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1. Introduction

In this paper, we mainly study the existence, uniqueness and data dependence of
the solutions of impulsive fractional iterative functional differential equations of the
form:

cDq
a,tx(t) = f(t, x(t), x(xv(t))) + λ, t ∈ [a, b]\D, v ∈ R \ {0}, q ∈ (0, 1),

x(t+k ) = x(t−k ) + Ik, k = 1, 2, · · · ,m,
x(t) = ϕ(t), t ∈ [a1, a],
x(t) = ψ(t), t ∈ [b, b1],

(1.1)

where the symbol cDq
a,t is the Caputo fractional derivative of order q with the lower

limit a, D := {t1, t2, · · · , tm}, a = t0 < t1 < t2 < · · · < tm+1 = b, and
(C1) a, b, a1, b1 are real numbers and satisfy a1 ≤ a < b ≤ b1, a function Υ(z) = zv

satisfies Υ ∈ C(J, J) with J = [a1, b1], where C(J, J) denote the Banach space of all
continuous functions from J into J with the supremum norm.

(C2) f ∈ C([a, b]× J2, R), a1 ≤ av1, bv1 ≤ b1;
(C3) ϕ ∈ C([a1, a], J) and ψ ∈ C([b, b1], J);
(C4) there exist Lf > 0, ν > 0 such that

|f(t, u1, w1)− f(t, u2, w2)| ≤ Lf (|u1 − u2|+ |w1 − w2|ν)

for all t ∈ [a, b], ui, wi ∈ J, i = 1, 2.
Set PC([a, b], J) := {x : [a, b] → J : xk ∈ C((tk, tk+1], J), k = 0, · · · ,m and there

exist x(t−k ) and x(t+k ), k = 1, · · · ,m, with x(t−k ) = x(tk)} which is a Banach space
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with the norm ‖x‖PC := max{|xk(t)| : t ∈ [tk, tk+1], k = 0, · · · ,m} where xk is the
restriction of x to [tk, tk+1], k = 0, · · · ,m. Moreover, we define

PC(J, J) := {x : J → J : x ∈ PC([a, b], J) ∪ C([a1, a], J) ∪ C([b, b1], J)}
and

PC(J,R) := {x : J → R : x ∈ PC([a, b], R) ∪ C([a1, a], R) ∪ C([b, b1], R)}.
A number of papers have been recently written on fractional impulsive initial and

boundary value problems [1, 2, 3, 4, 5, 6, 7, 8, 23, 24, 25, 26, 31, 32]. Meanwhile,
Fec̆kan et al. [9], Kosmatov [11] and Wang et al. [28, 29, 30] all pointed the error
in former solutions for some impulsive fractional differential equations by construct a
counterexample and establish a general framework to seek a nature solution for such
problems.

Motivated by [9, 11], we define what it means for the problem (1.1) to have a
solution.

Definition 1.1. A function x ∈ PC(J, J) is said to be a solution of the problem
(1.1) if x(t) = xk(t) for t ∈ (tk, tk+1) and xk ∈ C([a, tk+1], J) satisfies the equation
cDq

a,tx(t) = f(t, x(t), x(xv(t)))+λ a.e. on (a, tk+1) with the restriction of xk+1(t) on

[a, tk+1) is just xk(t), x(t+k ) = x(t−k ) + Ik, k = 1, 2, · · · ,m and x(t) = ϕ(t), t ∈ [a1, a],
x(t) = ψ(t), t ∈ [b, b1].

Let (x, λ) be a solution of the problem (1.1). Then this problem is equivalent with
the following fixed point equation

x(t) =



ϕ(t), for t ∈ [a1, a],

ϕ(a) + 1
Γ(q)

∫ t
a
(t− s)q−1f(s, x(s), x(xv(s)))ds

+ λ
Γ(q+1) (t− a)q +

∑k
i=1 Ii,

for t ∈ (tk, tk+1), k = 0, 1, 2, · · · ,m,
ψ(t), for t ∈ [b, b1].

