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Abstract. This paper studies essential stabilities of fixed points for correspondences. The existence

of minimal essential sets of fixed points is proved under the perturbation of correspondences and
domains. We show that a kind of minimal essential set is connected. As an application, the existence

of minimal essential sets of Nash equilibria is deduced, and these sets can resist the dual perturbations
of best responses and strategy sets for a noncooperative game.
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1. Introduction

The stability analysis of fixed points is an important focus in nonlinear analy-
sis. In 1950, Fort investigated the essentially stable fixed points of correspondences,
then essential stabilities is linked with generic stability, and some generic stability
results were of important significance [1]. Nextly, Kinoshita studied essentially stable
components of fixed points [2].

Yu considered essential sets of equilibrium points of correspondences in a metric
space equipped with the uniform topology [3]. Interestingly, in [4], Xiang pointed out
that there exist differences between the uniform topology and the graph topology for
generic stability results of fixed points of correspondences, and this reveals that the
stability of fixed points depends on topologies on spaces for correspondences.
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Essential stabilities have attracted many scholars to study deeply, e.g., [5, 6]. In
fact, these are also closely related with the stability analysis of Nash equilibria in
noncooperative games [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. In 1962, Wu and Jiang
raised the conception of essential equilibria in n-person noncooperative games, see
[7] or [18]. Combining strategic stabilities in [8, 9] by Kohlberg, Mertens and Hillas,
stabilities for Nash equilibria have gone into more detail about essentialities. After-
wards, many works in relation to essential stabilities in noncooperative games were
contributed. And all these stability results, more or less, are related to the stability of
fixed points under the perturbation of payoffs or strategies in noncooperative games.

In consideration of the bounded rationality of players in games, inspired by [9],
the set of strategies of each player may shake in itself (e.g., by acknowledged facts,
perfect equilibria can partly resist this kind of perturbation), meanwhile, the best
response for each boundedly rational player may have perturbations. On basis of this
consideration, in this paper, firstly, we study the essential stability of fixed points
under the perturbation of both correspondences and domains. Next, as applications,
we obtain essentially stable results for Nash equilibria in noncooperative games with
infinite strategies, and the corresponding results include related results in [9] as special
cases.

2. Preliminaries

Let X be a compact and convex set of a Euclidean space (E, ‖ · ‖), K(X) denotes
the collection of nonempty compact convex subsets of X. F : X → K(X) is an
upper semicontinuous correspondence (for the concept of usual semicontinuities of
correspondences, see [19, p. 35]), and C(X) represents the collection of all thus F .
Let u = (F,A) ∈ C(X)×K(X), M be the set as follow

M = {u ∈ C(X)×K(X) : ∀x ∈ A, s.t. F (x) ⊂ A}.
For any u1 = (F1, A1), u2 = (F2, A2) ∈ M , using the Euclidean metric d defined

by the norm on E, the Hausdorff metric between A1 and A2 is written as

h(A1, A2) = max{hl(A1, A2), hu(A1, A2)},
where

hl(A1, A2) = inf{λ > 0 : A1 ⊂ B(A2, λ)},
hu(A1, A2) = inf{λ > 0 : A2 ⊂ B(A1, λ)}

(B(A, λ) = {x ∈ E, d(x, y) < λ for some y ∈ A}).
We define the metric between u1 and u2 as

ρ(u1, u2) = sup
x∈X

h(F1(x), F2(x)) + h(A1, A2).

Then (M,ρ) is a metric space.

Definition 2.1. For each u ∈M , x is called a fixed point of u if x ∈ A and x ∈ F (x).

Many works focus on stabilities of fixed points on X under the perturbation of F
in C(X), that is, these cases consider the metric of F1, F2 ∈ C(X) as

ρX(F1, F2) = sup
x∈X

h(F1(x), F2(x)).
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It should be pointed that the stability of fixed points in the sense of ρ is different
from that of ρX . This is reflected in their different convergences. Let u = (F,A) ∈M
and Gn ∈ C(X). Define v = (Gn, X), then v ∈ M . If ρ(u, v) → 0 (n → ∞), then
ρX(F,Gn) → 0. However, if ρX(F,Gn) → 0, there may not exist An ∈ X with
vn = (Gn, An) ∈M such that ρ(u, vn)→ 0, see the following example.

Example 2.1. Let X = [0, 1], A = [0, 1
2 ]. Let F ∈ C(X) such that

F (x) =

{
1
2x+ 1

4 , [0, 1
2 ),

x, [ 1
2 , 1].

Clearly, we have u = (F,A) ∈M . Let Gn ∈ C(X) such that

Gn(x) =

{
1
2x+ 1

4 + 1
n , [0, 1

2 ),

(1− 2
n )x+ 2

n , [ 1
2 , 1].

It can be easily calculated that

ρX(F,Gn) =
1

n
→ 0.

Also we can check that Gn(x) > x for each x ∈ [0, 1), and Gn(x) = x while x = 1.
Thus, for any subset B ⊂ X\{1}, there definitely exists at least a point x such that
Gn(x) 6⊂ B. Then only v1

n = (Gn, X) and v2
n = (Gn, {1}) satisfy that v1

n, v
2
n ∈ M .

