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Abstract. In this paper, we consider a nonlinear higher order three-point boundary value problem

on time scales. We establish the criteria for the existence of one or two positive solutions for a higher
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Later, Leggett-Williams fixed-point theorem is used to investigate the existence of at least three

positive solutions for a higher order boundary value problem on time scales. As an application, to

demonstrate our results we also give an example.

Key Words and Phrases: Boundary value problems, cone, fixed point theorems, positive solutions,

time scales.

2010 Mathematics Subject Classification: 34B18, 34N05, 39A10.

1. Introduction

The theory of time scales, which has received a lot of attention recently, was in-

troduced by Hilger [12] in his Phd thesis in 1988. A result for a dynamic equation

contains simultaneously a corresponding result for a differential equation, one for a

difference equation, as well as results for other dynamic equations in arbitrary time

scales. We refer the reader to the excellent introductory book by Bohner and Peterson

[7] and the volume edited [8] edited by them.

The study of three-point boundary value problems was initiated by Neuberger [18]

in 1966. The first result concerning existence of positive solutions for higher order

three-point boundary value problems was given by Eloe and McKelwey [10] in 1997.

They obtained sufficient conditions for the existence of at least one and two positive

solutions by using the fixed point theorem in a cone. Since then, by applying the cone

theory techniques, more general nonlinear three point boundary value problems have

been studied by several authors. We refer the reader to [2, 14, 17, 23].

In 2001, Agarwal and O’Regan [1] discussed the following boundary value problem

on a measure chain

u∆∆(t) + f(t, u(σ(t))) = 0, t ∈ [a, b],

u(a) = 0 = u∆(σ(b))
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and then, in Remark 2.5, they left to the reader the details of the problem

y∆∆(t) + f(t, y(σ(t))) = 0, t ∈ [a, b],

αy(a)− βy∆(a) = 0, y∆(σ(b)) = 0, α > 0, β ≥ 0.

In this paper we are concerned with the existence of single and multiple positive

solutions to the following nonlinear higher order three-point boundary value problem

on time scales:{
(−1)ny∆2n

(t) = f(t, y(σ(t))), t ∈ [t1, t3] ⊂ T, n ∈ N

y∆2i+1

(σ(t3)) = 0, αy∆2i

(t1)− βy∆2i+1

(t1) = y∆2i+1

(t2),
(1.1)

for 0 ≤ i ≤ n − 1, where α > 0 and β > 0 are given constants. We assume that

f : [t1, σ(t3)] × [0,∞) → [0,∞) is continuous. Throughout this paper we suppose T
is any time scale and [t1, t3] is a subset of T such that [t1, t3] = {t ∈ T : t1 ≤ t ≤ t3}.

In recent years, there has been much research activity concerning the second order

three-point boundary value problems for dynamic equations on time scales. We refer

the reader to the recent papers [3, 5, 9, 13, 19, 21, 22] and references cited therein.

However, there are few works on higher order three-point boundary value problems

on time scales (see [4, 6, 20, 24]).

We have organized the paper as follows. In Section 2, we give some lemmas which

are needed later. In Section 3, we use a result from the theory of fixed point index

to show the existence of one or two positive solutions for the three-point boundary

value problem (1.1). In Section 4, we establish the existence criteria of at least three

positive solutions of (1.1) by using Leggett-Williams fixed-point theorem.

2. Preliminaries

The linear boundary value problem

−y∆2

(t) = h(t), t ∈ [t1, t3],

y∆(σ(t3)) = 0, αy(t1)− βy∆(t1) = y∆(t2),

has the unique solution

y(t) =

σ(t3)∫
t1

(σ(s) +
β

α
− t1)h(s)∆s+

1

α

σ(t3)∫
t2

h(s)∆s+

σ(t3)∫
t

(t− σ(s))h(s)∆s.