(1.2)

Using the condition of continuity of x in t = b, we derive that

λ =
Γ(q + 1)(ψ(b)− ϕ(a)−

∑m
i=1 Ii)

(b− a)q

− q

(b− a)q

∫ b

a

(b− s)q−1f(s, x(s), x(xv(s)))ds. (1.3)

Consequently, the problem (1.1) is equivalent with the following fixed point equation

x(t) =



ϕ(t), for t ∈ [a1, a],
1

Γ(q)

∫ t
a
(t− s)q−1f(s, x(s), x(xv(s)))ds

+ (t−a)q

(b−a)q (ψ(b)− ϕ(a)−
∑m
i=1 Ii) + ϕ(a) +

∑k
i=1 Ii

− (t−a)q

(b−a)qΓ(q)

∫ b
a

(b− s)q−1f(s, x(s), x(xv(s)))ds,

for t ∈ (tk, tk+1), k = 0, 1, 2, · · · ,m,
ψ(t), for t ∈ [b, b1].

(1.4)

Define
A : PC(J, J)→ PC(J,R), (1.5)
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where

A(x)(t) :=



ϕ(t), for t ∈ [a1, a],

ϕ(a) +
∑k
i=1 Ii + (t−a)q

(b−a)q (ψ(b)− ϕ(a)−
∑m
i=1 Ii)

− (t−a)q

(b−a)qΓ(q)

∫ b
a

(b− s)q−1f(s, x(s), x(xv(s)))ds

+ 1
Γ(q)

∫ t
a
(t− s)q−1f(s, x(s), x(xv(s)))ds

for t ∈ (tk, tk+1), k = 0, 1, 2, · · · ,m,
ψ(t), for t ∈ [b, b1].

(1.6)

It is clear that (x, λ) is a solution of the problem (1.1) if and only if x is a fixed point
of the operator A and λ is given by (1.3). Then, all kinds of fixed point theorems can
be applied to derive the existence of solutions.

2. Preliminaries

We recall some basic definitions of the fractional calculus theory which are used
further in this paper. For more details, see Kilbas et al. [10].

Definition 2.1. The fractional order integral of the function h ∈ L1([a, b], R) of order
q ∈ R+ is defined by

Iqa,th(t) =

∫ t

a

(t− s)q−1

Γ(q)
h(s)ds

where Γ is the Gamma function.

Definition 2.2. For a function h given on the interval [a, b], the qth Riemann-
Liouville fractional order derivative of h, is defined by

L(Dq
a,th)(t) =

1

Γ(n− q)

(
d

dt

)n ∫ t

a

(t− s)n−q−1h(s)ds,

here n = [q] + 1 and [q] denotes the integer part of q.

Definition 2.3. The Caputo derivative of order q for a function f : [a, b] → R can
be written as

cDq
a,th(t) = LDq

a,t

(
h(t)−

n−1∑
k=0

tk

k!
h(k)(a)

)
, t > 0, n− 1 < q < n.

It is remarkable that (weakly) Picard operators methods is a powerful tool to study
the nonlinear differential equations. It can be widely used to discuss existence and
uniqueness and the data dependence on data of the solutions for nonlinear differential
equations. For more details, one can see Mureşan [12, 13], Olaru [14], Rus et al.
[15, 16, 17, 18, 19, 20, 21], Şerban et al. [22] and Wang et al. [27].

We collect some notions and results from the Picard operator theory (for more
details see Rus [19, 20]).

Let (X, d) be a metric space and A : X → X an operator. We shall use the
following notations:
FA = {x ∈ X | A(x) = x}−the fixed point set of A;
I(A) = {Y ∈ P (X) | A(Y ) ⊆ Y, Y 6= ∅};
An+1 = An ◦A, A1 = A, A0 = I, n ∈ N
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P (X) = {Y ⊆ X | Y 6= ∅};
OA(x) = {x,A(x), A2(x), · · · , An(x), · · · }−the A−orbit of x ∈ X;
H : P (X)× P (X)→ R+ ∪ {+∞};
H(Y,Z) = max

{
supy∈Y infz∈Z d(y, z), supz∈Z infy∈Y d(y, z)

}
- the Pompeiu-

Hausdorff functional on P (X)× P (X).

Definition 2.4. Let (X, d) be a metric space. An operator A : X → X is a Picard
operator if there exists x∗ ∈ X such that FA = {x∗} and the sequence (An(x0))n∈N
converges to x∗ for all x0 ∈ X.

Definition 2.5. Let A be a Picard operator and c > 0. The operator A is c−Picard
operator if d(x,An(x)) ≤ cd(x,A(x)) for all x ∈ X, n ∈ N .

Theorem 2.6. (Contraction principle) Let (X, d) be a complete metric space and
A : X → X a γ−contraction. Then

(i) FA = {x∗};
(ii) (An(x0))n∈N converges to x∗ for all x0 ∈ X;

(iii) d(x∗, An(x0)) ≤ γn

1−γ d(x0, A(x0)), for all n ∈ N .

