MULTIPLE POSITIVE SOLUTIONS FOR A HIGHER ORDER BOUNDARY VALUE PROBLEM ON TIME SCALES

İSMAİL YASLAN

Pamukkale University
Department of Mathematics 20070 Denizli, Turkey
E-mail: iyaslan@pau.edu.tr

Abstract

In this paper, we consider a nonlinear higher order three-point boundary value problem on time scales. We establish the criteria for the existence of one or two positive solutions for a higher order boundary value problem on time scales by using a result from the theory of fixed point index. Later, Leggett-Williams fixed-point theorem is used to investigate the existence of at least three positive solutions for a higher order boundary value problem on time scales. As an application, to demonstrate our results we also give an example. Key Words and Phrases: Boundary value problems, cone, fixed point theorems, positive solutions, time scales. 2010 Mathematics Subject Classification: 34B18, 34N05, 39A10.

1. Introduction

The theory of time scales, which has received a lot of attention recently, was introduced by Hilger [12] in his Phd thesis in 1988. A result for a dynamic equation contains simultaneously a corresponding result for a differential equation, one for a difference equation, as well as results for other dynamic equations in arbitrary time scales. We refer the reader to the excellent introductory book by Bohner and Peterson [7] and the volume edited [8] edited by them.

The study of three-point boundary value problems was initiated by Neuberger [18] in 1966. The first result concerning existence of positive solutions for higher order three-point boundary value problems was given by Eloe and McKelwey [10] in 1997. They obtained sufficient conditions for the existence of at least one and two positive solutions by using the fixed point theorem in a cone. Since then, by applying the cone theory techniques, more general nonlinear three point boundary value problems have been studied by several authors. We refer the reader to [2, 14, 17, 23].

In 2001, Agarwal and O'Regan [1] discussed the following boundary value problem on a measure chain

$$
\begin{gathered}
u^{\Delta \Delta}(t)+f(t, u(\sigma(t)))=0, \quad t \in[a, b], \\
u(a)=0=u^{\Delta}(\sigma(b))
\end{gathered}
$$

and then, in Remark 2.5, they left to the reader the details of the problem

$$
\begin{gathered}
y^{\Delta \Delta}(t)+f(t, y(\sigma(t)))=0, \quad t \in[a, b] \\
\alpha y(a)-\beta y^{\Delta}(a)=0, y^{\Delta}(\sigma(b))=0, \quad \alpha>0, \quad \beta \geq 0 .
\end{gathered}
$$

In this paper we are concerned with the existence of single and multiple positive solutions to the following nonlinear higher order three-point boundary value problem on time scales:

$$
\left\{\begin{array}{c}
(-1)^{n} y^{\Delta^{2 n}}(t)=f(t, y(\sigma(t))), \quad t \in\left[t_{1}, t_{3}\right] \subset \mathbb{T}, \quad n \in \mathbb{N} \tag{1.1}\\
y^{\Delta^{2 i+1}}\left(\sigma\left(t_{3}\right)\right)=0, \quad \alpha y^{\Delta^{2 i}}\left(t_{1}\right)-\beta y^{\Delta^{2 i+1}}\left(t_{1}\right)=y^{\Delta^{2 i+1}}\left(t_{2}\right),
\end{array}\right.
$$

for $0 \leq i \leq n-1$, where $\alpha>0$ and $\beta>0$ are given constants. We assume that $f:\left[t_{1}, \sigma\left(t_{3}\right)\right] \times[0, \infty) \rightarrow[0, \infty)$ is continuous. Throughout this paper we suppose \mathbb{T} is any time scale and $\left[t_{1}, t_{3}\right]$ is a subset of \mathbb{T} such that $\left[t_{1}, t_{3}\right]=\left\{t \in \mathbb{T}: t_{1} \leq t \leq t_{3}\right\}$.

In recent years, there has been much research activity concerning the second order three-point boundary value problems for dynamic equations on time scales. We refer the reader to the recent papers $[3,5,9,13,19,21,22]$ and references cited therein. However, there are few works on higher order three-point boundary value problems on time scales (see [4, 6, 20, 24]).

We have organized the paper as follows. In Section 2, we give some lemmas which are needed later. In Section 3, we use a result from the theory of fixed point index to show the existence of one or two positive solutions for the three-point boundary value problem (1.1). In Section 4, we establish the existence criteria of at least three positive solutions of (1.1) by using Leggett-Williams fixed-point theorem.

2. Preliminaries

The linear boundary value problem

$$
\begin{gathered}
-y^{\Delta^{2}}(t)=h(t), \quad t \in\left[t_{1}, t_{3}\right] \\
y^{\Delta}\left(\sigma\left(t_{3}\right)\right)=0, \quad \alpha y\left(t_{1}\right)-\beta y^{\Delta}\left(t_{1}\right)=y^{\Delta}\left(t_{2}\right)
\end{gathered}
$$

has the unique solution

$$
y(t)=\int_{t_{1}}^{\sigma\left(t_{3}\right)}\left(\sigma(s)+\frac{\beta}{\alpha}-t_{1}\right) h(s) \Delta s+\frac{1}{\alpha} \int_{t_{2}}^{\sigma\left(t_{3}\right)} h(s) \Delta s+\int_{t}^{\sigma\left(t_{3}\right)}(t-\sigma(s)) h(s) \Delta s
$$

