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1. Introduction

In this paper, let C be a nonempty, closed and convex subset of a real reflexive Banach
space E with the dual space E∗. The norm and the dual pair between E and E∗ are
denoted by ||.|| and 〈., .〉 respectively. Let T : C → C be a nonlinear mapping. Denote
by F (T ) := {x ∈ C : Tx = x} the set of fixed points of T . A mapping T is said to be
nonexpansive if ||Tx− Ty|| ≤ ||x− y||, ∀x, y ∈ C.
In 1994, Blum and Oettli [8] firstly studied the equilibrium problem: finding x ∈ C
such that

g(x, y) ≥ 0, ∀y ∈ C, (1.1)

where g : C ×C → R is a functional. Denote the set of solutions of the problem (1.1)
by EP (g). Since then, various equilibrium problems have been investigated. It is
well known that equilibrium problems and their generalizations have been important
tools for solving problems arising in the fields of linear or nonlinear programming,
variational inequalities, complementary problems, optimization problems, fixed point
problems and have been widely applied to physics, structural analysis, management
science and economics etc (see, for example [8, 26, 27]). One of the most important and
interesting topics in the theory of equilibria is to develop efficient and implementable
algorithms for solving equilibrium problems and their generalizations (see, e.g., [8,
26, 27, 53] and the references therein). Since the equilibrium problems have very
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close connections with both the fixed point problems and the variational inequalities
problems, finding the common elements of these problems has drawn many people’s
attention and has become one of the hot topics in the related fields in the past few
years (see, e.g., [7, 17, 21, 29, 30, 31, 40 - 45, 48, 49, 50, 54] and the references
therein).
In 1967, Bregman [11] discovered an elegant and effective technique for using of the
so-called Bregman distance function Df (see, Section 2, Definition 2.1) in the process
of designing and analyzing feasibility and optimization algorithms. This opened a
growing area of research in which Bregman’s technique has been applied in various
ways in order to design and analyze not only iterative algorithms for solving feasibil-
ity and optimization problems, but also algorithms for solving variational inequalities,
for approximating equilibria, for computing fixed points of nonlinear mappings and
so on (see, e.g., [3, 17, 47, 48, 49] and the references therein). In 2005, Butnariu
and Resmerita [12] presented Bregman-type iterative algorithms and studied the con-
vergence of the Bregman-type iterative method of solving some nonlinear operator
equations.
Recently, by using the Bregman projection, Reich and Sabach [35] presented the
following algorithms for finding common zeroes of maximal monotone operators Ai :
E → 2E

∗
, (i = 1, 2, . . . , N) in a reflexive Banach space E, respectively:

x0 ∈ E,
yin = Resfλi

n
(xn + ein),

Cin = {z ∈ E : Df (z, yin) ≤ Df (z, xn + ein)},
Cn = ∩Ni=1C

i
n,

Qn = {z ∈ E : 〈∇f(x0)−∇f(xn), z − xn〉 ≤ 0},
xn+1 = projfCn∩Qn

x0, n ≥ 0

(1.2)

and 

x0 ∈ E,
ηin = ξin + 1

λi
n

(∇f(yin)−∇f(xn)), ξin ∈ Aiyin,
ωin = ∇f∗(λinηin +∇f(xn)),
Cin = {z ∈ E : Df (z, yin) ≤ Df (z, xn + ein)},
Cn = ∩Ni=1C

i
n,

Qn = {z ∈ E : 〈∇f(x0)−∇f(xn), z − xn〉 ≤ 0},
xn+1 = projfCn∩Qn

x0, n ≥ 0

(1.3)

where {λin}Ni=1 ⊂ (0,+∞), {ein}Ni=1 is an error sequence in E with ein → 0 and projfC
is the Bregman projection with respect to f from E onto a closed and convex subset
C. Further, under some suitable conditions, they obtained two strong convergence
theorems of maximal monotone operators in a reflexive Banach space. Reich and
Sabach [36] also studied the convergence of two iterative algorithms for finitely many
Bregman strongly nonexpansive operators in a Banach space. In [37], Reich and
Sabach proposed the following algorithms for finding common fixed points of finitely
many Bregman firmly nonexpansive operators Ti : C → C (i = 1, 2, . . . , N) in a



STRONG CONVERGENCE 175

reflexive Banach space E if ∩Ni=1F (Ti) 6= ∅:

x0 ∈ E,
Qi0 = E, i = 1, 2, . . . , N,
yin = Ti(xn + ein),
Qin+1 = {z ∈ Qin : 〈∇f(xn + ein)−∇f(yin), z − yin〉 ≤ 0},
Cn = ∩Ni=1C

i
n,

xn+1 = projfCn+1
x0, n ≥ 0.