Noting that A = [0, 1
2 ], then h(A,X) 6→ 0 and h(A, {1}) 6→ 0. Therefore, there is no

vn = (Gn, B) ∈M such that ρ(u, vn)→ 0.

Let u = (F,A) ∈M . Denote the collection of fixed points of u by S(u). From the
definition of M and Kakutani’s fixed point theorem [20], we can obtain that S(u) 6= ∅,
and S(u) is compact [21, p. 550], thus, S defines a correspondence from M to K(X).

Definition 2.2. For each u ∈ M , a set e(u) is called an essential fixed point set of
S(u) with respect to M if it satisfies the following conditions:

(i) e(u) is closed subset of S(u).
(ii) For any open set U with U ⊃ e(u), there exists an open neighborhood O(u) of

u in M such that U ∩ S(g) 6= ∅, ∀g ∈ O(u). That is, near u there exists a fixed point
near the set e(u).

If the essential set e(u) is a singleton set {x∗}, then x∗ is called an essential fixed
point of S(u).

Definition 2.3. A set e∗(u) is called minimal essential set of S(u) with respect to
M if it is a minimal set of all essential sets ordered by set inclusion in S(u).

Lemma 2.1. (see [15]) Let A,A1, A2 be compact convex subsets in E, satisfying
A1 ⊂ intA,A2 ⊂ intA, where intA is the relative interior of A in E. If h(A,A2) <
minx∈∂A,y∈A1 d(x, y), then A1 ⊂ A2, where ∂A is the boundary of A.

Lemma 2.2. (see [11]) Let A,B be two nonempty convex compact subsets of a normed
vector space P . Then for any α, β ≥ 0, α + β = 1, h(A,αA + βB) ≤ h(A,B), where
h is the Hausdorff metric defined on P .
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3. Essential Sets of Fixed Points

The fixed point correspondence S presents some continuities, this leads to essential
stability of some subsets of S(u) for any u in M .

Theorem 3.1. S : M → K(X) is an upper semicontinuous correspondence with
compact values.

Proof. Since X is compact, it suffices to prove that the graph of S,

Gr(S) = {(u, x) ∈M ×X,x ∈ S(u)},

is closed in M ×X.
Given (un, xn) ∈ Gr(S) with (un, xn)→ (u0, x0) ∈ M ×X, where un = (Fn, An),

u0 = (F0, A0), we have xn ∈ An and xn ∈ F (xn). We need to show that x0 ∈ S(u0).
Because xn → x0, xn ∈ An, and An → A, we know that the right hand of the following
inequality gets close to zero as n→∞,

h(x0, A) ≤ h(x0, xn) + h(xn, An) + h(An, A).

Then it holds that x0 ∈ A. Additionally, we have

hl(x0, F0(x0)) ≤ hl(x0, xn) + hl(xn, Fn(xn))

+ hl(Fn(xn), F0(xn)) + hl(F0(xn), F0(x0)).

Since xn → x0, xn ∈ Fn(xn), Fn → F0, and by the upper semicontinuous property of
F0, the right hand of the above inequality gets also close to zero as n → ∞. Thus,
we have x0 ∈ F0(x0). Therefore, we have proved that x0 ∈ S(u0). The proof is
completed. �

Theorem 3.2. For each u = (F,A) ∈ M , there exists a minimal essential set of
S(u).

Proof. By Theorem 3.1, S : M → K(X) is an upper semicontinuous correspondence
with compact values. Then for any open set U with S(u) ⊂ U , there exists a neigh-
borhood N(u) of u such that S(u′) ⊂ U,∀u′ ∈ N(u), that is, S(u) itself is an essential
set. Denote by Φ all essential subsets of S(u). Since each essential subsets of S(u)
is compact, we have the intersection of each deceasing chain in Φ is nonempty, and
this intersection is a lower bound for the chain. Therefore, there is a minimal element
in Φ by Zorn’s lemma, and the minimal element is really a minimal essential set of
S(u). �

Remark 3.1. In Theorem 3.2, if we consider the stability of fixed points on X using
ρX , we can deduce the existence of minimal essential sets of fixed points for each
F ∈ C(X). If F ∈ C(X) is a mapping on X, then the existence of minimal essential
sets of fixed points holds also. If X is in a Hausdorff locally convex topological vector
space, we know that S(u) 6= ∅ by Kakutani-Fan-Glicksberg fixed point theorem (see,
[21, p. 550]), then Theorem 3.1 and 3.2 still hold.

From Theorem 3.2, if the fixed point set S(u) is a single point set, we can deduce
the following result.
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Corollary 3.3. For each u = (F,A) ∈ M , if S(u) = {x∗}, then x∗ is an essential
fixed point of S(u).