If $G(t, s)$ is Green's function for the boundary value problem

$$
\begin{gathered}
-y^{\Delta^{2}}(t)=0, \quad t \in\left[t_{1}, t_{3}\right] \\
y^{\Delta}\left(\sigma\left(t_{3}\right)\right)=0, \quad \alpha y\left(t_{1}\right)-\beta y^{\Delta}\left(t_{1}\right)=y^{\Delta}\left(t_{2}\right)
\end{gathered}
$$

then we have

$$
G(t, s)= \begin{cases}H_{1}(t, s), & t_{1} \leq s \leq t_{2} \tag{2.1}\\ H_{2}(t, s), & t_{2}<s \leq t_{3}\end{cases}
$$

where

$$
H_{1}(t, s)= \begin{cases}\sigma(s)+\frac{\beta}{\alpha}-t_{1}, & \sigma(s) \leq t \\ t+\frac{\beta}{\alpha}-t_{1}, & t \leq s\end{cases}
$$

and

$$
H_{2}(t, s)= \begin{cases}\sigma(s)+\frac{\beta+1}{\alpha}-t_{1}, & \sigma(s) \leq t \\ t+\frac{\beta+1}{\alpha}-t_{1}, & t \leq s\end{cases}
$$

To state the main results of this paper, we will need the following lemmas.
Lemma 2.1. If $\alpha>0$ and $\beta>0$, then the Green's function $G(t, s)$ in (2.1) satisfies the following inequality

$$
G(t, s) \geq \frac{t-t_{1}}{\sigma\left(t_{3}\right)-t_{1}} G\left(\sigma\left(t_{3}\right), s\right)
$$

for $(t, s) \in\left[t_{1}, \sigma\left(t_{3}\right)\right] \times\left[t_{1}, t_{3}\right]$.
Proof. We proceed sequentially on the branches of the Green's function $G(t, s)$ in (2.1).
(i) Fix $s \in\left[t_{1}, t_{2}\right]$ and $\sigma(s) \leq t$. Then

$$
G(t, s)=\sigma(s)+\frac{\beta}{\alpha}-t_{1}
$$

and

$$
\frac{G(t, s)}{G\left(\sigma\left(t_{3}\right), s\right)}=1 \geq \frac{t-t_{1}}{\sigma\left(t_{3}\right)-t_{1}}
$$

(ii) Take $s \in\left[t_{1}, t_{2}\right]$ and $t \leq s$. Then

$$
G(t, s)=t+\frac{\beta}{\alpha}-t_{1}
$$

and

$$
\frac{G(t, s)}{G\left(\sigma\left(t_{3}\right), s\right)}=\frac{t+\frac{\beta}{\alpha}-t_{1}}{\sigma(s)+\frac{\beta}{\alpha}-t_{1}}>\frac{t-t_{1}}{\sigma\left(t_{3}\right)-t_{1}} .
$$

(iii) For $s \in\left(t_{2}, t_{3}\right]$ and $\sigma(s) \leq t$, we have

$$
G(t, s)=\sigma(s)+\frac{\beta+1}{\alpha}-t_{1}
$$

and

$$
\frac{G(t, s)}{G\left(\sigma\left(t_{3}\right), s\right)}=1 \geq \frac{t-t_{1}}{\sigma\left(t_{3}\right)-t_{1}}
$$

(iv) Let $s \in\left(t_{2}, t_{3}\right]$ and $t \leq s$. Then

$$
G(t, s)=t+\frac{\beta+1}{\alpha}-t_{1}
$$

and

$$
\frac{G(t, s)}{G\left(\sigma\left(t_{3}\right), s\right)}=\frac{t+\frac{\beta+1}{\alpha}-t_{1}}{\sigma(s)+\frac{\beta+1}{\alpha}-t_{1}}>\frac{t-t_{1}}{\sigma\left(t_{3}\right)-t_{1}} .
$$

Lemma 2.2. Let $\alpha>0$ and $\beta>0$. Then the Green's function $G(t, s)$ in (2.1) satisfies

$$
0<G(t, s) \leq G(\sigma(s), s)
$$

for $(t, s) \in\left[t_{1}, \sigma\left(t_{3}\right)\right] \times\left[t_{1}, t_{3}\right]$.
Proof. Since for $s \in\left[t_{1}, t_{2}\right]$

$$
G\left(\sigma\left(t_{3}\right), s\right)=\sigma(s)+\frac{\beta}{\alpha}-t_{1}>0
$$

and for $s \in\left(t_{2}, \sigma\left(t_{3}\right)\right]$

$$
G\left(\sigma\left(t_{3}\right), s\right)=\sigma(s)+\frac{\beta+1}{\alpha}-t_{1}>0,
$$

we obtain $G(t, s)>0$ from Lemma 2.1.
To show that $G(t, s) \leq G(\sigma(s), s)$, we again deal with the branches of the Green's function $G(t, s)$ in (2.1).
(i) Fix $s \in\left[t_{1}, t_{2}\right]$ and $\sigma(s) \leq t$. Then it is obvious that $G(t, s)=G(\sigma(s), s)$.
(ii) Take $s \in\left[t_{1}, t_{2}\right]$ and $t \leq s \leq \sigma(s)$.

Since $G(t, s)$ is increasing in $t, G(t, s) \leq G(\sigma(s), s)$.
(iii) For $s \in\left(t_{2}, t_{3}\right]$ and $\sigma(s) \leq t$, it is clear that $G(t, s)=G(\sigma(s), s)$.
(iv) Let $s \in\left(t_{2}, t_{3}\right]$ and $t \leq s$.