(1.4)

Under some suitable conditions, they proved that the sequence {xn} generated by
(1.4) converges strongly to ∩Ni=1F (Ti) and applied the result to the solution of convex
feasibility and equilibrium problems.
Recently, Chen et al. [18] introduced the concept of weakly Bregman relatively non-
expansive mappings in a reflexive Banach space and gave an example to illustrate
the existence of a weakly Bregman relatively nonexpansive mapping and the differ-
ence between a weakly Bregman relatively nonexpansive mapping and a Bregman
relatively nonexpansive mapping. They also proved the strong convergence of the
sequences generated by the constructed algorithms with errors for finding a fixed
point of weakly Bregman relatively nonexpansive mappings and Bregman relatively
nonexpansive mappings under some suitable conditions.
Very recently, Suantai et al. [46] considered strong convergence results for Bregman
strongly nonexpansive mappings in reflexive Banach spaces by Halperns iteration.In
particular, they proved the following theorem.
Theorem 1.1. Let E be a real reflexive Banach space and f : E → R a strongly coer-
cive Legendre function which is bounded, uniformly Fréchet differentiable and totally
convex on bounded subsets of E. Let T be a Bregman strongly nonexpansive mapping

on E such that F (T ) = F̂ (T ) 6= ∅ Suppose that u ∈ E and define the sequence {xn}
as follows: x1 ∈ E and

xn+1 = ∇f∗(αn∇f(u) + (1− αn)∇f(Txn)), n ≥ 1, (1.5)

where {αn} ⊂ (0, 1) satisfying lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞. Then {xn} converges

strongly to P fF (T )(u), where P fF (T ) is the Bregman projection of E onto F (T ).

Furthermore, using the Theorem 1.1, Suantai et al. [46] obtained some convergence
theorems for a family of Bregman strongly nonexpansive mappings and gave some
applications concerning the problems of finding zeroes of maximal monotone operators
and equilibrium problems.
Motivated by the results of Suantai et al. [46], our purpose in this paper is to prove
strong convergence theorems using the modified Mann type iteration for approxima-
tion of a fixed point of a left Bregman strongly relatively nonexpansive mapping in
the framework of reflexive real Banach spaces. We also discuss the approximation of
a fixed point of a left Bregman strongly nonexpansive mapping which is also solution
to a finite system of equilibrium problems in reflexive real Banach spaces. Our results
complement many known recent results in the literature.
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2. Preliminaries

In this section, we present the basic notions and facts that are needed in the sequel.
The norms of E and E∗, its dual space, are denoted by ||.|| and ||.||∗, respectively.
The pairing 〈ξ, x〉 is defined by the action of ξ ∈ E∗ at x ∈ E, that is, 〈ξ, x〉 := ξ(x).
The domain of a convex function f : E → R is defined to be

domf := {x ∈ E : f(x) < +∞}.

When dom f 6= ∅, we say that f is proper. The Fenchel conjugate function of f is the
convex function f∗ : E → R defined by

f∗(ξ) = sup{〈ξ, x〉 − f(x) : x ∈ E}.

It is not difficult to check that when f is proper and lower semicontinuous, so is f∗.
The function f is said to be cofinite if dom f∗ = E∗.
Let x ∈ int domf , that is, let x belong to the interior of the domain of the convex
function f : E → (−∞,+∞]. For any y ∈ E, we define the directional derivative of f
at x by

fo(x, y) := lim
t→0+

f(x+ ty)− f(x)

t
. (2.1)

If the limit as t → 0+ in (2.1) exists for each y, then the function f is said to be
Gâteaux differentiable at x. In this case, the gradient of f at x is the linear function
∇f(x), which is defined by 〈∇f(x), y〉 := fo(x, y) for all y ∈ E [19, Definition 1.3, page
3]. The function f is said to be Gâteaux differentiable if it is Gâteaux differentiable
at each x ∈ int domf . When the limit as t→ 0 in (2.1) is attained uniformly for any
y ∈ E with ||y|| = 1, we say that f is Fréchet differentiable at x. Throughout this
paper, f : E → (−∞,+∞] is always an admissible function, that is, a proper, lower
semicontinuous, convex and Gâteaux differentiable function. Under these conditions
we know that f is continuous in int dom f (see [3], Fact 2.3, page 619).
The function f is said to be Legendre if it satisfies the following two conditions.
(L1) int dom f 6= ∅ and the subdifferential ∂f is single-valued on its domain.
(L2) int dom f∗ 6= ∅ and ∂f∗ is single-valued on its domain.
The class of Legendre functions in infinite dimensional Banach spaces was first intro-
duced and studied by Bauschke, Borwein and Combettes in [3]. Their definition is
equivalent to conditions (L1) and (L2) because the space E is assumed to be reflexive
(see [3], Theorems 5.4 and 5.6, page 634). It is well known that in reflexive spaces
∇f = (∇f∗)−1 (see [9], page 83). When this fact is combined with conditions (L1)
and (L2), we obtain

ran∇f = dom∇f∗ = int domf∗ and ran∇f∗ = dom∇f = int domf.

