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Abstract. In this paper, we show A-convergence and w-convergence (in the sense of Ahmadi
Kakavandi and Amini [2]) of modified Mann iteration
Tn+l = anPyn & (1 — an)T»:LLPyny d(yn793n) <en, zg € C,

to a common fixed point of the sequence (7 ) of asymptotically nonexpansive type selfmappings on
a closed and convex subset C' of a complete CAT(0) space X, where () C [0,1], (en) C RT and
P is the nearest point projection on C. Our results extend the results in [16, 21] in the setting of
complete CAT(0) spaces.
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1. INTRODUCTION

Let C be a nonempty subset of a metric space (X,d) and Y be a nonempty
subset of C. A mapping T : C — C is called nonexpansive respect to Y if
for each =z € Cand y € Y, d(TzTy) < d(z,y). HY = C, T is called
nonexpansive and if Y = F(T) := {&# € C : T(x) = z}, T is called quasi-
nonexpansive. T is said to be asymptotically nonexpansive respect to Y if there
exists a sequence (k,) of positive real numbers such that k, — 1 and for all
x € Candy eV, dTz,T"y) < kyd(z,y). f'Y = C, the mapping T is called
asymptotically nonexpansive and if Y = F(T), T is called asymptotically quasi-
nonexpansive. The mapping T is said to be asymptotically nonexpansive type respect
to Y if limsup,, . sup,cy (d(T"2, T"y) — d(z,y)) <0, forallz € C. If Y = C,
T is called asymptotically nonexpansive type and if Y = F(T), T is called asymp-
totically quasi-nonexpansive type. It is clear that nonexpansive mappings (quasi-
nonexpansive mappings) and asymptotically nonexpansive mappings (asymptotically
quasi-nonexpansive mappings) are asymptotically nonexpansive type mappings (resp.
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asymptotically quasi-nonexpansive type mappings). The sequence (T3,) of selfmap-
pings on C' is called a family of asymptotically nonexpansive mappings respect to
Y if for each T;, there exists a sequence (ky ;) of positive real numbers such that
kni — 1,asn — oo, and for all x € C and y € Y, d(T'z, T'y) < ky,;d(z,y). If
Y = C, the sequence (T,) is called a family of asymptotically nonexpansive map-
pings and if Y = (), F(T},), the sequence (T},) is called a family of asymptotically
quasi-nonexpansive mappings. The sequence (7},) of selfmappings on C is called a
family of asymptotically nonexpansive type mappings respect to Y if each T; satis-
fies limsup,, , o, sup,cy (d(T7'x, T]'y) — d(x,y)) < 0, forallz € C. If Y = C, the
sequence (T,,) is called a family of asymptotically nonexpansive type mappings and
ifY = N,_, F(T,), the sequence (T5,) is called a family of asymptotically quasi-
nonexpansive type mappings.

Mann [15], for approximation fixed point of nonexpansive mapping 7', suggested
the iterative sequence given by z,t+1 = apx, + (1 — a,,)Tz,. He proved the weak
convergence of this sequence under the appropriate conditions on (a;,) C [0,1]. Since
then many authors worked on Mann iteration and extended the results in Hilbert and
Banach spaces. Schu in [18, 19] proved weak and strong convergence of the modified
Mann iteration x,11 = apz, + (1 — a,)T™x, for the asymptotically nonexpansive
mappings in Hilbert and Banach spaces. Nanjaras and Panyanak [16] extended the
results of Schu [18, 19] to CAT(0) spaces. Let us to introduce the CAT(0) spaces.

Let (X,d) be a metric space and z,y € X. A geodesic path joining z to y is an
isometry ¢ : [0,d(z,y)] — X such that ¢(0) = z,c(d(z,y)) = y. The image of a
geodesic path joining x to y is called a geodesic segment between = and y. The metric
space (X, d) is said to be a geodesic space if every two points of X are joined by a
geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining
x and y for each z,y € X.