If G(t, s) is Green’s function for the boundary value problem

−y∆2

(t) = 0, t ∈ [t1, t3],

y∆(σ(t3)) = 0, αy(t1)− βy∆(t1) = y∆(t2),

then we have

G(t, s) =

{
H1(t, s), t1 ≤ s ≤ t2,
H2(t, s), t2 < s ≤ t3,

(2.1)
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where

H1(t, s) =

{
σ(s) + β

α − t1, σ(s) ≤ t,

t+ β
α − t1, t ≤ s,

and

H2(t, s) =

{
σ(s) + β+1

α − t1, σ(s) ≤ t,

t+ β+1
α − t1, t ≤ s.

To state the main results of this paper, we will need the following lemmas.

Lemma 2.1. If α > 0 and β > 0, then the Green’s function G(t, s) in (2.1) satisfies

the following inequality

G(t, s) ≥ t− t1
σ(t3)− t1

G(σ(t3), s)

for (t, s) ∈ [t1, σ(t3)]× [t1, t3].

Proof. We proceed sequentially on the branches of the Green’s function G(t, s) in

(2.1).

(i) Fix s ∈ [t1, t2] and σ(s) ≤ t. Then

G(t, s) = σ(s) +
β

α
− t1

and
G(t, s)

G(σ(t3), s)
= 1 ≥ t− t1

σ(t3)− t1
.

(ii) Take s ∈ [t1, t2] and t ≤ s. Then

G(t, s) = t+
β

α
− t1

and
G(t, s)

G(σ(t3), s)
=

t+ β
α − t1

σ(s) + β
α − t1

>
t− t1

σ(t3)− t1
.

(iii) For s ∈ (t2, t3] and σ(s) ≤ t, we have

G(t, s) = σ(s) +
β + 1

α
− t1

and
G(t, s)

G(σ(t3), s)
= 1 ≥ t− t1

σ(t3)− t1
.

(iv) Let s ∈ (t2, t3] and t ≤ s. Then

G(t, s) = t+
β + 1

α
− t1

and
G(t, s)

G(σ(t3), s)
=

t+ β+1
α − t1

σ(s) + β+1
α − t1

>
t− t1

σ(t3)− t1
. �
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Lemma 2.2. Let α > 0 and β > 0. Then the Green’s function G(t, s) in (2.1)

satisfies

0 < G(t, s) ≤ G(σ(s), s)

for (t, s) ∈ [t1, σ(t3)]× [t1, t3].

Proof. Since for s ∈ [t1, t2]

G(σ(t3), s) = σ(s) +
β

α
− t1 > 0

and for s ∈ (t2, σ(t3)]

G(σ(t3), s) = σ(s) +
β + 1

α
− t1 > 0,

we obtain G(t, s) > 0 from Lemma 2.1.

To show that G(t, s) ≤ G(σ(s), s), we again deal with the branches of the Green’s

function G(t, s) in (2.1).

(i) Fix s ∈ [t1, t2] and σ(s) ≤ t. Then it is obvious that G(t, s) = G(σ(s), s).

(ii) Take s ∈ [t1, t2] and t ≤ s ≤ σ(s).

Since G(t, s) is increasing in t, G(t, s) ≤ G(σ(s), s).

(iii) For s ∈ (t2, t3] and σ(s) ≤ t, it is clear that G(t, s) = G(σ(s), s).

(iv) Let s ∈ (t2, t3] and t ≤ s.
Since G(t, s) is increasing in t, G(t, s) ≤ G(σ(s), s). �

Lemma 2.3. Assume α > 0, β > 0 and s ∈ [t1, t3]. Then the Green’s function G(t, s)

in (2.1) satisfies

min
t∈[t2,σ(t3)]

G(t, s) ≥ K‖G(·, s)‖,

where

K =
β + α(t2 − t1)

β + 1 + α(σ(t3)− t1)
(2.2)

and ‖ · ‖ is defined by ‖x‖ = max
t∈[t1,σ(t3)]

|x(t)|.