Since $G(t, s)$ is increasing in $t, G(t, s) \leq G(\sigma(s), s)$.
Lemma 2.3. Assume $\alpha>0, \beta>0$ and $s \in\left[t_{1}, t_{3}\right]$. Then the Green's function $G(t, s)$ in (2.1) satisfies

$$
\min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} G(t, s) \geq K\|G(\cdot, s)\|,
$$

where

$$
\begin{equation*}
K=\frac{\beta+\alpha\left(t_{2}-t_{1}\right)}{\beta+1+\alpha\left(\sigma\left(t_{3}\right)-t_{1}\right)} \tag{2.2}
\end{equation*}
$$

and $\|\cdot\|$ is defined by $\|x\|=\max _{t \in\left[t_{1}, \sigma\left(t_{3}\right)\right]}|x(t)|$.
Proof. Since the Green's function $G(t, s)$ in (2.1) is nondecreasing in t, we get

$$
\min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} G(t, s)=G\left(t_{2}, s\right) .
$$

Moreover, it is obvious that $\|G(\cdot, s)\|=G(\sigma(s), s)$ for $s \in\left[t_{1}, t_{3}\right]$ by Lemma 2.2.
To show that $G\left(t_{2}, s\right) \geq K G(\sigma(s), s)$, we again deal with the branches of the Green's function $G(t, s)$ in (2.1).
(i) If $s \in\left[t_{1}, t_{2}\right)$, then we have

$$
G\left(t_{2}, s\right)=\sigma(s)+\frac{\beta}{\alpha}-t_{1} \geq K\left(\sigma(s)+\frac{\beta}{\alpha}-t_{1}\right)=K G(\sigma(s), s) .
$$

(ii) If $s=t_{2}$, then we obtain

$$
G\left(t_{2}, s\right)=t_{2}+\frac{\beta}{\alpha}-t_{1} \geq K\left(\sigma(s)+\frac{\beta}{\alpha}-t_{1}\right)=K G(\sigma(s), s)
$$

(iii) If $s \in\left(t_{2}, t_{3}\right]$, then we have

$$
G\left(t_{2}, s\right)=t_{2}+\frac{\beta+1}{\alpha}-t_{1} \geq K\left(\sigma(s)+\frac{\beta+1}{\alpha}-t_{1}\right)=K G(\sigma(s), s) .
$$

If we let $G_{1}(t, s):=G(t, s)$ for G as in (2.1), then we can recursively define

$$
G_{j}(t, s)=\int_{t_{1}}^{\sigma\left(t_{3}\right)} G_{j-1}(t, r) G(r, s) \Delta r
$$

for $2 \leq j \leq n$ and $G_{n}(t, s)$ is Green's function for the homogeneous problem

$$
\begin{gathered}
(-1)^{n} y^{\Delta^{2 n}}(t)=0, \quad t \in\left[t_{1}, t_{3}\right] \\
y^{\Delta^{2 i+1}}\left(\sigma\left(t_{3}\right)\right)=0, \quad \alpha y^{\Delta^{2 i}}\left(t_{1}\right)-\beta y^{\Delta^{2 i+1}}\left(t_{1}\right)=y^{\Delta^{2 i+1}}\left(t_{2}\right), \quad 0 \leq i \leq n-1
\end{gathered}
$$

Lemma 2.4. Let $\alpha>0, \beta>0$. The Green's function $G_{n}(t, s)$ satisfies the following inequalities

$$
0 \leq G_{n}(t, s) \leq L^{n-1}\|G(\cdot, s)\|, \quad(t, s) \in\left[t_{1}, \sigma\left(t_{3}\right)\right] \times\left[t_{1}, t_{3}\right]
$$

and

$$
G_{n}(t, s) \geq K^{n} M^{n-1}\|G(\cdot, s)\|, \quad(t, s) \in\left[t_{2}, \sigma\left(t_{3}\right)\right] \times\left[t_{1}, t_{3}\right]
$$

where K is given in (2.2),

$$
\begin{equation*}
L=\int_{t_{1}}^{\sigma\left(t_{3}\right)}\|G(\cdot, s)\| \Delta s>0 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
M=\int_{t_{2}}^{\sigma\left(t_{3}\right)}\|G(\cdot, s)\| \Delta s>0 \tag{2.4}
\end{equation*}
$$

Proof. Use induction on n and Lemma 2.3.
Let \mathcal{B} denote the Banach space $C\left[t_{1}, \sigma\left(t_{3}\right)\right]$ with the norm

$$
\|y\|=\max _{t \in\left[t_{1}, \sigma\left(t_{3}\right)\right]}|y(t)| .
$$

Define the cone $P \subset \mathcal{B}$ by

$$
\begin{equation*}
P=\left\{y \in \mathcal{B}: y(t) \geq 0, \min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} y(t) \geq \frac{K^{n} M^{n-1}}{L^{n-1}}\|y\|\right\} . \tag{2.5}
\end{equation*}
$$

where K, L, M are given in (2.2),(2.3),(2.4), respectively.
(1.1) is equivalent to the nonlinear integral equation

$$
\begin{equation*}
y(t)=\int_{t_{1}}^{\sigma\left(t_{3}\right)} G_{n}(t, s) f(s, y(\sigma(s))) \Delta s \tag{2.6}
\end{equation*}
$$

