since for s € [t1, 3]

G(o(t3),s) =o(s) + g —t1 >0

and for s € (t2,0(t3)]

Glo(ts), s) = o(s) + % >0,

we obtain G(t,s) > 0 from Lemma 2.1.
To show that G(¢,s) < G(o(s), s), we again deal with the branches of the Green’s
function G(t,s) in (2.1).
(1) Fix s € [t1,t2] and o(s) < t. Then it is obvious that G(t, s) = G(o(s), s).
(73) Take s € [t1,t2] and t < s < o (s).
Since G(t, s) is increasing in t, G(t,s) < G(o(s), s).
(#3i) For s € (ta,t3] and o(s) < ¢, it is clear that G(t,s) = G(o(s), 3).
(iv) Let s € (t2,t3] and t < s.
Since G(t, s) is increasing in t, G(t,s) < G(o(s), s). O

Lemma 2.3. Assume a >0, 8> 0 and s € [t1,t3]. Then the Green’s function G(t, s)
in (2.1) satisfies
min G(t,s) > K|G(-,9)],

tefta,o(ts)]
where
6 + 1 + Oé(O'(tg) — tl)
and || - || is defined by ||x|| = max |x(¢)].
te[tl,o'(tg)]

Proof. Since the Green’s function G(¢,s) in (2.1) is nondecreasing in ¢, we get

min  G(t,s) = G(ta, s).
tEfta,o(t3)] ( ) ( 2 )
Moreover, it is obvious that ||G(:, s)|| = G(o(s), s) for s € [t1,t3] by Lemma 2.2.
To show that G(t2,s) > KG(o(s), s), we again deal with the branches of the Green’s
function G(t,s) in (2.1).
(¢) If s € [t1,t2), then we have

G(ta,s) =o(s) + g —t;1 > K(o(s) + g —t1) = KG(0(s),s).

(i1) If s = t9, then we obtain

G(ta,s) =t2 + g —t1 > K(o(s) + g —t1) = KG(o(s),s).
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(741) If s € (t2,13], then we have

G(t2, )—t2+ﬂ%—t1>K( ()+5i—t1) KG(a(s),s). O

If we let G1(t,s) := G(t,s) for G as in (2.1), then we can recursively define
o(t3)
Gj(t,s) = / Gj_1(t,r)G(r,s)Ar
t1
for 2 < j <n and G,(t, s) is Green’s function for the homogeneous problem
(=17 () =0, t€ [t 1),
y¥ T (0(t) =0, oyt (0) = By () =y (), 0<i<n- L
Lemma 2.4. Let o > 0, 8 > 0. The Green’s function G, (t,s) satisfies the following
inequalities
0 < Gu(t,s) <L HG(,8)|, (t,s) € [t1,o(t3)] x [t1,t3]
and
Gty s) = K" M Y[G(5)ll, (t5) € [ta, olts)] X [tr, ]
where K is given in (2.2),

o(ts)
L= [ l6esias >0 (2.3)
ty
and
o(ts)
M = / IG(-, s)||As > 0. (2.4)
to
Proof. Use induction on n and Lemma 2.3. O

Let B denote the Banach space C[t1, o(t3)] with the norm

Iyl =, ax = [y(®)]
Define the cone P C B by
KM 1
P={yeB:ylt)>0 t . 2.5
(weByl) 20, _min ylt) > =l (25)

where K, L, M are given in (2.2),(2.3),(2.4), respectively.
(1.1) is equivalent to the nonlinear integral equation

o(ts)
mz/wmmwmm& (2.6)
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We can define the operator A: P — B by

o(ts)

Ay(t) = [ Gult.s)f(s.plo()s (27)
ty
where y € P. Then (2.6) can be written as y = Ay. Therefore solving (2.6) in P is
equivalent to finding fixed points of the operator A. If y € P, then by Lemma 2.4 we
have
o(ts)
min  Ay(t) = min  G,(t,s)f(s,y(o(s)))As
i y(t) J el (t,s)f(s,y(o(s)))
KnMn71 olta)
> S [ mex [Gu(ts)lf (s ple(s)As
L teftr,o(ts)]
ty
KnMn—l
= WHAZ/H-
Thus Ay € P and therefore AP C P. In addition, A : P — P is completely continuous
by a standard application of the Arzela-Ascoli Theorem.
We will apply the following well-known result of the fixed point theorems to prove
the existence of one or two positive solutions to the (1.1).