It also follows that f is Legendre if and only if f∗ is Legendre (see [3], Corollary 5.5,
page 634) and that the functions f and f∗ are Gateaux differentiable and strictly
convex in the interior of their respective domains. When the Banach space E is
smooth and strictly convex, in particular, a Hilbert space, the function ( 1

p )||.||p with

p ∈ (1,∞) is Legendre (cf. [3], Lemma 6.2, page 639). For examples and more
information regarding Legendre functions, see, for instance, [3, 4].
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Definition 2.1. The bifunction Df : domf × int domf → [0,+∞), which is defined
by

Df (y, x) := f(y)− f(x)− 〈∇f(x), y − x〉, (2.2)

is called the Bregman distance (cf. [11, 15]).
The Bregman distance does not satisfy the well-known properties of a metric, but it
does have the following important property, which is called the three point identity:
for any x ∈ domf and y, z ∈ int domf ,

Df (x, y) +Df (y, z)−Df (x, z) = 〈∇f(z)−∇f(y), x− y〉. (2.3)

According to [13], Section 1.2, page 17 (see also [14]), the modulus of total convexity
of f is the bifunction υf : int domf × [0,+∞)→ [0,+∞] which is defined by

υf (x, t) := inf{Df (y, x) : y ∈ domf, ||y − x|| = t}.
The function f is said to be totally convex at a point x ∈ int domf if υf (x, t) > 0
whenever t > 0. The function f is said to be totally convex when it is totally convex
at every point x ∈ int domf . This property is less stringent than uniform convexity
(see [13], Section 2.3, page 92).
Examples of totally convex functions can be found, for instance, in [10, 12, 13]. We
remark in passing that f is totally convex on bounded subsets if and only if f is
uniformly convex on bounded subsets (see [12], Theorem 2.10, page 9).
The Bregman projection (cf. [11]) with respect to f of x ∈ int domf onto a nonempty,
closed and convex set C ⊂ int domf is defined as the necessarily unique vector

projfC(x) ∈ C, which satisfies

Df (projfC(x), x) = inf{Df (y, x) : y ∈ C}. (2.4)

Similarly to the metric projection in Hilbert spaces, the Bregman projection with
respect to totally convex and Gâteaux differentiable functions has a variational char-
acterization (cf. [12], Corollary 4.4, page 23).
Proposition 2.2. (Characterization of Bregman Projections). Suppose that f : E →
(−∞,+∞] is totally convex and Gâteaux differentiable in int dom f . Let x ∈ int domf
and let C ⊂ int domf be a nonempty, closed and convex set. If x̂ ∈ C, then the
following conditions are equivalent.
(i) The vector x̂ is the Bregman projection of x onto C with respect to f .
(ii) The vector x̂ is the unique solution of the variational inequality

〈∇f(x)−∇f(z), z − y〉 ≥ 0∀y ∈ C.
(iii) The vector x̂ is the unique solution of the inequality

Df (y, z) +Df (z, x) ≤ Df (y, x)∀y ∈ C.
Recall that the function f is said to be sequentially consistent [5] if, for any two
sequences {xn} and {yn} in E such that the first is bounded,

lim
n→∞

Df (xn, yn) = 0⇔ lim
n→∞

||xn − yn|| = 0. (2.5)

Let C be a nonempty, closed and convex subset of E and g : C ×C → R a bifunction
that satisfies the following conditions:
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(A1) g(x, x) = 0 for all x ∈ C;
(A2) g is monotone, i.e., g(x, y) + g(y, x) ≤ 0 for all x, y,∈ C;
(A3) for each x, y ∈ C, lim

t→0
g(tz + (1− t)x, y) ≤ g(x, y);

(A4) for each x ∈ C, y 7→ g(x, y) is convex and lower semicontinuous.
The resolvent of a bifunction g : C × C → R [19] is the operator Resfg : E → 2C

denoted by

Resfg (x) = {z ∈ C : g(z, y) + 〈∇f(z)−∇f(x), y − z〉 ≥ 0 ∀y ∈ C}. (2.6)

For any x ∈ E, there exists z ∈ C such that z = Resfg (x); see [36].
Let C be a convex subset of int domf and let T be a self-mapping of C. A point
p ∈ C is said to be an asymptotic fixed point of T if C contains a sequence {xn}∞n=0

which converges weakly to p and lim
n→∞

||xn − Txn|| = 0. The set of asymptotic fixed

points of T is denoted by F̂ (T ).
Recalling that the Bregman distance is not symmetric, we define the following oper-
ators.
Definition 2.3. A mapping T with a nonempty asymptotic fixed point set is said to
be:
(i) left Bregman strongly nonexpansive (see [5, 6]) with respect to a nonempty F̂ (T )
if

Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F̂ (T )

and if whenever {xn} ⊂ C is bounded, p ∈ F̂ (T ) and

lim
n→∞

(Df (p, xn)−Df (p, Txn)) = 0,

it follows that

lim
n→∞

Df (Txn, xn) = 0.

According to Martin-Marquez et al. [23], a left Bregman strongly nonexpansive map-

ping T with respect to a nonempty F̂ (T ) is called strictly left Bregman strongly non-
expansive mapping.