Remark 2.7. Accordingly to the Definition 2.4, the contraction principle insures
that, if A : X → X is a γ−contraction on the complete metric space X, then it is a
Picard operator.

Theorem 2.8. Let (X, d) be a complete metric space and A,B : X → X two opera-
tors. We suppose the following:

(i) A is a contraction with contraction constant γ and FA = {x∗A}.
(ii) B has fixed points and x∗B ∈ FB .
(iii) There exists η > 0 such that d(A(x), B(x)) ≤ η, for all x ∈ X.

Then

d(x∗A, x
∗
B) ≤ η

1− γ
.

3. Existence result via Schauder fixed point theorem

We state the following assumptions:
(H1) The conditions (C1)–(C3) are satisfied.
(H2) There are mf , Mf ∈ R such that

mf ≤ f(t, u, w) ≤Mf , ∀ t ∈ [a, b]\D,u,w ∈ J,

and moreover,

a1 ≤ min

(
(ϕ(a) +

k∑
i=1

Ii), (ψ(b)−
m∑

i=k+1

Ii)

)

−max

(
0,
Mf (b− a)q

Γ(q + 1)

)
+ min

(
0,
mf (b− a)q

Γ(q + 1)

)
,



ITERATIVE FUNCTIONAL DIFFERENTIAL EQUATIONS 193

and

max

(
(ϕ(a) +

k∑
i=1

Ii), (ψ(b)−
m∑

i=k+1

Ii)

)

−min

(
0,
mf (b− a)q

Γ(q + 1)

)
+ max

(
0,
Mf (b− a)q

Γ(q + 1)

)
≤ b1,

where k = 1, 2, · · · ,m.
We are ready to state our first result in this paper.

Theorem 3.1. Assumptions (H1) and (H2) hold. Then the problem (1.1) has a
solution in PC(J, J).

Proof. In what follow we consider on PC(J,R) with the norm ‖ · ‖PC . Firstly, (H2)
assures that the set PC(J, J) is an invariant subset for the operator A, that is, we
have

A(PC(J, J)) ⊂ PC(J, J).

Indeed, for t ∈ [a1, a] ∪ [b, b1], we have A(x)(t) ∈ J . Secondly, we obtain

a1 ≤ A(x)(t) ≤ b1, ∀ t ∈ [a, b]\D,

if and only if

a1 ≤ min
t∈[a,b]\D

A(x)(t) (3.1)

and

max
t∈[a,b]\D

A(x)(t) ≤ b1 (3.2)

hold.
Since

min
t∈[a,b]\D

A(x)(t) ≥ min

(
(ϕ(a) +

k∑
i=1

Ii), (ψ(b)−
m∑

i=k+1

Ii)

)

−max

(
0,
Mf (b− a)q

Γ(q + 1)

)
+ min

(
0,
mf (b− a)q

Γ(q + 1)

)
,

respectively

max
t∈[a,b]\D

A(x)(t) ≤ max

(
(ϕ(a) +

k∑
i=1

Ii), (ψ(b)−
m∑

i=k+1

Ii)

)

−min

(
0,
mf (b− a)q

Γ(q + 1)

)
+ max

(
0,
Mf (b− a)q

Γ(q + 1)

)
,

where k = 1, 2, · · · ,m.
Clearly, (3.1) and (3.2) are equivalent with the conditions appearing in (H2).
Thus, the operator

A : PC(J, J)→ PC(J, J).
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Thirdly, we check A is a completely continuous operator. Let {xn} be a sequence
such that xn → x in PC(J, J). Then for each t ∈ J , we have that

|(Axn)(t)− (Ax)(t)|

≤


0, for t ∈ [a1, a],
2(b−a)q

Γ(q+1) ‖f(·, xn(·), xn(xvn(·))− f(·, xn(·), x(xv(·)))‖PC , for t ∈ [a, b]\D,
0, for t ∈ [b, b1].

Since f ∈ C([a, b]× J2, R), we have that

‖Axn −Ax‖PC → 0 as n→∞.

Now, consider a1 ≤ s1 < s2 ≤ a. Then,

|(Ax)(s2)− (Ax)(s1)| = |ϕ(s2)− ϕ(s1)|.

Similarly, for b ≤ s1 < s2 ≤ b1,

|(Ax)(s2)− (Ax)(s1)| = |ψ(s2)− ψ(s1)|.