A geodesic space (X, d) is a CAT(0) space if satisfies the following inequality:

CN —inequality: If z,yo,y1,y2 € X such that d(yo,y1) = d(yo,y2) = 2d(y1,y2), then

1 1 1
d*(z,y0) < §d2($7y1) + §d2(907y2) - de(yhyz)-

It is known that a CAT(0) space is a uniquely geodesic space. For other equivalent
definitions and basic properties, we refer the reader to the standard texts such as
[4, 6,10, 11]. Some examples of CAT(0) spaces are pre-Hilbert spaces (see [4]), R-trees
(see [12]), Euclidean buildings (see [5]), the complex Hilbert ball with a hyperbolic
metric (see [9]), Hadamard manifolds and many others.
Let X be a CAT(0) space and z,y € X. We write (1 —t)x @ ty for the unique
point z in the geodesic segment joining from x to y such that d(z,2) =
td(z,y) and d(z,y) = (1 — t)d(z,y). Set [z,y] ={(l —t)zd ty : t € [0,1]}, a subset
C of X is called convex if [z,y] C C, for all z,y € C.

A notion of convergence in complete CAT(0) spaces was introduced by Lim [14]
that is called A-convergence as follows:
Let (X, d) be a complete CAT(0) space, (z,) be a bounded sequence in X and z € X.
Set r(x,(x,)) = limsup,_,. d(z,z,). The asymptotic radius of (z,) is given by
r((zn)) = inf{r(z,(x,)) : © € X} and the asymptotic center of (x,) is the set
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A((zp)) ={z € X : r(z,(x,)) = r((xy))}. It is known that in the complete CAT(0)
spaces, A((z,,)) consists exactly one point (see [13]). A sequence (z,,) in the complete
CAT(0) space (X,d) is said A-convergent to x € X if A((z,,)) = {z} for every
subsequence (2, ) of (z,). It is well-known that in all CAT(0) spaces every bounded
sequence has a A-convergent subsequence. The concept of A-convergence that has
been studied by many authors (e.g. [8, 7]), extends the notion of weak convergence
of Hilbert spaces to CAT(0) spaces.

Another approach for extension of weak convergence to CAT(0) spaces proposed
by Ahmadi Kakavandi and Amini [2], based on the concept of quasilinearization of
Berg and Nikolaev [3]. They denoted a pair (a,b) € X x X by ab and called it a
vector. Then the quasilinearization map (-, ) : (X x X) x (X x X) — R is defined by

(ab, cd) = %(d2(a7d) a2 (b,e) — d*(a,¢) — d2(b,d)),  (a,b,c,d € X).

Ahmadi Kakavandi and Amini [2] have introduced the concept of dual space in com-
plete CAT(0) spaces, based on the work of Berg and Nikolaev [3]. Introducing of a
dual space for a CAT(0) space implies a concept of weak convergence respect to the
dual space which is named w — convergence in [2]. In [2], authors also showed that
w-convergence is stronger than A-convergence. Ahmadi Kakavandi in [1] presented
an equivalent definition of w-convergence in complete CAT(0) spaces without using
of dual space, as follows:
Definition 1.1. [1] A sequence (x,,) in a complete CAT(0) space (X, d) w-converges
tox € X iff limnﬁoo@c_xz,@) =0, forall y € X.

w-convergence is equivalent to the weak convergence in Hilbert space H; because
if (.,.) is the inner product in Hilbert space H, then

2(@,@) = d*(z,y) + d*(z,2) — d*(z,y) = 2(x — 2z, — ¥).

Also, Ahmadi Kakavandi [1] introduced a so-called w-topology such that conver-
gence in this topology is equivalent to w-convergence for any sequence. It is obvious
that metric convergence implies w-convergence, and in [2] it has been shown that
w-convergence implies A-convergence but the converse is not valid (see [1]). How-
ever Ahmadi Kakavandi [1] proved that (z,) A-converges to x € X if and only if
lim supnﬁoo(x_xz,@) < 0, Yy € X. In the sequel, we denote A-convergence by —,
w-convergence by ~» and metric convergence by —.

Nanjaras and Panyanak [16] extended the results of Schu [18, 19] to CAT(0) spaces.
In fact, they proved A-convergence of the iteration x,11 = a2z, ® (1 — a,)T @,
in CAT(0) spaces. Zhang and Cui [21] extended the results of [16] to asymptotically
nonexpansive type mappings. In this paper, we extend the results of Nanjaras and Pa-
nyanak [16] and Zhang and Cui [21] to a family of asymptotically quasi-nonexpansive
mappings in the setting of complete CAT(0) spaces. Consider the sequence given by
the modified inexact Mann iteration