(ii) An operator T : C → int domf is said to be: left Bregman firmly nonexpansive
(L-BFNE) if

〈∇f(Tx)−∇f(Ty), Tx− Ty〉 ≤ 〈∇f(x)−∇f(y), Tx− Ty〉

for any x, y ∈ C, or equivalently,

Df (Tx, Ty) +Df (Ty, Tx) +Df (Tx, x) +Df (Ty, y) ≤ Df (Tx, y) +Df (Ty, x).

See [5, 10, 33] for more information and examples of L-BFNE operators (operators in
this class are also called Df -firm and BFNE). For two recent studies of the existence
and approximation of fixed points of left Bregman firmly nonexpansive operators,
see [24, 33]. It is also known that if T is left Bregman firmly nonexpansive and f
is Legendre function which is bounded, uniformly Fréchet differentiable and totally

convex on bounded subsets of E, then F (T ) = F̂ (T ) and F (T ) is closed and convex
(see [33]). It also follows that every left Bregman firmly nonexpansive mapping is left

Bregman strongly nonexpansive with respect to F (T ) = F̂ (T ).
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Martin-Marquez et al. [23] called the Bregman projection defined in (2.4) and chrac-
terized by Proposition 2.2 above as the left Bregman projection and they denoted the

left Bregman projection by
←−−−
ProjfC .

Let f : E → R be a convex, Legendre and Gâteaux differentiable function. Following
[1] and [15], we make use of the function Vf : E × E∗ → [0,+∞) associated with f ,
which is defined by

Vf (x, x∗) = f(x)− 〈x∗, x〉+ f∗(x∗),∀x ∈ E, x∗ ∈ E∗.

Then Vf is nonnegative and Vf (x, x∗) = Df (x,∇f∗(x∗)) for all x ∈ E and x∗ ∈ E∗.
Moreover, by the subdifferential inequality,

Vf (x, x∗) + 〈y∗,∇f∗(x∗)− x〉 ≤ Vf (x, x∗ + y∗) (2.7)

for all x ∈ E and x∗, y∗ ∈ E∗ (see also [20], Lemmas 3.2 and 3.3). In addition, if
f : E → (−∞,+∞] is a proper lower semi-continuous function, then f∗ : E∗ →
(−∞,+∞] is a proper weak∗ lower semi-continuous and convex function (see [28]).
Hence Vf is convex in the second variable. Thus, for all z ∈ E,

Df

(
z,∇f∗

( N∑
i=1

ti∇f(xi)
))
≤

N∑
i=1

tiDf (z, xi), (2.8)

where {xi}Ni=1 ⊂ E and {ti}Ni=1 ⊂ (0, 1) with
N∑
i=1

ti = 1.

Finally, we state some lemmas that will used in the proof of main results in next
section.
Lemma 2.4. (Reich and Sabach [34]) If f : E → R is uniformly Fréchet differentiable
and bounded on bounded subsets of E, then ∇f is uniformly continuous on bounded
subsets of E from the strong topology of E to the strong topology of E∗.
Lemma 2.5. (Butnariu and Iusem [13]) The function f is totally convex on bounded
sets if and only if it is sequentially consistent.
Lemma 2.6. (Reich and Sabach [35]) Let f : E → R be a Gâteaux differentiable and
totally convex function. If x0 ∈ E and the sequence {Df (xn, x0}∞n=1 is bounded, then
the sequence {xn}∞n=1 is also bounded.
Lemma 2.7. (Reich and Sabach [36]) Let f : E → (−∞,+∞) be a coercive Legendre
function. Let C be a closed and convex subset of E. If the bifunction g : C × C → R
satisfies conditions (A1)-(A4), then
1. Resfg is single-valued;

2. Resfg is a Bregman firmly nonexpansive mapping;

3. F (Resfg ) = EP (g);
4. EP (g) is a closed and convex subset of C;
5. for all x ∈ E and q ∈ F (Resfg ),

Df (q,Resfg (x)) +Df (Resfg (x), x) ≤ Df (q, x).
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Lemma 2.8. (Xu [51]) Let {an} be a sequence of nonnegative real numbers satisfying
the following relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 0,

where
(i) {αn} ⊂ [0, 1],

∑
αn =∞;

(ii) lim sup σn ≤ 0;
(iii) γn ≥ 0; (n ≥ 0),

∑
γn <∞.

Then, an → 0 as n→∞.
Lemma 2.9. (Mainge [22]) Let {an} be a sequence of real numbers such that there
exists a subsequence {ni} of {n} such that ani

< ani+1 for all i ∈ N. Then there exists
an increasing sequence {mk} ⊂ N such that mk →∞ and the following properties are
satisfied by all (sufficiently large) numbers k ∈ N :

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{j ≤ k : aj < aj+1}.
Lemma 2.10. (Suantai et al. [46]) Let E be a reflexive real Banach space. Let C be
a nonempty, closed and convex subset of E. Let f : E → R be a Gâteaux differen-
tiable and totally convex function. Suppose T is a left Bregman strongly nonexpansive

mappings of C into E such that F (T ) = F̂ (T ) 6= ∅. If {xn}∞n=0 is a bounded sequence

such that xn − Txn → 0 and z := P fΩ(u), then

lim sup
n→∞

〈xn − z,∇f(u)−∇f(z)〉 ≤ 0.