On the other hand, for tk ≤ s1 < s2 ≤ tk+1, k = 0, 1, · · · ,m,

|(Ax)(s2)− (Ax)(s1)| ≤ (s2 − s1)q

(b− a)q
|ψ(b)− ϕ(a)−

m∑
i=1

Ii|

+
2(s2 − s1)q max{|mf |, |Mf |}

Γ(q + 1)
.

Together with the Arzela-Ascoli theorem and A is a continuous operator, we can
conclude that A is a completely continuous operator.

It is obvious that the set PC(J, J) ⊆ PC(J,R) is a bounded convex closed subset
of the Banach space PC(J,R). Thus, the operator A has a fixed point due to the well
known Schauder’s fixed point theorem. This completes the proof. �

To end this section, we consider the following problem:
cD

1
2
0,tx(t) = µx(x(t)) + λ, t ∈ [0, 1] \ { 1

5}, µ > 0, λ ∈ R,
x(t) = 0, t ∈ [− 1

3 , 0],
x(t) = 1, t ∈ [1, 4

3 ],

x( 1
5

+
)− x( 1

5

−
) = 1

7 ,

(3.3)

where x ∈ PC([− 1
3 ,

4
3 ], [− 1

3 ,
4
3 ]).

First of all notice that according to the Theorem 3.1 we have v = 1, q = 1
2 ,

a = 0, b = 1, ψ(b) = 1, ϕ(a) = 0 and f(t, u1, u2) = µu2, I1 = 1
7 , t1 = 1

5 . Moreover,

a1 = − 1
3 and b1 = 4

3 can be taken. Therefore, from the relation

mf ≤ f(t, u1, u2) ≤Mf , ∀ t ∈ [0, 1], u1, u2 ∈ [−1

3
,

4

3
],

we can choose mf = −µ3 and Mf = 4µ
3 . For these data it can be easily verified that

the conditions (H2) from the Theorem 3.1 are equivalent with µ ≤ 2Γ( 3
2 )

7 . Then the

problem (10) has in PC([− 1
3 ,

4
3 ], [− 1

3 ,
4
3 ]) at least a solution provided µ ≤

√
π

7 .
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4. Further results

In Section 2, we only obtain the existence result. In order to obtain the uniqueness
result, we need to introduce the following notation:

PCqL(J, J) = {x ∈ PC(J, J) : |x(t1)− x(t2)| ≤ L|t1 − t2|q, L > 0} ,
for all t1, t2 ∈ J . Remark that PCqL(J, J) ⊆ PC(J,R) is also a complete metric space
with respect to the metric, d(x1, x2) := ‖x1(·)− x2(·)‖PC . Consider the operator

A : PCqL(J, J)→ PC(J,R)

where the definition of A(x)(·) is the same as (1.6).
In addition to (H2), we also list the necessary additional assumptions:
(H1’) The conditions (C1) and (C2) are satisfied but in addition v ∈ (0, 1], b1 ≤

1, ν ≥ 1
vq .

(H1”) ϕ ∈ CqL([a1, a], J), ψ ∈ CqL([b, b1], J).

(H3)
3 max{|mf |,|Mf |}

Γ(q+1) +
|ψ(b)−ϕ(a)−

∑m
i=1 Ii|

(b−a)q ≤ L.
(H4)

(
1 + 2ν−1L+ 2ν−1

) 2Lf (b−a)q

Γ(q+1) < 1.

Theorem 4.1. Assumptions (H1’), (H1”), (H2), (H3) and (H4) hold. Then the
problem (1.1) has in PCqL(J, J) a unique solution. Moreover, the operator A :
PCqL(J, J)→ PCqL(J,R) is a c−Picard operator with

c =
1

1− (1 + 2ν−1L+ 2ν−1)
2Lf (b−a)q

Γ(q+1)

.

Proof. First of all we prove that PCqL(J, J) is an invariant subset for A. Indeed, for
t ∈ [a1, a] ∪ [b, b1], we have A(x)(t) ∈ J . Similar to the proof of Theorem 3.1, we
obtain a1 ≤ A(x)(t) ≤ b1, ∀ t ∈ [a, b]\D, by virtue of (H2).

Now, consider a1 ≤ s1 < s2 ≤ a. Then,

|A(x)(s2)−A(x)(s1)| = |ϕ(s2)− ϕ(s1)| ≤ L|s1 − s2|q,
as ϕ ∈ CqL([a1, a], J), due to (H1”). Similarly, for b ≤ s1 < s2 ≤ b1,

|A(x)(s2)−A(x)(s1)| = |ψ(s2)− ψ(s1)| ≤ L|s1 − s2|q,
that follows from (H1”), too.