We can define the operator $A: P \rightarrow \mathcal{B}$ by

$$
\begin{equation*}
A y(t)=\int_{t_{1}}^{\sigma\left(t_{3}\right)} G_{n}(t, s) f(s, y(\sigma(s))) \Delta s \tag{2.7}
\end{equation*}
$$

where $y \in P$. Then (2.6) can be written as $y=A y$. Therefore solving (2.6) in P is equivalent to finding fixed points of the operator A. If $y \in P$, then by Lemma 2.4 we have

$$
\begin{aligned}
\min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} A y(t) & =\int_{t_{1}}^{\sigma\left(t_{3}\right)} \min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} G_{n}(t, s) f(s, y(\sigma(s))) \Delta s \\
& \geq \frac{K^{n} M^{n-1}}{L^{n-1}} \int_{t_{1}}^{\sigma\left(t_{3}\right)} \max _{t \in\left[t_{1}, \sigma\left(t_{3}\right)\right]}\left|G_{n}(t, s)\right| f(s, y(\sigma(s))) \Delta s \\
& =\frac{K^{n} M^{n-1}}{L^{n-1}}\|A y\| .
\end{aligned}
$$

Thus $A y \in P$ and therefore $A P \subset P$. In addition, $A: P \rightarrow P$ is completely continuous by a standard application of the Arzela-Ascoli Theorem.

We will apply the following well-known result of the fixed point theorems to prove the existence of one or two positive solutions to the (1.1).

Lemma 2.5. [11, 15] Let P be a cone in a Banach space \mathcal{B}, and let D be an open, bounded subset of \mathcal{B} with $D_{P}:=D \cap P \neq \emptyset$ and $\bar{D}_{P} \neq P$. Assume that $A: \bar{D}_{P} \rightarrow P$ is a compact map such that $y \neq A y$ for $y \in \partial D_{P}$. The following result hold.
(i) If $\|A y\| \leq\|y\|$ for $y \in \partial D_{P}$, then $i_{P}\left(A, D_{P}\right)=1$.
(ii) If there exists an $b \in P \backslash\{0\}$ such that $y \neq A y+\lambda b$ for all $y \in \partial D_{P}$ and all $\lambda>0$, then $i_{P}\left(A, D_{P}\right)=0$.
(iii) Let U be open in P such that $\bar{U}_{P} \subset D_{P}$. If $i_{P}\left(A, D_{P}\right)=1$ and $i_{P}\left(A, U_{P}\right)=0$, then A has a fixed point in $D_{P} \backslash \bar{U}_{P}$. The same result holds if $i_{P}\left(A, D_{P}\right)=0$ and $i_{P}\left(A, U_{P}\right)=1$.

Now, to prove the existence of at least three positive solutions for the (1.1), we state the Leggett-Williams fixed point theorem [16].

Theorem 2.6. Let P be a cone in the real Banach space E. Set

$$
\begin{gathered}
P_{r}:=\{x \in P:\|x\|<r\} \\
P(\psi, a, b):=\{x \in P: a \leq \psi(x),\|x\| \leq b\} .
\end{gathered}
$$

Suppose $A: \overline{P_{r}} \rightarrow \overline{P_{r}}$ be a completely continuous operator and ψ be a nonnegative continuous concave functional on P with $\psi(u) \leq\|u\|$ for all $u \in \overline{P_{r}}$. If there exists $0<p<q<l \leq r$ such that the following condition hold,
(i) $\{u \in P(\psi, q, l): \psi(u)>q\} \neq \emptyset$ and $\psi(A u)>q$ for all $u \in P(\psi, q, l)$;
(ii) $\|A u\|<p$ for $\|u\| \leq p$;
(iii) $\psi(A u)>q$ for $u \in P(\psi, q, r)$ with $\|A u\|>l$,
then A has at least three fixed points u_{1}, u_{2} and u_{3} in $\overline{P_{r}}$ satisfying

$$
\left\|u_{1}\right\|<p, \psi\left(u_{2}\right)>q, p<\left\|u_{3}\right\| \text { with } \psi\left(u_{3}\right)<q .
$$

3. One or two positive solutions

For the cone P given in (2.5) and any positive real number r, define the convex set

$$
P_{r}:=\{y \in P:\|y\|<r\}
$$

and the set

$$
\Omega_{r}:=\left\{y \in P: \min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} y(t)<e r\right\}
$$

where

$$
\begin{equation*}
e:=\frac{K^{n} M^{n-1}}{L^{n-1}} \in(0,1) \tag{3.1}
\end{equation*}
$$

and K, L, and M are defined in (2.2),(2.3), and (2.4), respectively. The following results are proved in [15].

Lemma 3.1. The set Ω_{r} has the following properties.
(i) Ω_{r} is open relative to P.
(ii) $P_{e r} \subset \Omega_{r} \subset P_{r}$
(iii) $y \in \partial \Omega_{r}$ if and only if $\min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} y(t)=e r$.
(iv) If $y \in \partial \Omega_{r}$, then er $\leq y(t) \leq r$ for $t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]$.