3. Main results

We first prove the following lemma in which an intensive part of the proof has already
appeared in recent papers (see [24, 46]).
Lemma 3.1. Let E be a reflexive real Banach space and f : E → R a strongly
coercive Legendre function which is bounded, uniformly Fréchet differentiable and to-
tally convex on bounded subsets of E. Let T be a left Bregman strongly nonexpansive

mapping on E such that F (T ) = F̂ (T ) and F (T ) 6= ∅. Let {αn} and {βn} be two
real sequences in (0, 1). Let u ∈ E and suppose {xn}∞n=1 is iteratively generated by
x1 ∈ E, {

yn = ∇f∗(αn∇f(u) + (1− αn)∇f(xn)),
xn+1 = ∇f∗(βn∇f(yn) + (1− βn)∇f(Tyn)), n ≥ 1.

(3.1)

Then, {xn}∞n=1 is bounded.
Proof. Let x∗F (T ). Then, we obtain from (3.1) that

Df (x∗, xn+1) = Df (x∗,∇f∗(βn∇f(yn) + (1− βn)∇f(Tyn)))

≤ βnDf (x∗, yn) + (1− βn)Df (x∗, Tyn)

≤ βnDf (x∗, yn) + (1− βn)Df (x∗, yn)

= Df (x∗, yn) = Df (x∗,∇f∗(αn∇f(u) + (1− αn)∇f(xn)))

≤ αnDf (x∗, u) + (1− αn)Df (x∗, xn)

≤ max{Df (x∗, u), Df (x∗, xn)} . . . ≤ max{Df (x∗, u), Df (x∗, x1)}. (3.2)
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Hence, {Df (x∗, xn)}∞n=1 is bounded. We next show that the sequence {xn} is also
bounded. Since {Df (x∗, xn)}∞n=1 is bounded, there exists M > 0 such that

f(x∗)− 〈∇f(xn), x∗〉+ f∗(∇f(xn)) = Vf (x∗,∇f(xn)) = Df (x∗, xn) ≤M.

Hence, {∇f(xn)} is contained in the sublevel set levψ≤(M − f(x∗)), where

ψ = f∗ − 〈., x∗〉.

Since f is lower semicontinuous, f∗ is weak∗ lower semicontinuous. Hence, the func-
tion ψ is coercive by Moreau-Rockafellar Theorem (see [38], Theorem 7A and [25]).
This shows that {∇f(xn)} is bounded. Since f is strongly accretive, f∗ is bounded
on bounded sets (see [52], Lemma 3.6.1 and [3], Theorem 3.3). Hence ∇f∗ is also
bounded on bounded subsets of E. (see [13], Proposition 1.1.11). Since f is a Legendre
function, it follows that xn = ∇f∗(∇f(xn)) is bounded for all n ≥ 0. Therefore {xn}
is bounded. So is {∇f(Txn)}. Indeed, since f is bounded on bounded subsets of E,
∇f is also bounded on bounded subsets of E (see [13], Proposition 1.1.11). Therefore
{∇f(Txn)} is bounded.
Now, following the method of proof in Theorem 3.1 (page 1297) in Sabach [39] and
recent papers of Suantai et al. [46] and Mainge [22], we prove the following main
theorem.
Theorem 3.2. Let E be a reflexive real Banach space and f : E → R a strongly
coercive Legendre function which is bounded, uniformly Fréchet differentiable and to-
tally convex on bounded subsets of E. Let T be a left Bregman strongly nonexpansive
mapping on E such that F (T ) 6= ∅. Let {αn} and {βn} be two real sequences in (0, 1).
Suppose {xn}∞n=1 is iteratively generated by (3.1) with the conditions
(i) lim

n→∞
αn = 0;

(ii)
∞∑
n=1

αn =∞;

(iii) 0 < a ≤ βn ≤ b < 1.