On the other hand, for tk ≤ s1 < s2 ≤ tk+1, k = 0, 1, · · · ,m,
|A(x)(s2)−A(x)(s1)|

≤ max{|mf |, |Mf |}
Γ(q)

∣∣∣∣∫ s2

a

(s2 − s)q−1ds−
∫ s1

a

(s1 − s)q−1ds

∣∣∣∣
+
|ψ(b)− ϕ(a)−

∑m
i=1 Ii|

(b− a)q
|(s2 − a)q − (s1 − a)q|

+
max{|mf |, |Mf |}

∣∣∣∫ ba (b− s)q−1ds
∣∣∣

(b− a)qΓ(q)
|(s2 − a)q − (s1 − a)q|

≤
(

3 max{|mf |, |Mf |}
Γ(q + 1)

+
|ψ(b)− ϕ(a)−

∑m
i=1 Ii|

(b− a)q

)
|s2 − s1|q,
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where we use the inequality rq − sq ≤ |r − s|q for all 0 < q < 1. Therefore, due to
(H3), the function A(x) is L–Lipschitz in t. Thus, according to the above, we have
PCqL([a1, a], J) ∈ I(A).

From the condition (H4) it follows that A is an LA–contraction with

LA :=
(
1 + 2ν−1L+ 2ν−1

) 2Lf (b− a)q

Γ(q + 1)
.

Indeed, for all t ∈ [a1, a] ∪ [b, b1], we

|A(x1)(t)−A(x2)(t)| = 0.

Moreover, for t ∈ [a, b]\D we get

|A(x1)(t)−A(x2)(t)|

≤ (t− a)q

Γ(q)(b− a)q

∫ b

a

(b− s)q−1 |f(s, x1(s), x1(xv1(s)))− f(s, x2(s), x2(xv2(s)))| ds

+
1

Γ(q)

∫ t

a

(t− s)q−1 |f(s, x1(s), x1(xv1(s)))− f(s, x2(s), x2(xv2(s)))| ds

≤ Lf
Γ(q)

∫ b

a

(b− s)q−1 [|x1(s)− x2(s)|+ |x1(xv1(s))− x2(xv2(s))|ν ] ds

+
Lf

Γ(q)

∫ t

a

(t− s)q−1 [|x1(s)− x2(s)|+ |x1(xv1(s))− x2(xv2(s))|ν ] ds

≤ Lf
Γ(q)

∫ b

a

(b− s)q−1

[
|x1(s)− x2(s)|+ 2ν−1 |x1(xv1(s))− x1(xv2(s))|ν

+2ν−1 |x1(xv2(s))− x2(xv2(s))|ν
]
ds

+
Lf

Γ(q)

∫ t

a

(t− s)q−1

[
|x1(s)− x2(s)|+ 2ν−1 |x1(xv1(s))− x1(xv2(s))|ν

+2ν−1 |x1(xv2(s))− x2(xv2(s))|ν
]
ds

≤ Lf
Γ(q)

∫ b

a

(b− s)q−1

[
‖x1 − x2‖PC + 2ν−1L |x1(s)− x2(s)|νvq + 2ν−1‖x1 − x2‖νPC

]
ds

+
Lf

Γ(q)

∫ t

a

(t− s)q−1

[
‖x1 − x2‖PC + 2ν−1L |x1(s)− x2(s)|νvq + 2ν−1‖x1 − x2‖νPC

]
ds

≤ Lf
Γ(q)

∫ b

a

(b− s)q−1

[
‖x1 − x2‖PC + 2ν−1L‖x1 − x2‖νvqC + 2ν−1‖x1 − x2‖νPC

]
ds

+
Lf

Γ(q)

∫ t

a

(t− s)q−1

[
‖x1 − x2‖PC + 2ν−1L‖x1 − x2‖νvqC + 2ν−1‖x1 − x2‖νPC

]
ds

≤ 2(b− a)qLf
Γ(q + 1)

(
1 + 2ν−1L+ 2ν−1

)
‖x1 − x2‖PC = LA‖x1 − x2‖PC ,

where we use the fact ‖x1 − x2‖PC ≤ 1, ν ≥ 1, νvq ≥ 1 and the inequalities

(r + s)ν ≤ 2ν−1(rν + sν) and |rv − sv| ≤ |r − s|v,
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for nonnegative r, s and v ∈ (0, 1]. So we get

‖A(x1)−A(x2)‖PC ≤ LA‖x1 − x2‖PC . (4.1)

So, A is a c−Picard operator, with

c =
1

1− (1 + 2ν−1L+ 2ν−1)
2Lf (b−a)q

Γ(q+1)

.