Proof. Since the Green’s function G(t, s) in (2.1) is nondecreasing in t, we get

min
t∈[t2,σ(t3)]

G(t, s) = G(t2, s).

Moreover, it is obvious that ‖G(·, s)‖ = G(σ(s), s) for s ∈ [t1, t3] by Lemma 2.2.

To show that G(t2, s) ≥ KG(σ(s), s), we again deal with the branches of the Green’s

function G(t, s) in (2.1).

(i) If s ∈ [t1, t2), then we have

G(t2, s) = σ(s) +
β

α
− t1 ≥ K(σ(s) +

β

α
− t1) = KG(σ(s), s).

(ii) If s = t2, then we obtain

G(t2, s) = t2 +
β

α
− t1 ≥ K(σ(s) +

β

α
− t1) = KG(σ(s), s).
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(iii) If s ∈ (t2, t3], then we have

G(t2, s) = t2 +
β + 1

α
− t1 ≥ K(σ(s) +

β + 1

α
− t1) = KG(σ(s), s). �

If we let G1(t, s) := G(t, s) for G as in (2.1), then we can recursively define

Gj(t, s) =

σ(t3)∫
t1

Gj−1(t, r)G(r, s)∆r

for 2 ≤ j ≤ n and Gn(t, s) is Green’s function for the homogeneous problem

(−1)ny∆2n

(t) = 0, t ∈ [t1, t3],

y∆2i+1

(σ(t3)) = 0, αy∆2i

(t1)− βy∆2i+1

(t1) = y∆2i+1

(t2), 0 ≤ i ≤ n− 1.

Lemma 2.4. Let α > 0, β > 0. The Green’s function Gn(t, s) satisfies the following

inequalities

0 ≤ Gn(t, s) ≤ Ln−1‖G(·, s)‖, (t, s) ∈ [t1, σ(t3)]× [t1, t3]

and

Gn(t, s) ≥ KnMn−1‖G(·, s)‖, (t, s) ∈ [t2, σ(t3)]× [t1, t3]

where K is given in (2.2),

L =

σ(t3)∫
t1

‖G(·, s)‖∆s > 0 (2.3)

and

M =

σ(t3)∫
t2

‖G(·, s)‖∆s > 0. (2.4)

Proof. Use induction on n and Lemma 2.3. �

Let B denote the Banach space C[t1, σ(t3)] with the norm

‖y‖ = max
t∈[t1,σ(t3)]

|y(t)|.

Define the cone P ⊂ B by

P = {y ∈ B : y(t) ≥ 0, min
t∈[t2,σ(t3)]

y(t) ≥ KnMn−1

Ln−1
‖y‖}. (2.5)

where K,L,M are given in (2.2),(2.3),(2.4), respectively.

(1.1) is equivalent to the nonlinear integral equation

y(t) =

σ(t3)∫
t1

Gn(t, s)f(s, y(σ(s)))∆s. (2.6)
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We can define the operator A : P → B by

Ay(t) =

σ(t3)∫
t1

Gn(t, s)f(s, y(σ(s)))∆s, (2.7)

where y ∈ P. Then (2.6) can be written as y = Ay. Therefore solving (2.6) in P is

equivalent to finding fixed points of the operator A. If y ∈ P , then by Lemma 2.4 we

have

min
t∈[t2,σ(t3)]

Ay(t) =

σ(t3)∫
t1

min
t∈[t2,σ(t3)]

Gn(t, s)f(s, y(σ(s)))∆s

≥ KnMn−1

Ln−1

σ(t3)∫
t1

max
t∈[t1,σ(t3)]

|Gn(t, s)|f(s, y(σ(s)))∆s

=
KnMn−1

Ln−1
‖Ay‖.

Thus Ay ∈ P and therefore AP ⊂ P . In addition, A : P → P is completely continuous

by a standard application of the Arzela-Ascoli Theorem.

We will apply the following well-known result of the fixed point theorems to prove

the existence of one or two positive solutions to the (1.1).