As in [21], for convenience, we introduce the following notations. Let

$$
\begin{array}{r}
f_{e r}^{r}:=\min \left\{\min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} \frac{f(t, y)}{r}: y \in[e r, r]\right\} \\
f_{0}^{r}:=\max \left\{\max _{t \in\left[t_{1}, \sigma\left(t_{3}\right)\right]} \frac{f(t, y)}{r}: y \in[0, r]\right\} \\
f^{a}:=\limsup _{y \rightarrow a} \max _{t \in\left[t_{1}, \sigma\left(t_{3}\right)\right]} \frac{f(t, y)}{y} \\
f_{a}:=\liminf _{y \rightarrow a} \min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} \frac{f(t, y)}{y} \quad\left(a:=0^{+}, \infty\right) .
\end{array}
$$

In the next two lemmas, we give conditions on f guaranteeing that $i_{P}\left(A, P_{r}\right)=1$ or $i_{P}\left(A, \Omega_{r}\right)=0$.

Lemma 3.2. For L in (2.3), if the conditions

$$
f_{0}^{r} \leq \frac{1}{L^{n}} \text { and } y \neq A y \text { for } y \in \partial P_{r}
$$

hold, then $i_{P}\left(A, P_{r}\right)=1$.

Proof. If $y \in \partial P_{r}$, then using Lemma 2.4, we have

$$
\begin{aligned}
A y(t) & =\int_{t_{1}}^{\sigma\left(t_{3}\right)} G_{n}(t, s) f(s, y(\sigma(s))) \Delta s \\
& \leq\|f(., y)\| L^{n-1} \int_{t_{1}}^{\sigma\left(t_{3}\right)}\|G(\cdot, s)\| \Delta s \\
& \leq \frac{r}{L^{n}} L^{n}=r=\|y\| .
\end{aligned}
$$

It follows that $\|A y\| \leq\|y\|$ for $y \in \partial P_{r}$. By Lemma 2.5(i), we get $i_{P}\left(A, P_{r}\right)=1$.
Lemma 3.3. Let

$$
\begin{equation*}
N:=\left(\int_{t_{2}}^{\sigma\left(t_{3}\right)} \min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} G_{n}(t, s) \Delta s\right)^{-1} \tag{3.2}
\end{equation*}
$$

If the conditions

$$
f_{e r}^{r} \geq N e \text { and } y \neq A y \text { for } y \in \partial \Omega_{r},
$$

hold, then $i_{P}\left(A, \Omega_{r}\right)=0$.
Proof. Let $b(t) \equiv 1$ for $t \in\left[t_{1}, \sigma\left(t_{3}\right)\right]$, then $b \in \partial P_{1}$. Assume there exist $y_{0} \in \partial \Omega_{r}$ and $\lambda_{0}>0$ such that $y_{0}=A y_{0}+\lambda_{0} b$. Then for $t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]$ we have

$$
\begin{aligned}
y_{0}(t) & =A y_{0}(t)+\lambda_{0} b(t) \\
& \geq \int_{t_{2}}^{\sigma\left(t_{3}\right)} G_{n}(t, s) f\left(s, y_{0}(\sigma(s))\right) \Delta s+\lambda_{0} \\
& \geq N e r \int_{t_{2}}^{\sigma\left(t_{3}\right)} \min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} G_{n}(t, s) \Delta s+\lambda_{0} \\
& =e r+\lambda_{0} .
\end{aligned}
$$

But this implies that $e r \geq e r+\lambda_{0}$, a contradiction. Hence, $y_{0} \neq A y_{0}+\lambda_{0} b$ for $y_{0} \in \partial \Omega_{r}$ and $\lambda_{0}>0$, so by Lemma 2.5(ii), we get $i_{P}\left(A, \Omega_{r}\right)=0$.

Theorem 3.4. Let L, e, and N be as in (2.3), (3.1), and (3.2), respectively. Suppose that one of the following conditions holds.
$(C 1)$ There exist constants $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ with $0<c_{1}<c_{2}<e c_{3}$ such that

$$
f_{e c_{1}}^{c_{1}}, f_{e c_{3}}^{c_{3}} \geq N e, f_{0}^{c_{2}} \leq \frac{1}{L^{n}}, \text { and } y \neq A y \text { for } y \in \partial P_{c_{2}}
$$

$(C 2)$ There exist constants $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ with $0<c_{1}<e c_{2}$ and $c_{2}<c_{3}$ such that

$$
f_{0}^{c_{1}}, f_{0}^{c_{3}} \leq \frac{1}{L^{n}}, f_{e c_{2}}^{c_{2}} \geq N e, \text { and } y \neq A y \text { for } y \in \partial \Omega_{c_{2}}
$$

Then (1.1) has two positive solutions. Additionally, if in $(C 2)$ the condition $f_{0}^{c_{1}} \leq \frac{1}{L^{n}}$ is replaced by $f_{0}^{c_{1}}<\frac{1}{L^{n}}$, then (1.1) has a third positive solution in $P_{c_{1}}$.
Proof. Assume that ($C 1$) holds. We show that either A has a fixed point in $\partial \Omega_{c_{1}}$ or in $P_{c_{2}} \backslash \bar{\Omega}_{c_{1}}$. If $y \neq A y$ for $y \in \partial \Omega_{c_{1}}$, then by Lemma 3.3, we have $i_{P}\left(A, \Omega_{c_{1}}\right)=0$. Since $f_{0}^{c_{2}} \leq \frac{1}{L^{n}}$ and $y \neq A y$ for $y \in \partial P_{c_{2}}$, from Lemma 3.2 we get $i_{P}\left(A, P_{c_{2}}\right)=1$. By Lemma 3.1(ii) and $c_{1}<c_{2}$, we have $\bar{\Omega}_{c_{1}} \subset \bar{P}_{c_{1}} \subset P_{c_{2}}$. From Lemma 2.5(iii), A has a fixed point in $P_{c_{2}} \backslash \bar{\Omega}_{c_{1}}$. If $y \neq A y$ for $y \in \partial \Omega_{c_{3}}$, then from Lemma $3.3 i_{P}\left(A, \Omega_{c_{3}}\right)=0$. By Lemma 3.1(ii) and $c_{2} \leq e c_{3}$, we get $\bar{P}_{c_{2}} \subset P_{e c_{3}} \subset \Omega_{c_{3}}$. From Lemma 2.5(iii), A has a fixed point in $\Omega_{c_{3}} \backslash \bar{P}_{c_{2}}$. The proof is similar when (C2) holds and we omit it here.