Tnt1 = @ Pyn ® (1 — apn) T Pyn, d(Yn, ) < €n, 9 € C, (1.1)

where (7},) is a family of asymptotically nonexpansive type selfmappings on a closed
and convex subset C' of a complete CAT(0) space X, (a,,) C [0,1], (e,) C RT and P
is the nearest point projection on C. In fact, we prove A-convergence of the sequence
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given by (1.1) to a common fixed point of the sequence (7},) under appropriate as-
sumptions on (a,) and (e, ) in complete CAT(0) spaces and also w-convergence of the
sequence (x,) in CAT(0) spaces that are sequentially locally compact in w-topology.
The following technical lemma is well-known in CAT(0) spaces.
Lemma 1.2. [7] Let (X,d) be a CAT(0) space. Then, for all z,y,z € X and all
tel0,1]:
() Btre (1—t)y,2) < td(,2) + (1 - )y, =) — t(1 — d(z,y),
(i) ditze (1-1t)y,z) <td(z,z)+ (1-1t)d(y,=2).

The following lemma is a generalization of Lemma 1 in [20] that has been proved
in [17].
Lemma 1.3. [17] Let {an}n>1, {Bn}n>1 and {vp}n>1 be non-negative sequences
satisfying

o0 oo
ap41 < (1 +7n)an+6n7 n > 1, 2771 < 00, Zﬁn < 00.

n=1 n=1

Then lim o, exists. Moreover, if liminf,,_, a, = 0, then lim a,, = 0.

2. MAIN RESULTS

In this section, we prove A-convergence and w-convergence of the sequence (z,,)
generated by (1.1) such that the family (7},) of asymptotically quasi-nonexpansive
selfmappings on subset C' of a CAT(0) space (X, d) satisfies the following condition.

For subsequences (T},;) of (Ty), and (z,,) C C,
such that z,,, = x and d(zy,, Tn} ©n,;) — 0 (2.1)
=z e F(T).

The following lemma is a generalization of Opial lemma in CAT(0) spaces.
Lemma 2.1. Let (X, d) be a CAT(0) space and (x,,) a sequence in X. If there exists
a nonempty subset F' of X verifying:

(i) For every z € F, lim,, d(z,, z) exists.
(ii) If a subsequence () of () is A-convergent to x € X, then x € F.
Then, there exists p € F such that (x,) A-converges to p in X.
Proof. Suppose there exist subsequences (z,,) and (zy, ) of (z,) such that z,, — z
and ,, — y. So, limsup; (m,xw < 0 and lim supy, (yz,,/, y£) < 0. By (i), 2,y € F
and by (i), set
I = liTILn d(zp,x) and ly = li};n d(xn,y)

Moreover,

2<ma@> = d2($7mn_7’) - dz(yaxnj) + d2(x7y)v

2Tl ) = Py, 70,) — P (,20,) + P2,y).
Taking limsup when j — co and k — oo, we have d?(z,y) < I} — Iy < —d*(z,y).
Thus, x = y and l; = ls. It is enough that we show every subsequence of (z,) has

the unique asymptotic center x. Suppose that (x,,) be an arbitrary subsequence of
(z,,) and z an element of X that z # x.

2(35;10”1.,,@} = dQ(x, Tn,) — dg(zwm) + d2(a:,z).
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By taking lim sup we get

2lim sup(zz,, Z2) + lim sup d*(z,1,,) > lim sup d*(x,x,) + d*(z, 2). (2.2)
Suppose (iCn]) is a subsequence of (z,,;) such that

lim sup(zz,,, 22) = lim(zz,,’, T%) (2.3)
i J !
Since (mn]) is bounded, therefore it has a A-convergent subsequence. We denote it
again by (an) By the above materials x,, — x. So limj(xxnij,x?> < 0. Now
(2.2) and (2.3) implies that lim sup; d?(z,,,, 2) > limsup; d?(x,,, z). Thus, asymptotic
center of any arbitrary subsequence (x,,) of (z,) is z. Hence, there exists p =2 € F'
such that (x,) A-converges to p in X. O
Theorem 2.2. Suppose C' is a closed and convex subset of a complete CAT(0) space
(X,d) and (T,) be a family of selfmappings on C such that F' =\ —, F(T,) # 0.
Let (o) C [0,1], (es) C [0,00] and (y,) C X be sequences such that the sequence
() is generated by
Tn+1 = anpyn @ (1 - Oén)TSPym d(ynaxn) S €n, To S 07

where P is the nearest point projection on C'.
Also, suppose > 7, e, < 00 and (a,,) C [a,b] with a,b € (0,1). We have
(i) Let (T5,) be a sequence of asymptotically nonexpansive type mappings such that
the condition (2.1) is satisfied. Set

Cni = maX{Oa sup (d(fo, nny) - d(IL‘7 y))}
z,yeC

If Y°0° | ¢un < 00, then (z,,) is A-convergent to g € F.
(ii) Let e, = 0 and (7},) be a sequence of asymptotically quasi-nonexpansive type
mappings such that the condition (2.1) is satisfied. Set

cni = max{0, sup{ (d(T}*z, T}'p) — d(z,p)) ; v € C, p€ F}}.