Lemma 2.5. [11, 15] Let P be a cone in a Banach space B, and let D be an open,
bounded subset of B with Dp := DN P # () and Dp # P. Assume that A: Dp — P
is a compact map such that y # Ay for y € 0Dp. The following result hold.

(@) If || Ay|| < |ly|| for y € 0Dp, then ip(A,Dp) = 1.

(2) If there exists an b € P\ {0} such that y # Ay + Ab for all y € ODp and all
A >0, thenip(A,Dp) =0.

(iii) Let U be open in P such that Up C Dp. Ifip(A,Dp) =1 andip(A,Up) =0,
then A has a fived point in Dp \ Up. The same result holds if ip(A, Dp) = 0 and
ip(A,Up) = 1.

Now, to prove the existence of at least three positive solutions for the (1.1), we
state the Leggett-Williams fixed point theorem [16].

Theorem 2.6. Let P be a cone in the real Banach space E. Set
P..={zeP:|z| <r}
P,a,b) :={z € P:a<¢(z), [z <b}.
Suppose A : P. — P, be a completely continuous operator and i be a monnegative

continuous concave functional on P with ¥ (u) < ||ul| for all w € P.. If there exists
0 < p<q<l<r such that the following condition hold,

(1) {u € P(t,q,1) : Y(u) > q} #0 and Y(Au) > q for all u € P(¢,q,l);

(11) [|Aul| <p for [lul < p;

(33) Y (Au) > q foru € P(y,q,r) with || Aul| >,
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then A has at least three fized points ui,us and uz in P, satisfying

lui| < p, (u2) > q, p < |lus|| with ¢(us) < q.

3. ONE OR TWO POSITIVE SOLUTIONS
For the cone P given in (2.5) and any positive real number r, define the convex set

P.o={yeP:|yl<r}

and the set
Q.. ={yeP: min t) <er
{y te[tw(ts)]y( ) }
where
KnMn—l

and K, L, and M are defined in (2.2),(2.3), and (2.4), respectively. The following
results are proved in [15].

Lemma 3.1. The set Q). has the following properties.
(1) Qis open relative to P.
(i) P, C Q, C P.

(#i1) y € O, if and only if min y(t) = er.
te[tz,a'(tg)]

() If y € 00, then er < y(t) < r fort € [ta,0(t3)].
As in [21], for convenience, we introduce the following notations. Let

fro= min{ min M TS [er,r]}

teftz,o(ts)] T

f(t,y)
U= : 0
fo = max {te[?f,?égn iy € [0,7]

t
f¢:=limsup max 1t.y)
y—a t€[t1,0(t3)] Yy

t
fo :=1liminf min ft.y)
y—a teftz,o(ts)] Y

(a:=0",00).

In the next two lemmas, we give conditions on f guaranteeing that ip(A, P.) =1
orip(A, Q) =0.

Lemma 3.2. For L in (2.3), if the conditions

1
fo < 4 andy # Ay fory € OF;,

hold, then ip(A, P.) = 1.
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Proof. If y € OP,, then using Lemma 2.4, we have
o(ts)
Ayt) = [ Gutts) (s (o)A
t1
o(ts)
< stz [ Geslas
t1

< Lh=r=|yl.
It follows that ||Ay| < |ly|| for y € OP,. By Lemma 2.5(7), we get ip(4,P,) =1. O

Lemma 3.3. Let
o(ts) !

N = / min  G,(t, s)As . (3.2)
tE[tz,O‘(t;g)]
ta
If the conditions
T > Neandy # Ay fory € 09,

hold, then ip(A, Q) =0.

Proof. Let b(t) =1 for t € [t1,0(t3)], then b € OP;. Assume there exist yg € I, and
Ao > 0 such that yo = Ayo + Aob. Then for t € [to, o(t3)] we have

yo(t) = Ayo(t) + Aob(2)
O'(tg)
> [ Gt (o) A5+
ta
G'(tg)
> Ner min  Gn(t,$)As + Ao
te(ta,o(t3)]
to
= er+ M.