Then, {xn}∞n=1 converges strongly to
←−−−
ProjfF (T )u, where

←−−−
ProjfF (T ) is the left Bregman

projection of E onto F (T ).
Proof. From yn = ∇f∗(αn∇f(u) + (1 − αn)∇f(xn)), n ≥ 1 and condition (i), we
obtain Furthermore, we have that

Df (xn, yn) ≤ αnDf (xn, u) + (1− αn)Df (xn, xn)→ 0, n→∞. (3.3)

By Lemma 2.5, it follows that ||xn − yn|| → 0, n→∞. Furthermore, from (2.7), we
obtain

Df (x∗, xn+1) ≤ Df (x∗, yn) = Vf (x∗, αn∇f(u) + (1− αn)∇f(xn))

≤ Vf (x∗, αn∇f(u) + (1− αn)∇f(xn)− αn(∇f(u)−∇f(x∗))

+2〈αn(∇f(u)−∇f(x∗), yn − x∗〉
= Vf (x∗, αn∇f(x∗) + (1− αn)∇f(xn)) + 2αn〈∇f(u)−∇f(x∗), yn − x∗〉

≤ αnVf (x∗,∇f(x∗)) + (1− αn)Vf (x∗),∇f(xn)) + 2αn〈∇f(u)−∇f(x∗), yn − x∗〉
= (1− αn)Df (x∗, xn) + 2αn〈∇f(u)−∇f(x∗), yn − x∗〉. (3.4)
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The rest of the proof will be divided into two parts.
Case 1. Suppose that there exists n0 ∈ N such that {Df (x∗, xn)}∞n=n0

is nonincreas-
ing. Then {Df (x∗, xn)}∞n=0 converges and Df (x∗, xn+1) −Df (x∗, xn) → 0, n → ∞.
Observe that

Df (x∗, yn)−Df (x∗, Tyn) = Df (x∗, yn)−Df (x∗, xn) +Df (x∗, xn+1)

−Df (x∗, T yn)−Df (x∗, xn+1) +Df (x∗, xn)

≤ Df (x∗, yn)−Df (x∗, xn) + βn(Df (x∗, yn)−Df (x∗, Tyn))

−Df (x∗, xn+1) +Df (x∗, xn).

Thus,

0 < (1− b)(Df (x∗, yn)−Df (x∗, T yn)) ≤ (1− βn)(Df (x∗, yn)−Df (x∗, T yn))

≤ Df (x∗, yn)−Df (x∗, xn) +Df (x∗, xn)−Df (x∗, xn+1)

≤ αn[Df (x∗, u) +Df (x∗, xn)] +Df (x∗, xn)−Df (x∗, xn+1)→ 0, n→∞.
It then follows that

lim
n→∞

Df (Tyn, yn) = 0.

Since {xn} is bounded, there exists a subsequence {xnj} of {xn} that converges weakly
to p. By ||xn − yn|| → 0, n → ∞, we have that {ynj} converges weakly to p. Since

F (T ) = F̂ (T ), we have p ∈ F (T ).

Let z :=
←−−−
ProjfF (T )u. We next show that lim sup

n→∞
〈yn− z,∇f(u)−∇f(z)〉 ≤ 0. To show

the inequality lim sup
n→∞

〈yn− z,∇f(u)−∇f(z)〉 ≤ 0, we choose a subsequence {xnj
} of

{xn} such that

lim sup
n→∞

〈xn − z,∇f(u)−∇f(z)〉 = lim
j→∞
〈xnj

− z,∇f(u)−∇f(z)〉.

By ||xn − yn|| → 0, n→∞ and Lemma 2.10, we obtain

lim sup
n→∞

〈yn − z,∇f(u)−∇f(z)〉 = lim sup
n→∞

〈xn − z,∇f(u)−∇f(z)〉 ≤ 0. (3.5)

Now, using (3.5), (3.4) and Lemma 2.8, we obtain Df (z, xn) → 0, n → ∞. Hence,
by Lemma 2.5 we have that xn → z, n→∞.
Case 2. Suppose there exists a subsequence {ni} of {n} such that

Df (x∗, xni) < Df (x∗, xni+1)

for all i ∈ N. Then by Lemma 2.9, there exists an increasing sequence {mk} ⊂ N such
that mk →∞,

Df (x∗, xmk
) ≤ Df (x∗, xmk+1) and Df (x∗, xk) ≤ Df (x∗, xmk+1)

for all k ∈ N. Furthermore, we obtain

Df (x∗, ymk
)−Df (x∗, Tymk

) = Df (x∗, ymk
)−Df (x∗, xmk

) +Df (x∗, xmk+1)

−Df (x∗, Tymk
)−Df (x∗, xmk+1) +Df (x∗, xmk

)

≤ Df (x∗, ymk
)−Df (x∗, xmk

) + βmk
(Df (x∗, ymk

)−Df (x∗, Tymk
))

−Df (x∗, xmk+1) +Df (x∗, xmk
).
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Thus,

0 < (1− b)(Df (x∗, ymk
)−Df (x∗, T ymk

)) ≤ (1− βmk
)(Df (x∗, ymk

)−Df (x∗, T ymk
))

≤ Df (x∗, ymk
)−Df (x∗, xmk

) +Df (x∗, xmk
)−Df (x∗, xmk+1)

≤ αmk
[Df (x∗, u) +Df (x∗, xmk

)] +Df (x∗, xmk
)−Df (x∗, xmk+1)→ 0, k →∞.

It then follows that
lim
n→∞

Df (Tymk
, ymk

) = 0.