Lemma 2.5. [11, 15] Let P be a cone in a Banach space B, and let D be an open,

bounded subset of B with DP := D ∩ P 6= ∅ and DP 6= P . Assume that A : DP → P

is a compact map such that y 6= Ay for y ∈ ∂DP . The following result hold.

(i) If ‖Ay‖ ≤ ‖y‖ for y ∈ ∂DP , then iP (A,DP ) = 1.

(ii) If there exists an b ∈ P \ {0} such that y 6= Ay + λb for all y ∈ ∂DP and all

λ > 0, then iP (A,DP ) = 0.

(iii) Let U be open in P such that UP ⊂ DP . If iP (A,DP ) = 1 and iP (A,UP ) = 0,

then A has a fixed point in DP \ UP . The same result holds if iP (A,DP ) = 0 and

iP (A,UP ) = 1.

Now, to prove the existence of at least three positive solutions for the (1.1), we

state the Leggett-Williams fixed point theorem [16].

Theorem 2.6. Let P be a cone in the real Banach space E. Set

Pr := {x ∈ P : ‖x‖ < r}
P (ψ, a, b) := {x ∈ P : a ≤ ψ(x), ‖x‖ ≤ b}.

Suppose A : Pr → Pr be a completely continuous operator and ψ be a nonnegative

continuous concave functional on P with ψ(u) ≤ ‖u‖ for all u ∈ Pr. If there exists

0 < p < q < l ≤ r such that the following condition hold,

(i) {u ∈ P (ψ, q, l) : ψ(u) > q} 6= ∅ and ψ(Au) > q for all u ∈ P (ψ, q, l);

(ii) ‖Au‖ < p for ‖u‖ ≤ p;

(iii) ψ(Au) > q for u ∈ P (ψ, q, r) with ‖Au‖ > l,
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then A has at least three fixed points u1, u2 and u3 in Pr satisfying

‖u1‖ < p, ψ(u2) > q, p < ‖u3‖ with ψ(u3) < q.

3. One or two positive solutions

For the cone P given in (2.5) and any positive real number r, define the convex set

Pr := {y ∈ P : ‖y‖ < r}

and the set

Ωr := {y ∈ P : min
t∈[t2,σ(t3)]

y(t) < er}

where

e :=
KnMn−1

Ln−1
∈ (0, 1) (3.1)

and K,L, and M are defined in (2.2),(2.3), and (2.4), respectively. The following

results are proved in [15].

Lemma 3.1. The set Ωr has the following properties.

(i) Ωris open relative to P .

(ii) Per ⊂ Ωr ⊂ Pr
(iii) y ∈ ∂Ωr if and only if min

t∈[t2,σ(t3)]
y(t) = er.

(iv) If y ∈ ∂Ωr, then er ≤ y(t) ≤ r for t ∈ [t2, σ(t3)].

As in [21], for convenience, we introduce the following notations. Let

frer := min

{
min

t∈[t2,σ(t3)]

f(t, y)

r
: y ∈ [er, r]

}

fr0 := max

{
max

t∈[t1,σ(t3)]

f(t, y)

r
: y ∈ [0, r]

}

fa := lim sup
y→a

max
t∈[t1,σ(t3)]

f(t, y)

y

fa := lim inf
y→a

min
t∈[t2,σ(t3)]

f(t, y)

y
(a := 0+,∞).

In the next two lemmas, we give conditions on f guaranteeing that iP (A,Pr) = 1

or iP (A,Ωr) = 0.

Lemma 3.2. For L in (2.3), if the conditions

fr0 ≤
1

Ln
and y 6= Ay for y ∈ ∂Pr,

hold, then iP (A,Pr) = 1.
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Proof. If y ∈ ∂Pr, then using Lemma 2.4, we have

Ay(t) =

σ(t3)∫
t1

Gn(t, s)f(s, y(σ(s)))∆s

≤ ‖f(., y)‖Ln−1

σ(t3)∫
t1

‖G(·, s)‖∆s

≤ r

Ln
Ln = r = ‖y‖.