But this implies that er > er 4+ Ag, a contradiction. Hence, yg # Ayo + Aob for
yo € 0, and Ao > 0, so by Lemma 2.5(i7), we get ip(A4, ;) =0. O

Theorem 3.4. Let L,e, and N be as in (2.3),(3.1), and (3.2), respectively. Suppose
that one of the following conditions holds.
(C1) There exist constants ¢1,co,c3 € R with 0 < ¢1 < ¢o < ecs such that

ecy’ Jecs

1
o f > Ne, f§? < o andy # Ay fory € 0P,,.

(C2) There exist constants c1,ca,c3 € R with 0 < ¢1 < eca and ca2 < cs such that

1

L fos < T ca, > Ne, andy # Ay fory € 09.,.
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Then (1.1) has two positive solutions. Additionally, if in (C2) the condition f§* < 2=

is replaced by f* < Lln , then (1.1) has a third positive solution in P, .

Proof. Assume that (C1) holds. We show that either A has a fixed point in 9§, or
in P, \ Q.. If y# Ay for y € 99Q,,, then by Lemma 3.3, we have ip(4,Q,) = 0.
Since f5? < ﬁ and y # Ay for y € OP,,, from Lemma 3.2 we get ip(A, P.,) = 1. By
Lemma 3.1(ii) and ¢; < ¢, we have Q., C P, C P.,. From Lemma 2.5(4ii), A has a
fixed point in P, \ Q,. If y # Ay for y € 99,,, then from Lemma 3.3 ip(A, Q.,) = 0.
By Lemma 3.1(i4) and ¢y < ecs, we get P., C Poe, C Qc,. From Lemma 2.5(iii), A
has a fixed point in Q.; \ P.,. The proof is similar when (C2) holds and we omit it
here. g

Corollary 3.5. If there exist a constant ¢ > 0 such that one of the following condi-
tions holds:

(H1) N < fo, fao <00, f§ < 7, and y £ Ay for y € OP,.

(H2) 0 < f9, f* < 2, f¢. > Ne, and y # Ay for y € 9Q..

Then (1.1) has two positive solutions.

Proof. Since (H1) implies (C1) and (H2) implies (C2), the result follows. O

As a special case of Theorem 3.4 and Corollary 3.5, we have the following two
results.

Theorem 3.6. Assume that one of the following conditions holds.
(C3) There exist constants c1,ca € R with 0 < ¢1 < ¢ such that

. 1

g > Neand fi? < —

ecy - [n’

(C4) There exist constants c1,co € R with 0 < ¢1 < ecy such that

1
ot < — and &2 > Ne.

Ln €ecy —
Then (1.1) has a positive solution.

Corollary 3.7. Assume that one of the following conditions holds:
(H3) 0 < f* < 7% and N < fo < ooc.
(H4) 0 < fO< 2 and N < fo < 0.
Then (1.1) has a positive solution.

Example 3.8. Let T = R. Consider the following boundary value problem

y2

"
t
y'(t) + Fil
y'(5) =0, y(1)-2y'(1) =y(3),
wheren=t; =a=1,t3=3,t3 =5, =2 and f(t,y) = y;ﬁl. The Green’s function
G(t,s) of this problem is

=0, tell,5],
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where
s+1, s<t,
Hl(t,s):
t+1, t<s,
and
s+2, s<t,
Hg(t,s):
t+2, t<s.
Then we obtain
1 4
L=20and N=—, e=—, fOo=0=f>
an 107 e 77 f f )
16¢ c
C — d C: .
= Toez a9 N0 @i

If we take ¢ = 1, then the condition (H2) of Corollary 3.5 is satisfied. Hence, the
boundary value problem has two positive solutions such that nfin] y(t) # 2.
te[3,5

If we take ¢c; = 0.01 and co = 16, then 0 < ¢1 < ecy and the condition (C4) of
Theorem 3.6 is satisfied. Thus, the boundary value problem has a positive solution.