This completes the proof. �

Next, we consider the problem (1.1) and suppose the conditions of Theorem 4.1
are satisfied. Denote by x(·;ϕ,ψ, f) the solution of the problem (1.1).

We need the following assumptions:
(H5) There exists η1 > 0, such that |ϕ1(t) − ϕ2(t)| ≤ η1, t ∈ [a1, a], and |ψ1(t) −

ψ2(t)| ≤ η1, t ∈ [b, b1].
(H6) There exists η2 > 0 such that |f1(t, u, w) − f2(t, u, w)| ≤ η2, ∀t ∈ [a, b],

u,w ∈ J.

Theorem 4.2. Assumptions (H5) and (H6) hold. Let ϕi, ψi, fi, i = 1, 2, be as in
Theorem 4.1. Then we have

|x(t;ϕ1, ψ1, f1)− x(t;ϕ2, ψ2, f2)| ≤
3η1 + 2(b−a)q

Γ(q+1) η2

1− (1 + 2ν−1L+ 2ν−1)
2Lf (b−a)q

Γ(q+1)

,

and

|λ∗1 − λ∗2| ≤
2Γ(q + 1)

(b− a)q
η1 + η2,

where Lf = min{Lf1 , Lf2}, and λ∗i , are the parameters of the solutions of the corre-
sponding solutions x(·;ϕi, ψi, fi)(i = 1, 2), Lf = min{Lf1 , Lf2}.

Proof. Consider the operators Aϕi,ψi,fi , i = 1, 2. From Theorem 4.1 these operators
are contractions. Additionally, for t ∈ [a, b] \D, we have

|Aϕ1,ψ1,f1(x)−Aϕ2,ψ2,f2(x)|

≤ 1

Γ(q)

∫ t

a

(t− s)q−1|f1(s, x(s), x(xv(s))− f2(s, x(s), x(xv(s))|ds

+
(t− a)q

(b− a)q
|ψ1(b)− ϕ1(a)− ψ2(b) + ϕ2(a)|+ |ϕ1(a)− ϕ2(a)|

+
(t− a)q

(b− a)qΓ(q)

∫ b

a

(b− s)q−1|f1(s, x(s), x(xv(s))− f2(s, x(s), x(xv(s))|ds

≤ η2

Γ(q)

∫ t

a

(t− s)q−1ds+
2η1(t− a)q

(b− a)q
+ η1 +

η2(t− a)q

(b− a)qΓ(q)

∫ b

a

(b− s)q−1ds

=
2η2(t− a)q

Γ(q + 1)
+

2η1(t− a)q

(b− a)q
+ η1.
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Now, the proof follows from Theorem 2.8, with

A := Aϕ1,ψ1,f1 , B := Aϕ2,ψ2,f2 , η := 3η1 +
2(b− a)q

Γ(q + 1)
η2,

and

γ := LA =
(
1 + 2ν−1L+ 2ν−1

) 2Lf (b− a)q

Γ(q + 1)
.

Next, (4.1) holds for both Ai with Lfi .
Without loss of generality, we may suppose that Lf1 = min{Lf1 , Lf2}.
Consequently, we obtain

‖x∗1 − x∗2‖PC = ‖A1(x∗1)−A2(x∗2)‖PC
≤ ‖A1(x∗2)−A1(x∗2)‖PC + ‖A1(x∗2)−A2(x∗2)‖PC
≤ LA1

‖x∗1 − x∗2‖PC + ‖A1(x∗2)−A2(x∗2)‖PC ,
where x∗i := x(·;ϕi, ψi, fi)(i = 1, 2), which implies the fist statement.

Moreover, we get

|λ∗1 − λ∗2|

≤ Γ(q + 1)(|ψ1(b)− ψ2(b)|+ |ϕ1(a)− ϕ2(a)|)
(b− a)q

+
q

(b− a)q

∫ b

a

(b− s)q−1 |f1(s, x(s), x(xv(s)))− f2(s, x(s), x(xv(s)))| ds

≤ 2Γ(q + 1)

(b− a)q
η1 + η2.

The proof is completed. �
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