Corollary 3.5. If there exist a constant $c>0$ such that one of the following conditions holds:
$(H 1) N<f_{0}, f_{\infty} \leq \infty, f_{0}^{c} \leq \frac{1}{L^{n}}$, and $y \neq A y$ for $y \in \partial P_{c}$.
(H2) $0 \leq f^{0}, f^{\infty}<\frac{1}{L^{n}}, f_{e c}^{c} \geq N e$, and $y \neq A y$ for $y \in \partial \Omega_{c}$.
Then (1.1) has two positive solutions.
Proof. Since ($H 1$) implies ($C 1$) and ($H 2$) implies ($C 2$), the result follows.
As a special case of Theorem 3.4 and Corollary 3.5, we have the following two results.

Theorem 3.6. Assume that one of the following conditions holds.
(C3) There exist constants $c_{1}, c_{2} \in \mathbb{R}$ with $0<c_{1}<c_{2}$ such that

$$
f_{e c_{1}}^{c_{1}} \geq N e \text { and } f_{0}^{c_{2}} \leq \frac{1}{L^{n}}
$$

(C4) There exist constants $c_{1}, c_{2} \in \mathbb{R}$ with $0<c_{1}<e c_{2}$ such that

$$
f_{0}^{c_{1}} \leq \frac{1}{L^{n}} \text { and } f_{e c_{2}}^{c_{2}} \geq N e
$$

Then (1.1) has a positive solution.
Corollary 3.7. Assume that one of the following conditions holds:
(H3) $0 \leq f^{\infty}<\frac{1}{L^{n}}$ and $N<f_{0} \leq \infty$.
$(H 4) 0 \leq f^{0}<\frac{1}{L^{n}}$ and $N<f_{\infty} \leq \infty$.
Then (1.1) has a positive solution.
Example 3.8. Let $\mathbb{T}=\mathbb{R}$. Consider the following boundary value problem

$$
\begin{gathered}
y^{\prime \prime}(t)+\frac{y^{2}}{y^{2}+1}=0, \quad t \in[1,5] \\
y^{\prime}(5)=0, \quad y(1)-2 y^{\prime}(1)=y^{\prime}(3)
\end{gathered}
$$

where $n=t_{1}=\alpha=1, t_{2}=3, t_{3}=5, \beta=2$ and $f(t, y)=\frac{y^{2}}{y^{2}+1}$. The Green's function $G(t, s)$ of this problem is

$$
G(t, s)= \begin{cases}H_{1}(t, s), & 1 \leq s \leq 3 \\ H_{2}(t, s), & 3<s \leq 5\end{cases}
$$

where

$$
H_{1}(t, s)= \begin{cases}s+1, & s \leq t \\ t+1, & t \leq s\end{cases}
$$

and

$$
H_{2}(t, s)= \begin{cases}s+2, & s \leq t \\ t+2, & t \leq s\end{cases}
$$

Then we obtain

$$
\begin{gathered}
L=20 \text { and } N=\frac{1}{10}, e=\frac{4}{7}, f^{0}=0=f^{\infty}, \\
f_{e c}^{c}=\frac{16 c}{16 c^{2}+49} \text { and } f_{0}^{c}=\frac{c}{c^{2}+1} .
\end{gathered}
$$

If we take $c=1$, then the condition (H2) of Corollary 3.5 is satisfied. Hence, the boundary value problem has two positive solutions such that $\min _{t \in[3,5]} y(t) \neq \frac{4}{7}$.

If we take $c_{1}=0.01$ and $c_{2}=16$, then $0<c_{1}<e c_{2}$ and the condition ($C 4$) of Theorem 3.6 is satisfied. Thus, the boundary value problem has a positive solution.