4. THREE POSITIVE SOLUTIONS
We will use the Leggett-Williams fixed point theorem to prove the next theorem.

Theorem 4.1. [16] Let o > 0, 8 > 0. Suppose that there exist numbers
an,1
Knpn—1 sr

such that the function [ satisfies the following conditions:

O0<p<g<

(i) f(t.y) < 7 for t € [t1,0(ts)] and y € [0.7],

an,1 :|

fort € [t2,o(ts)] and y € {q, T =1

(1) F(t.9) > Jemnr

(i11) f(t,y) < 7 Jort € [tr,0(t)] and y € 0,7,

where K, L, M are as defined in (2.2), (2.3), (2.4), respectively. Then (1.1) has at least
three positive solutions y1,ys and ys satisfying

max t)<p, ¢g< min t),
te[tl,o'(t3)] yl( ) p 4 te[tz,o'(t3)]y2( )

max  y3(t) with min y3(t) < q.
teftr,o(ts)] t€t2,0(t3)]

Proof. The conditions of Theorem 2.6 will be shown to be satisfied. Define the non-

negative continuous concave functional ¢ : P — [0, 00) to be

= i t
Y(y) ein y(t)
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and the cone P as in (2.5).
We have 9(y) < ||y|| for all y € P. If y € P,, then 0 < y < r and

T
t < —
fty) = 75

from the hypothesis (7). Then by Lemma 2.4, we get

o(ts)

/ max  Gn(t,s)f(s,y(o(s)))As

tefti,o(ts)]

| Ay]l

ty
o(ts)

[ / 1G (. )1 (5,9(0(s))) As

ty

IN

< 7

This proves that A : P, — P..
Since K < 1 and % <1,

Lnfl Lnfl

KnMn—1 Knpn—1
and
an,1
v <KM> >4
Then
an—l
P Y. .
{y € P, 4 foym=t) ¥ (W) > q} # 00
For all ye P(wa q, %), we have
an,1
= i t) < |lyl| € ——=—— for t € [ta,0(t3)].
1= te[gg(ltg)]y( )< lvll < KnpMn—1 or t € [ta,0(ts)]

Using the hypothesis (i4) and Lemma 2.4, we obtain

o(ts)

vy = [ min Gt f(sy((s)As
ty
o(t3)

KAt / 1G(.5)1f (s, u(o(5)) As

to

v

> q.

Hence, the condition (¢) of Theorem 2.6 is satisfied.

211
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If |ly|| < p, then f(t,y) < £ for t € [t1,o(t3)] from the hypothesis (ii). We find

o(ts)

Ayl = te[ggﬁsﬂGn(t’S)f(S,y(U(S)))AS
ty
a(ts)
< / 1GC, 9)]1 (5, y(0(s)) As
ty
< p.

Consequently, the condition (i7) of Theorem 2.6 is satisfied.
For the condition (ii7) of Theorem 2.6, we suppose that y € P(¢, ¢, r) with

an,1
| Ayl > Ko pn—1°

Then, from Lemma 2.4 we obtain
KnpMn—1
Ay)= min Ay(t) > —||4y|| > q.
Y(Ay) i y(t) 2 —=— 4yl > ¢

Since all conditions of the Leggett-Williams fixed point theorem are satisfied, (1.1)
has at least three positive solutions y1,y2 and y3 such that

max y1(t)) <p, ¢< min ys(t),

tefty,o(ts)] teft2,0(t3)]
max t) with min t) <q. O
te(t1,0(t3)] y3( ) te(ta,o(t3)] y3( ) 1

Example 4.2. Let T = {Z :n € N}U{0} U [3,5]. Takingn =1, t; = £, t5 = 3,
ts =5, a = %, B=2and f(t,y) = y;’%, we investigate the existence of at least three
positive solutions of this problem by using Theorem 4.1. The Green’s function G(t, s)
of this problem is
G(t,S) _ { Hl(tvs)a % <s<3,
Hy(t,s), 3<s<5

e o(s) + 2, o(s) <1,
Hl(t,s) = 19
t —+ 5 t < S,
and
o(s)+ %2, o(s) <t,
HQ(t’ S) = 29
t+ 2 t<s.

ThenwehaveKz%,L:% andM:%S.

If we take p = 0.04, ¢ = 6 and r = 24 then 0 < p < ¢ < £ < 7 and the
conditions (i), (i1), (ii7) of Theorem 4.1 are satisfied. Thus, the three-point boundary
value problem has at least three positive solutions yy, yo and ys satisfying

max t) <p, < min t),
te[%ﬁ]yl() P q te{gﬂyz()
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p < max ys(t) with min ys(t) < q.
te[£,5) te[3,5]
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