By the same arguments as in Case 1, we obtain that

lim sup
k→∞

〈ymk
− z,∇f(u)−∇f(z)〉 ≤ 0. (3.6)

and

Df (z, xmk+1) ≤ (1− αmk
)Df (z, xmk

) + 2αmk
〈∇f(u)−∇f(z, ymk

− x∗〉. (3.7)

Since Df (z, xmk
) ≤ Df (z, xmk+1), we have

αmk
Df (z, xmk

) ≤ Df (z, xmk
)−Df (z, xmk+1) + 2αmk

〈ymk
− z,∇f(u)−∇f(z)〉

≤ 2αmk
〈ymk

− z,∇f(u)−∇f(z)〉.
In particular, since αmk

> 0, we get

Df (z, xmk
) ≤ 2〈ymk

− z,∇f(u)−∇f(z)〉. (3.8)

It then follows from (3.6) that Df (z, xmk
) → 0, k → ∞. From (3.8) and (3.7), we

have
Df (z, xmk+1)→ 0, k →∞.

Since Df (z, xk) ≤ Df (z, xmk+1) for all k ∈ N, we conclude that xk → z, k → ∞.
This implies that xn → z, n→∞ which completes the proof.
Corollary 3.3. Let E be a reflexive real Banach space and f : E → R a strongly coer-
cive Legendre function which is bounded, uniformly Fréchet differentiable and totally
convex on bounded subsets of E. Let T be a left quasi-Bregman firmly nonexpansive
mapping on E and F (T ) 6= ∅. Let {αn} and {βn} be two real sequences in (0, 1).
Suppose {xn}∞n=1 is iteratively generated by (3.1) with the conditions
(i) lim

n→∞
αn = 0;

(ii)
∞∑
n=1

αn =∞;

(iii) 0 < a ≤ βn ≤ b < 1.

Then, {xn}∞n=1 converges strongly to
←−−−
ProjfF (T )u, where

←−−−
ProjfF (T ) is the left Bregman

projection of E onto F (T ).

4. Convergence Results concerning family of mappings

In this section, we present strong convergence theorems concerning approximation of
common solution to a finite system of equilibrium problems which is also a common
fixed point of a family of left Bregman strongly nonexpansive mappings in reflexive
real Banach space.
Let C be a subset of a real Banach space E, f : E → R a convex and Gâteaux differ-
entiable function and {Tn}∞n=1 a sequence of mappings of C such that ∩∞n=1F (Tn) 6= ∅.
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Then {Tn}∞n=1 is said to satisfy the AKTT-condition [2] if, for any bounded subset B
of C,

∞∑
n=1

sup{||∇f(Tn+1z)−∇f(Tnz)|| : z ∈ B} <∞.

The following proposition is given in the results of Suantai et al. [46].
Proposition 4.1. Let C be a nonempty, closed and convex subset of a real reflexive
Banach space E. Let f : E → R be a Legendre and Fréchet differentiable function.
Let {Tn}∞n=1 be a sequence of mappings from C into E such that ∩∞n=1F (Tn) 6= ∅.
Suppose that {Tn}∞n=1 satisfies the AKTT-condition. Then there exists the mapping
T : B → E such that

Tx = lim
n→∞

Tnx, ∀x ∈ B (4.1)

and lim
n→∞

supz∈B ||∇f(Tz)−∇f(Tnz)|| = 0.

In the sequel, we say that ({Tn}, T ) satisfies the AKTT-condition if {Tn}∞n=1 satisfies
the AKTT-condition and T is defined by (4.1) with ∩∞n=1F (Tn) = F (T ).
By following the method of proof of Theorem 3.2, method of proof Theorem 4.2 of
Suantai et al. [46] and Proposition 4.1, we prove the following theorem.
Theorem 4.2. Let E be a reflexive real Banach space and f : E → R a strongly
coercive Legendre function which is bounded, uniformly Fréchet differentiable and to-
tally convex on bounded subsets of E. Let {Tn}∞n=1 be a sequence of left Bregman

strongly nonexpansive mappings on E such that F (Tn) = F̂ (Tn) for all n ≥ 1 and
Ω := ∩∞n=1F (Tn) 6= ∅. Let {αn} and {βn} be two real sequences in (0, 1). Let u ∈ E
and suppose {xn}∞n=1 is iteratively generated by x1 ∈ E,{

yn = ∇f∗(αn∇f(u) + (1− αn)∇f(xn)),
xn+1 = ∇f∗(βn∇f(yn) + (1− βn)∇f(Tnyn)), n ≥ 1,

(4.2)

with the conditions
(i) lim

n→∞
αn = 0;

(ii)
∞∑
n=1

αn =∞;

(iii) 0 < a ≤ βn ≤ b < 1.
If ({Tn}, T ) satisfies the AKTT-condition, then {xn}∞n=1 converges strongly to
←−−−
ProjfΩu, where

←−−−
ProjfΩ is the left Bregman projection of E onto Ω.