4. Three positive solutions

We will use the Leggett-Williams fixed point theorem to prove the next theorem.
Theorem 4.1. [16] Let $\alpha>0, \beta>0$. Suppose that there exist numbers

$$
0<p<q<\frac{q L^{n-1}}{K^{n} M^{n-1}} \leq r
$$

such that the function f satisfies the following conditions:
(i) $f(t, y) \leq \frac{r}{L^{n}}$ for $t \in\left[t_{1}, \sigma\left(t_{3}\right)\right]$ and $y \in[0, r]$,
(ii) $f(t, y)>\frac{q}{K^{n} M^{n}}$ for $t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]$ and $y \in\left[q, \frac{q L^{n-1}}{K^{n} M^{n-1}}\right]$,
(iii) $f(t, y)<\frac{p}{L^{n}}$ for $t \in\left[t_{1}, \sigma\left(t_{3}\right)\right]$ and $y \in[0, p]$,
where K, L, M are as defined in (2.2), (2.3), (2.4), respectively. Then (1.1) has at least three positive solutions y_{1}, y_{2} and y_{3} satisfying

$$
\begin{aligned}
& \max _{t \in\left[t_{1}, \sigma\left(t_{3}\right)\right]} y_{1}(t)<p, \quad q<\min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} y_{2}(t), \\
& p<\max _{t \in\left[t_{1}, \sigma\left(t_{3}\right)\right]} y_{3}(t) \text { with } \min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} y_{3}(t)<q .
\end{aligned}
$$

Proof. The conditions of Theorem 2.6 will be shown to be satisfied. Define the nonnegative continuous concave functional $\psi: P \rightarrow[0, \infty)$ to be

$$
\psi(y):=\min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} y(t)
$$

and the cone P as in (2.5).
We have $\psi(y) \leq\|y\|$ for all $y \in P$. If $y \in \overline{P_{r}}$, then $0 \leq y \leq r$ and

$$
f(t, y) \leq \frac{r}{L^{n}}
$$

from the hypothesis (i). Then by Lemma 2.4, we get

$$
\begin{aligned}
\|A y\| & =\int_{t_{1}}^{\sigma\left(t_{3}\right)} \max _{t \in\left[t_{1}, \sigma\left(t_{3}\right)\right]} G_{n}(t, s) f(s, y(\sigma(s))) \Delta s \\
& \leq L^{n-1} \int_{t_{1}}^{\sigma\left(t_{3}\right)}\|G(\cdot, s)\| f(s, y(\sigma(s))) \Delta s \\
& \leq r .
\end{aligned}
$$

This proves that $A: \overline{P_{r}} \rightarrow \overline{P_{r}}$.
Since $K<1$ and $\frac{M}{L}<1$,

$$
y(t) \equiv \frac{q L^{n-1}}{K^{n} M^{n-1}} \in P\left(\psi, q, \frac{q L^{n-1}}{K^{n} M^{n-1}}\right)
$$

and

$$
\psi\left(\frac{q L^{n-1}}{K^{n} M^{n-1}}\right)>q
$$

Then

$$
\left\{y \in P\left(\psi, q, \frac{q L^{n-1}}{K^{n} M^{n-1}}\right): \psi(y)>q\right\} \neq \emptyset .
$$

For all $y \in P\left(\psi, q, \frac{q L^{n-1}}{K^{n} M^{n-1}}\right)$, we have

$$
q \leq \min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} y(t) \leq\|y\| \leq \frac{q L^{n-1}}{K^{n} M^{n-1}} \text { for } t \in\left[t_{2}, \sigma\left(t_{3}\right)\right] .
$$

Using the hypothesis (ii) and Lemma 2.4, we obtain

$$
\begin{aligned}
\psi(A y) & =\int_{t_{1}}^{\sigma\left(t_{3}\right)} \min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} G_{n}(t, s) f(s, y(\sigma(s))) \Delta s \\
& \geq K^{n} M^{n-1} \int_{t_{2}}^{\sigma\left(t_{3}\right)}\|G(\cdot, s)\| f(s, y(\sigma(s))) \Delta s \\
& >q .
\end{aligned}
$$

Hence, the condition (i) of Theorem 2.6 is satisfied.

If $\|y\| \leq p$, then $f(t, y)<\frac{p}{L^{n}}$ for $t \in\left[t_{1}, \sigma\left(t_{3}\right)\right]$ from the hypothesis (iii). We find

$$
\begin{aligned}
\|A y\| & =\int_{t_{1}}^{\sigma\left(t_{3}\right)} \max _{t \in\left[t_{1}, \sigma\left(t_{3}\right)\right]} G_{n}(t, s) f(s, y(\sigma(s))) \Delta s \\
& \leq L^{n-1} \int_{t_{1}}^{\sigma\left(t_{3}\right)}\|G(\cdot, s)\| f(s, y(\sigma(s))) \Delta s \\
& <p .
\end{aligned}
$$

Consequently, the condition (ii) of Theorem 2.6 is satisfied.
For the condition (iii) of Theorem 2.6, we suppose that $y \in P(\psi, q, r)$ with

$$
\|A y\|>\frac{q L^{n-1}}{K^{n} M^{n-1}}
$$

Then, from Lemma 2.4 we obtain

$$
\psi(A y)=\min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} A y(t) \geq \frac{K^{n} M^{n-1}}{L^{n-1}}\|A y\|>q
$$

Since all conditions of the Leggett-Williams fixed point theorem are satisfied, (1.1) has at least three positive solutions y_{1}, y_{2} and y_{3} such that

$$
\begin{gathered}
\left.\max _{t \in\left[t_{1}, \sigma\left(t_{3}\right)\right]} y_{1}(t)\right)<p, \quad q<\min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} y_{2}(t), \\
p<\max _{t \in\left[t_{1}, \sigma\left(t_{3}\right)\right]} y_{3}(t) \text { with } \min _{t \in\left[t_{2}, \sigma\left(t_{3}\right)\right]} y_{3}(t)<q .
\end{gathered}
$$