If Y°0° | ¢un < 00, then (z,,) is A-convergent to g € F.
(iii) Let e,, = 0 and (T},) is a sequence of asymptotically quasi-nonexpansive mappings
such that the conditions (2.1) are satisfied.
If > (k2, — 1) < oo then (z,,) A-converges to g € F.
Proof. Let (T},) be a sequence of asymptotically quasi-nonexpansive type mappings.
Suppose q € F C C, then

d(#n1,q) < and(Pyn, q) + (1 = an)d(T3! Pyn, q) < d(yn,q) + (1 — o) cnn

< d(UCm(I) + en + Cnn,
so, by the assumptions and Lemma 1.3, lim,, d(z,,q) exists for all ¢ € F and (z,),
(yn) and (Py,) are bounded. Moreover,

&*(@n11,9) < @nd®(Pyn, ) + (1 = an)d* (T Pyn, q) — an(l — an)d*(Pyn, Ty Pyn)
< dz(ym q)+(1— an)cfm +2(1 — an)ennd(Yn, q) — an(l — ozn)dQ(Pyn,T:Pyn)
< d* (2, q) + €2 4 2end(2n, q) + (1 — o),
+2(1 = an)cnnd(Yn, q) — an(l — O‘n>d2(Pyn»Tr?Pyn)a
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which implies
o
> an(l = ap)d*(Pyn, Ty Py,) < oo. (2.4)
n=1

Now, we prove (i). Since obviously every asymptotically nonexpansive type sequence
is asymptotically quasi-nonexpansive type sequence, by the assumption on the se-
quence (o) and (2.4), we get lim, d(Pyn, Ty Py,) = 0. By Pz, =z, Vn €N, we
have
d(zn, T wy) < d(Tn, Pyn) + d(Pyn, Ty, Pyn) + d(T5 Pyn, T,/ n)

< 2d(Xn, Yn) + Cnn + A(Pyn, TR Pyn) < 2e5 + cnn + d(Pyn, T Pyn)
which implies lim,, d(xy,, T’ ;) = 0. Therefore, the condition (2.1) guaranties that if
Tn, — ¥, then z € F. Hence, Lemma 2.1 completes the proof.
In (ii), Yo = Tn, Vn € N, because of e, = 0. By (2.4), we get lim,, d(z,, Tt zy) = 0.
Therefore, the condition (2.1) guaranties that if z,,, — x, then 2 € F. Hence, Lemma
2.1 gives the desired result.
In (iii), yn = zn, Vn € N, because of e,, = 0. Therefore, we have

d*(zni1,q) < and?(zn,q) + (1 — an)d* (T, q) — an (1 — o) d? (2, T,
< and®(xn,q) + (1 — an)k2, d*(zn,q) — an(l — an)d*(z,, T x,)
< (14 (1= an)(kh, = 1))d*(xn, q) — an(l = an)d(zn, Ty w,),
which, by the assumptions and Lemma 1.3, lim,, d(z,,, ¢) exists for all ¢ € F' and

> an(l = an)d* (@, T)wn) < oo. (2.5)
n=1

So, by the assumptions on the sequence (a,), we get d(x,, T"x,) — 0, which by the
condition (2.1), implies if x,,, — x, then x € F. Hence, by Lemma 2.1, the proof is
complete. O
Theorem 2.3. Suppose C be a closed and convex subset of a complete CAT(0) space
(X,d) and (T,,) be a family of self mappings on C such that F = (\,—, F(T,) # 0
and satisfies the following conditions

for any subsequence (T,,) of (T}), for (x,,) C C,
such that z,,;, — 2 and d(z,,,, Tp;7n,;) — 0 (2.6)
=z e, F(T,).
and
for any bounded sequence (z,,) C C, d(T" 'z, T !'z,) — 0. (2.7)
Let () C [0,1], (en) C [0,00[ and (y,) C X be sequences such that the sequence
(2,) is generated by
xn-‘rl - anpyn @ (1 - Oén)TSP?Jm d(ynaxn) S €n, To S 07
where P is the nearest point projection on C. Also, suppose Zzo:l en < oo and
(o) C [a, b] with a,b € (0,1). We have
(i) Let (7},) be a sequence of asymptotically nonexpansive type mappings that are
uniformly continuous. Set ¢p; = max{0,sup, ,co (d(T7x, Tjy) — d(z,y))}-
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If Y°0° | ¢un < 00, then (z,,) is A-convergent to g € F.