Next, using the idea in [32], we consider the mapping T : C → C defined by
T = TmTm−1...T1, where Ti(i = 1, 2, . . . ,m) are left Bregman strongly nonexpan-
sive mappings on E. Using Theorem 3.2 and Theorem 4.3 of Suantai et al. [46], we
proof the following theorem.
Theorem 4.3. Let E be a reflexive real Banach space and f : E → R a strongly
coercive Legendre function which is bounded, uniformly Fréchet differentiable and to-
tally convex on bounded subsets of E. Let Ti(i = 1, 2, . . . ,m) be a sequence of left

Bregman strongly nonexpansive mappings on E such that F (Ti) = F̂ (Ti) for all n ≥ 1
and Ω := ∩mi=1F (Ti) 6= ∅. Let {αn} and {βn} be two real sequences in (0, 1). Let
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u ∈ E and suppose {xn}∞n=1 is iteratively generated by x1 ∈ E,{
yn = ∇f∗(αn∇f(u) + (1− αn)∇f(xn)),
xn+1 = ∇f∗(βn∇f(yn) + (1− βn)∇f(TmTm−1...T1yn)), n ≥ 1,

(4.3)

with the conditions
(i) lim

n→∞
αn = 0;

(ii)
∞∑
n=1

αn =∞;

(iii) 0 < a ≤ βn ≤ b < 1.

Then {xn}∞n=1 converges strongly to
←−−−
ProjfΩu, where

←−−−
ProjfΩ is the left Bregman pro-

jection of E onto Ω.

5. An Application to Equilibrium and Fixed Point Problem

This section is devoted to finding a common element of solutions to a finite systems
of equilibrium problems which is also a fixed point to left Bregman strongly nonex-
pansive mapping in reflexive Banach spaces using Theorem 3.2. Since the resolvent of
bifunction is also a left Bregman strongly relatively nonexpansive mapping (see, for
example, [39, 46]), thus solving equilibrium problem can be written as a fixed point
problem of the corresponding resolvent.
We propose below a strong convergence theorem for finding a common element of
solutions to a finite systems of equilibrium problems which is also a fixed point to left
Bregman strongly nonexpansive mapping in reflexive Banach spaces.
Theorem 5.1. Let E be a reflexive real Banach space. Let C be a nonempty, closed
and convex subset of E. For each j = 1, 2, ..., N , let gj be a bifunction from C × C
satisfying (A1) − (A4). Let f : E → R a strongly coercive Legendre function which
is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of
E. Let S be a left Bregman strongly nonexpansive mapping of C into E such that

F (S) = F̂ (S) and Ω := F (S) ∩ (∩Nj=1EP (gj)) 6= ∅. Let {αn} and {βn} be two real
sequences in (0, 1). Let u ∈ E and suppose {xn}∞n=1 is iteratively generated by x1 ∈ E,

yn = ∇f∗(αn∇f(u) + (1− αn)∇f(xn)),
un = ResfgNRes

f
gN−1

. . . Resfg2Res
f
g1yn,

xn+1 = ∇f∗(βn∇f(yn) + (1− βn)∇f(Sun)), n ≥ 1,

with the conditions
(i) lim

n→∞
αn = 0;

(ii)
∞∑
n=1

αn =∞;

(iii) 0 < a ≤ βn ≤ b < 1.

Then, {xn}∞n=1 converges strongly to
←−−−
ProjfΩu, where

←−−−
ProjfΩ is the left Bregman pro-

jection of E onto Ω.
Proof. From Theorem 3.2, define T := ResfgN oRes

f
gN−1

o . . . Resfg2oRes
f
g1oS, then

we see from Theorem 4.3 of Suantai et al. [46] that T is a left Bregman strongly
nonexpansive mapping and F (T ) = F (S) ∩ (∩Nj=1EP (gj)). Hence, by Theorem 3.2,
we obtain the desired result.
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Theorem 5.2. Let E be a reflexive real Banach space. Let C be a nonempty, closed
and convex subset of E. For each j = 1, 2, ..., N , let gj be a bifunction from C × C
satisfying (A1) − (A4). Let f : E → R a strongly coercive Legendre function which
is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of
E. Let Ω := ∩Nj=1EP (gj) 6= ∅. Let {αn} and {βn} be two real sequences in (0, 1). Let
u ∈ E and suppose {xn}∞n=1 is iteratively generated by x1 ∈ E,

yn = ∇f∗(αn∇f(u) + (1− αn)∇f(xn)),
un = ResfgNRes

f
gN−1

. . . Resfg2Res
f
g1yn,

xn+1 = ∇f∗(βn∇f(yn) + (1− βn)∇f(un)), n ≥ 1,

with the conditions
(i) lim

n→∞
αn = 0;

(ii)
∞∑
n=1

αn =∞;

(iii) 0 < a ≤ βn ≤ b < 1.

Then, {xn}∞n=1 converges strongly to
←−−−
ProjfΩu, where

←−−−
ProjfΩ is the left Bregman pro-

jection of E onto Ω.
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