It follows that ‖Ay‖ ≤ ‖y‖ for y ∈ ∂Pr. By Lemma 2.5(i), we get iP (A,Pr) = 1. �

Lemma 3.3. Let

N :=

 σ(t3)∫
t2

min
t∈[t2,σ(t3)]

Gn(t, s)∆s


−1

. (3.2)

If the conditions

frer ≥ Ne and y 6= Ay for y ∈ ∂Ωr,

hold, then iP (A,Ωr) = 0.

Proof. Let b(t) ≡ 1 for t ∈ [t1, σ(t3)], then b ∈ ∂P1. Assume there exist y0 ∈ ∂Ωr and

λ0 > 0 such that y0 = Ay0 + λ0b. Then for t ∈ [t2, σ(t3)] we have

y0(t) = Ay0(t) + λ0b(t)

≥
σ(t3)∫
t2

Gn(t, s)f(s, y0(σ(s)))∆s+ λ0

≥ Ner

σ(t3)∫
t2

min
t∈[t2,σ(t3)]

Gn(t, s)∆s+ λ0

= er + λ0.

But this implies that er ≥ er + λ0, a contradiction. Hence, y0 6= Ay0 + λ0b for

y0 ∈ ∂Ωr and λ0 > 0, so by Lemma 2.5(ii), we get iP (A,Ωr) = 0. �

Theorem 3.4. Let L, e, and N be as in (2.3), (3.1), and (3.2), respectively. Suppose

that one of the following conditions holds.

(C1) There exist constants c1, c2, c3 ∈ R with 0 < c1 < c2 < ec3 such that

f c1ec1 , f
c3
ec3 ≥ Ne, f

c2
0 ≤

1

Ln
, and y 6= Ay for y ∈ ∂Pc2 .

(C2) There exist constants c1, c2, c3 ∈ R with 0 < c1 < ec2 and c2 < c3 such that

f c10 , f c30 ≤
1

Ln
, f c2ec2 ≥ Ne, and y 6= Ay for y ∈ ∂Ωc2 .
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Then (1.1) has two positive solutions. Additionally, if in (C2) the condition f c10 ≤ 1
Ln

is replaced by f c10 < 1
Ln , then (1.1) has a third positive solution in Pc1 .

Proof. Assume that (C1) holds. We show that either A has a fixed point in ∂Ωc1 or

in Pc2 \ Ωc1 . If y 6= Ay for y ∈ ∂Ωc1 , then by Lemma 3.3, we have iP (A,Ωc1) = 0.

Since f c20 ≤ 1
Ln and y 6= Ay for y ∈ ∂Pc2 , from Lemma 3.2 we get iP (A,Pc2) = 1. By

Lemma 3.1(ii) and c1 < c2, we have Ωc1 ⊂ P c1 ⊂ Pc2 . From Lemma 2.5(iii), A has a

fixed point in Pc2 \Ωc1 . If y 6= Ay for y ∈ ∂Ωc3 , then from Lemma 3.3 iP (A,Ωc3) = 0.

By Lemma 3.1(ii) and c2 < ec3, we get P c2 ⊂ Pec3 ⊂ Ωc3 . From Lemma 2.5(iii), A

has a fixed point in Ωc3 \ P c2 . The proof is similar when (C2) holds and we omit it

here. �

Corollary 3.5. If there exist a constant c > 0 such that one of the following condi-

tions holds:

(H1) N < f0, f∞ ≤ ∞, f c0 ≤ 1
Ln , and y 6= Ay for y ∈ ∂Pc.

(H2) 0 ≤ f0, f∞ < 1
Ln , f cec ≥ Ne, and y 6= Ay for y ∈ ∂Ωc.

Then (1.1) has two positive solutions.