Example 4.2. Let $\mathbb{T}=\left\{\frac{1}{5^{n}}: n \in \mathbb{N}\right\} \cup\{0\} \cup[3,5]$. Taking $n=1, t_{1}=\frac{1}{5}, t_{2}=3$, $t_{3}=5, \alpha=\frac{1}{2}, \beta=2$ and $f(t, y)=\frac{y^{2}}{y^{2}+1}$, we investigate the existence of at least three positive solutions of this problem by using Theorem 4.1. The Green's function $G(t, s)$ of this problem is

$$
G(t, s)= \begin{cases}H_{1}(t, s), & \frac{1}{5} \leq s \leq 3 \\ H_{2}(t, s), & 3<s \leq 5\end{cases}
$$

where

$$
H_{1}(t, s)= \begin{cases}\sigma(s)+\frac{19}{5}, & \sigma(s) \leq t \\ t+\frac{19}{5}, & t \leq s\end{cases}
$$

and

$$
H_{2}(t, s)= \begin{cases}\sigma(s)+\frac{29}{5}, & \sigma(s) \leq t \\ t+\frac{29}{5}, & t \leq s\end{cases}
$$

Then we have $K=\frac{29}{54}, L=\frac{118}{5}$ and $M=\frac{98}{5}$.
If we take $p=0.04, q=6$ and $r=24$ then $0<p<q<\frac{q}{K} \leq r$ and the conditions $(i),(i i),(i i i)$ of Theorem 4.1 are satisfied. Thus, the three-point boundary value problem has at least three positive solutions y_{1}, y_{2} and y_{3} satisfying

$$
\max _{t \in\left[\frac{1}{5}, 5\right]} y_{1}(t)<p, \quad q<\min _{t \in[3,5]} y_{2}(t)
$$

$$
p<\max _{t \in\left[\frac{1}{5}, 5\right]} y_{3}(t) \text { with } \min _{t \in[3,5]} y_{3}(t)<q .
$$

Acknowledgment. The author shows his sincere thanks to the reviewer for his (her) helpful advice on the paper.

References

[1] R.P. Agarwal, D. O'Regan, Nonlinear boundary value problems on time scales, Nonlinear Anal., 44(2001), 527-535.
[2] R.P. Agarwal, D. O'Regan, B. Yan, Positive solutions for singular three-point boundary value problems, Electron. J. Diff. Equations, 2008(2008), 1-20.
[3] D.R. Anderson, Solutions to second order three-point problems on time scales, J. Difference Eq. Appl., 8(2002), 673-688.
[4] D.R. Anderson, R.I. Avery, An even-order three-point boundary value problem on time scales, J. Math. Anal. Appl., 291(2004), 514-525.
[5] D.R. Anderson, Nonlinear triple-point problems on time scales, Electron. J. Diff. Equations, 47(2004), 1-12.
[6] D.R. Anderson, I.Y. Karaca, Higher-order three-point boundary value problem on time scales, Comput. Math. Appl., 56(2008), 2429-2443.
[7] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.
[8] M. Bohner, A. Peterson (Eds.), Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
[9] J.J. DaCunha, J.M. Davis, P.K. Singh, Existence results for singular three point boundary value problems on time scales, J. Math. Anal. Appl., 295(2004), 378-391.
[10] P.W. Eloe, J. McKelwey, Positive solutions of three point boundary value problems, Comm. Appl. Nonlinear Anal., 4(1997), 45-54.
[11] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988.
[12] S. Hilger, Analysis on measure chains-A unified approach to continuous and discrete calculus, Results Math., 18(1990), 18-56.
[13] S. Hong, Triple positive solutions of three-point boundary value problems for p-Laplacian dynamic equations on time scales, J. Comput. Appl. Math., 206(2007), 967-976.
[14] I.Y. Karaca, Positive solutions of an nth order three-point boundary value problem, Rocky Mountain J. Math., 43(2013), 205-224.
[15] K.Q. Lan, Multiple positive solutions of semilinear differential equations with singularities, J. London Math. Soc., 63(2001), 690-704.
[16] R.W. Leggett, L.R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana University Math. J., 28(1979), 673-688.
[17] R. Ma, D. O'Regan, Positive solutions of singular sublinear second-order three-point boundary value problems, Fixed Point Theory, 7(2006), 65-81.
[18] J.W. Neuberger, The lack of self-adjointness in three point boundary value problems, Pacific J. Math., 18(1966), 165-168.
[19] A.C. Peterson, Y.N. Raffoul, C.C. Tisdell, Three point bounday value problems on time scales, J. Differ. Equations Appl., 10(2004), 843-849.
[20] Y. Sang, H. Su, Several sufficient conditions of solvability for a nonlinear higher order three point boundary value problem on time scales, Appl. Math. Comput., 190(2007), 566-575.
[21] H.R. Sun, W.T. Li, Positive solutions for nonlinear three-point boundary value problems on time scales, J. Math. Anal. Appl., 299(2004), 508-524.
[22] D. Wang, Three positive solutions of three-point boundary value problems for p-Laplacian dynamic equations on time scales, Nonlinear Anal., 68(2008), 2172-2180.
[23] X. Xian, D. O'Regan, Z. Ruifang, Existence and location results for sign-changing solutions for three-point boundary value problems using Leray-Schauder degree, Monatsh. Math., 158(2009), 413-439.
[24] İ. Yaslan, Existence results for an even-order boundary value problem on time scales, Nonlinear Anal., 70(2009), 483-491.

Received: June 25, 2013; Accepted: July 18, 2014.