(ii) If e, = 0 and (T,) is a sequence of asymptotically nonexpansive mappings such
that >0 (kZ, — 1) < oo, then (z,,) A-converges to q € F.

Proof. (i) By the proof of Theorem 2.2, lim,, d(z,, q) exists for all ¢ € F and (z,),
(yn) and (Py,,) are bounded. By (2.4) and the assumptions on the sequence (ay,), we
get lim,, d(Pyy, T Py,) = 0. On the other hand

d(Pyy, T Pyyn) < d(Pyp, ) + d(@n, Ty =) Pyn—1)
+d(T3 71 Pyn—1, T, 21 Pyn) + d(T; =) Pyy, Ty~ Pyy)
< en + an1d(Pyn—1, T " Pyn—1) + d(Pyn—1, Pyn) + cn—1,n-1
+d(Ty2 ) Py, Ty~  Pyy)
<en+ an_1d(Pyn-1, T:::llpyn,l) + d(Pyn—1,2n) + d(zn, Pyn) + Cn_1,n—1
+d(T::11Py,L,T571Py,L)
< 2en + an1d(Pyn—1, T Pyn_1) + (1 — an_1)d(Pyn—1, T} PYn_1) + Cn1n1
+d(TZ) Py, Ty~ Pyy)
< 2en + d(Pyn—1,T0 "} Pyn—1) + cn—1n—1 + d(Tp 7} Pyn, Ty~ Pyy),
which, by condition (2.7), implies d( Py, T*~! Py, ) — 0. Thus, by uniform continuity
d(Pyn, TnPyn) < d(Pyn, T Pyn) + d(T}; Pyn, Tr Pyn)
< d(Pyy, T} Pyn) + d(T, (T ' Py,), T, Pyy)
implies d(Pyy,, T, Py,) — 0. Moreover, by d(Py,,x,) — 0 and uniform continuity,
d(xp, Thxn) < d(@p, Pyn) + (Pyn, TnPyn) + d(Tn Pyn, Trnxy)

implies d(xy, Tyx,) —+ 0. Therefore, the condition (2.6) guaranties that if x,, — x,
then x € F. Hence, Lemma 2.1 gives the desired result.

(ii) By the proof of part (iii) of Theorem 2.2, lim, d(z,,q) exists for all ¢ € F
and (z,) is bounded. By (2.5) and the assumption on the sequence (o), we get
lim,, d(x,, T'x,,) = 0. By using the same proof of part (i), we get d(z,, Thz,) — 0.
Therefore, the condition (2.6) guaranties that if ,,, — x, then 2 € F. Hence, Lemma
2.1 gives the desired result. O
Remark 2.4. If T is a continuous asymptotically nonexpansive type self mapping on
the closed and convex subset C of a complete CAT(0) space X, then by [21, Corollary
3.4], T is demiclosed (i.e. if a sequence (x,) A-converges to x and d(x,,Tz,) — 0,
then € F(T)). Thus, if in Theorem 2.3, T,, = T, then the conditions (2.6) and (2.7)
are satisfied. Hence, Theorem 2.3 extends the results of Nanjaras and Panyanak [16]
and Zhang and Cui [21] in complete CAT(0) spaces.

Remark 2.5. The main results of the paper and Lemma 2.1 remain true if we
replace A-convergence with w-convergence provided we impose locally sequentially
compactness of w-topology in CAT(0) space. Because in this case every bounded
sequence has a w-convergent subsequence, therefore the set of all cluster points of
a bounded sequence is nonempty. This condition is satisfied for example in every
CAT(0) space with (S) property (see [1]), like symmetric Hadamard manifolds and
Hilbert spaces. Because in such spaces every w-convergent sequence is A-convergent,
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and on the other hand it is well-known that in all CAT(0) spaces every bounded
sequence has a A-convergent subsequence. Indeed, we do not know whether the main
theorems of the paper for w-convergence are satisfied in general CAT(0) spaces.
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