Proof. Since (H1) implies (C1) and (H2) implies (C2), the result follows. �

As a special case of Theorem 3.4 and Corollary 3.5, we have the following two

results.

Theorem 3.6. Assume that one of the following conditions holds.

(C3) There exist constants c1, c2 ∈ R with 0 < c1 < c2 such that

f c1ec1 ≥ Ne and f c20 ≤
1

Ln
.

(C4) There exist constants c1, c2 ∈ R with 0 < c1 < ec2 such that

f c10 ≤
1

Ln
and f c2ec2 ≥ Ne.

Then (1.1) has a positive solution.

Corollary 3.7. Assume that one of the following conditions holds:

(H3) 0 ≤ f∞ < 1
Ln and N < f0 ≤ ∞.

(H4) 0 ≤ f0 < 1
Ln and N < f∞ ≤ ∞.

Then (1.1) has a positive solution.

Example 3.8. Let T = R. Consider the following boundary value problem

y′′(t) +
y2

y2 + 1
= 0, t ∈ [1, 5],

y′(5) = 0, y(1)− 2y′(1) = y′(3),

where n = t1 = α = 1, t2 = 3, t3 = 5, β = 2 and f(t, y) = y2

y2+1 . The Green’s function

G(t, s) of this problem is

G(t, s) =

{
H1(t, s), 1 ≤ s ≤ 3,

H2(t, s), 3 < s ≤ 5,
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where

H1(t, s) =

{
s+ 1, s ≤ t,
t+ 1, t ≤ s,

and

H2(t, s) =

{
s+ 2, s ≤ t,
t+ 2, t ≤ s.

Then we obtain

L = 20 and N =
1

10
, e =

4

7
, f0 = 0 = f∞,

f cec =
16c

16c2 + 49
and f c0 =

c

c2 + 1
.

If we take c = 1, then the condition (H2) of Corollary 3.5 is satisfied. Hence, the

boundary value problem has two positive solutions such that min
t∈[3,5]

y(t) 6= 4
7 .

If we take c1 = 0.01 and c2 = 16, then 0 < c1 < ec2 and the condition (C4) of

Theorem 3.6 is satisfied. Thus, the boundary value problem has a positive solution.

4. Three positive solutions

We will use the Leggett-Williams fixed point theorem to prove the next theorem.

Theorem 4.1. [16] Let α > 0, β > 0. Suppose that there exist numbers

0 < p < q <
qLn−1

KnMn−1
≤ r

such that the function f satisfies the following conditions:

(i) f(t, y) ≤ r

Ln
for t ∈ [t1, σ(t3)] and y ∈ [0, r],

(ii) f(t, y) >
q

KnMn
for t ∈ [t2, σ(t3)] and y ∈

[
q,

qLn−1

KnMn−1

]
,

(iii) f(t, y) <
p

Ln
for t ∈ [t1, σ(t3)] and y ∈ [0, p],

where K,L,M are as defined in (2.2), (2.3), (2.4), respectively. Then (1.1) has at least

three positive solutions y1, y2 and y3 satisfying

max
t∈[t1,σ(t3)]

y1(t) < p, q < min
t∈[t2,σ(t3)]

y2(t),

p < max
t∈[t1,σ(t3)]

y3(t) with min
t∈[t2,σ(t3)]

y3(t) < q.

Proof. The conditions of Theorem 2.6 will be shown to be satisfied. Define the non-

negative continuous concave functional ψ : P → [0,∞) to be

ψ(y) := min
t∈[t2,σ(t3)]

y(t)
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and the cone P as in (2.5).

We have ψ(y) ≤ ‖y‖ for all y ∈ P . If y ∈ Pr, then 0 ≤ y ≤ r and

f(t, y) ≤ r

Ln

from the hypothesis (i). Then by Lemma 2.4, we get

‖Ay‖ =

σ(t3)∫
t1

max
t∈[t1,σ(t3)]

Gn(t, s)f(s, y(σ(s)))∆s

≤ Ln−1

σ(t3)∫
t1

‖G(·, s)‖f(s, y(σ(s)))∆s

≤ r.

This proves that A : Pr → Pr.

Since K < 1 and M
L < 1,

y(t) ≡ qLn−1

KnMn−1
∈ P

(
ψ, q,

qLn−1

KnMn−1

)
and

ψ

(
qLn−1

KnMn−1

)
> q.

Then {
y ∈ P (ψ, q,

qLn−1

KnMn−1
) : ψ(y) > q

}
6= ∅.

For all y ∈ P (ψ, q, qLn−1

KnMn−1 ), we have

q ≤ min
t∈[t2,σ(t3)]

y(t) ≤ ‖y‖ ≤ qLn−1

KnMn−1
for t ∈ [t2, σ(t3)].

Using the hypothesis (ii) and Lemma 2.4, we obtain

ψ(Ay) =

σ(t3)∫
t1

min
t∈[t2,σ(t3)]

Gn(t, s)f(s, y(σ(s)))∆s

≥ KnMn−1

σ(t3)∫
t2

‖G(·, s)‖f(s, y(σ(s)))∆s

> q.

Hence, the condition (i) of Theorem 2.6 is satisfied.
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If ‖y‖ ≤ p, then f(t, y) < p
Ln for t ∈ [t1, σ(t3)] from the hypothesis (iii). We find

‖Ay‖ =

σ(t3)∫
t1

max
t∈[t1,σ(t3)]

Gn(t, s)f(s, y(σ(s)))∆s

≤ Ln−1

σ(t3)∫
t1

‖G(·, s)‖f(s, y(σ(s)))∆s

< p.

Consequently, the condition (ii) of Theorem 2.6 is satisfied.

For the condition (iii) of Theorem 2.6, we suppose that y ∈ P (ψ, q, r) with

‖Ay‖ > qLn−1

KnMn−1
.

Then, from Lemma 2.4 we obtain

ψ(Ay) = min
t∈[t2,σ(t3)]

Ay(t) ≥ KnMn−1

Ln−1
‖Ay‖ > q.

Since all conditions of the Leggett-Williams fixed point theorem are satisfied, (1.1)

has at least three positive solutions y1, y2 and y3 such that

max
t∈[t1,σ(t3)]

y1(t)) < p, q < min
t∈[t2,σ(t3)]

y2(t),

p < max
t∈[t1,σ(t3)]

y3(t) with min
t∈[t2,σ(t3)]

y3(t) < q. �

Example 4.2. Let T = { 1
5n : n ∈ N} ∪ {0} ∪ [3, 5]. Taking n = 1, t1 = 1

5 , t2 = 3,

t3 = 5, α = 1
2 , β = 2 and f(t, y) = y2

y2+1 , we investigate the existence of at least three

positive solutions of this problem by using Theorem 4.1. The Green’s function G(t, s)

of this problem is

G(t, s) =

{
H1(t, s), 1

5 ≤ s ≤ 3,

H2(t, s), 3 < s ≤ 5,

where

H1(t, s) =

{
σ(s) + 19

5 , σ(s) ≤ t,
t+ 19

5 , t ≤ s,
and

H2(t, s) =

{
σ(s) + 29

5 , σ(s) ≤ t,
t+ 29

5 , t ≤ s.
Then we have K = 29

54 , L = 118
5 and M = 98

5 .

If we take p = 0.04, q = 6 and r = 24 then 0 < p < q < q
K ≤ r and the

conditions (i), (ii), (iii) of Theorem 4.1 are satisfied. Thus, the three-point boundary

value problem has at least three positive solutions y1, y2 and y3 satisfying

max
t∈[ 15 ,5]

y1(t) < p, q < min
t∈[3,5]

y2(t),
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p < max
t∈[ 15 ,5]

y3(t) with min
t∈[3,5]

y3(t) < q.
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