Remark 3.2. For a point u = (F,A) ∈ M , the essential set restrained in A ⊂ X
is different from it in X. In Example 2.1, the unique fixed point set of u = (F,A)
is { 1

2}. Let v = (F,X) ∈ M , then the fixed point set of v is the interval [ 1
2 , 1]. By

Theorem 3.2 and Corollary 3.3, obviously, the set { 1
2} is a minimal essential set of

S(u). However, the set { 1
2} is not a minimal essential set of S(v), because the unique

minimal essential set of S(v) is just [ 1
2 , 1].

For each A ∈ K(X), let K(intA) denote all closed subsets of intA. In order to
restrain the perturbation of (F,A) in some range, we define

M ′ = {u = (F,B) ∈ C(X)×K(intA) : ∀x ∈ B, s.t. F (x) ⊂ B}.

Definition 3.1. For each u = (F,B) ∈M ′, x is called a fixed point of u with respect
to M ′ if x ∈ B ⊂ intA and x ∈ F (x).

For each A ∈ K(X), denote by S′(u) the set of fixed points of u = (F,B) ∈ M ′,
then, S′ is a correspondence from M ′ to K(intA). Similar with Definition 2.2 and 2.3,
for each u = (F,A) ∈ M , we can also define essential fixed points, essential sets and
minimal essential sets of S(u) with respect to M ′. The difference of these definitions
is that we restrain the perturbation of fixed points of u = (F,A) in the range of intA.

Definition 3.2. For each u = (F,A) ∈M , a set e(u) is called an essential set of S(u)
with respect to M ′ if it satisfies:

(i) e(u) is closed subset of S(u).
(ii) For any open set U with U ⊃ e(u), there exists an open neighborhood O(u) of

u in M ′ such that U ∩ S′(g) 6= ∅, ∀g ∈ O(u).
A set e∗(u) is called minimal essential set of S(u) with respect to M ′ if it is a

minimal element of all essential sets ordered by set inclusion in S(u).

Noting the fact that M ′ ⊂ M , using similar methods in the proof of Theorem 3.1
and 3.2, we have the following result.

Theorem 3.4. For each u = (F,A) ∈ M , there exists a minimal essential set of
S′(u) with respect to M ′.

The following result shows the connectedness of minimal essential sets of S(u) with
respect to M ′ under some certain conditions.

Theorem 3.5. For each u = (F,A) ∈M , if m(u) is a minimal essential set of S(u)
with respect to M ′ such that m(u) ⊂ intA, then m(u) is connected.

Proof. Assume that m(u) is disconnected. Then there are two nonempty sets C1(u)
and C2(u) such that m(u) = C1(u)∪C2(u), as well as two open sets Q1 and Q2, such
that C1(u) ⊂ Q1 and C2(u) ⊂ Q2 with Q1 ∩Q2 = ∅.

Since m(u) is minimal essential, both C1(u) and C2(u) are not essential sets. Then
there exist two open sets W1 and W2 with W1 ⊃ C1(u) and W2 ⊃ C2(u) such that for
each δ′ > 0, there are u1, u2 ∈M ′ satisfying ρ(u, u1) < δ′ and ρ(u, u2) < δ′ such that
S′(u1)∩W1 = ∅ and S′(u2)∩W2 = ∅. Let V1 = Q1 ∩W1 and V2 = Q2 ∩W2. Clearly,
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it is true that C1(u) ⊂ V1 and C2(u) ⊂ V2. Since C1(u), C2(u) ⊂ intA are compact
sets, there exist two open sets U1, U2 ⊂ intA such that C1(u) ⊂ U1 ⊂ Ū1 ⊂ V1 and
C2(u) ⊂ U2 ⊂ Ū2 ⊂ V2. It follows that U1 ∪ U2 ⊃ m(u).

Since m(u) is essential, there is δ > 0 such that for any u′ ∈ M ′ with ρ(u, u′) < δ
satisfies S′(u′) ∩ (U1 ∪ U2) 6= ∅. Let

δ1 = min
x∈∂A,y∈Ū1

d(x, y) and δ2 = min
x∈∂A,y∈Ū2

d(x, y).

Furthermore, since U1 ⊂W1, for δ′′ > 0 with δ′′ < min{δ1, δ2, δ3} there is v1 ∈M ′ such
that ρ(u, v1) < δ′′ but S(v1) ∩ U1 = ∅, where v1 = (F1, A1). Because ρ(u, v1) < δ′′,
we have h(A,A1) < δ1 and h(A,A1) < δ2. Furthermore, we can obtain that Ū1 ⊂ A1

and Ū2 ⊂ A1 by Lemma 2.1. Let

δ3 = min
x∈∂A,y∈A1

d(x, y)

(clearly, δ3 < min{δ1, δ2}). Since U2 ⊂ W2, for any δ′′′ > 0 with δ′′′ < min{δ3, δ3},
there is v2 ∈ M ′ (v2 = (F2, A2)) such that ρ(u, v2) < δ′′′, nevertheless, it holds that
S′(v2) ∩ U2 = ∅. Since ρ(u, v2) < δ′′′, we have h(A,A2) < δ3, it follows that A1 ⊂ A2

by Lemma 2.1.
In order to complete the proof, we define a correspondence T on X as follows

T (x) =


F1(x), x ∈ U1,

B(F (x), δ3 ) ∩A2, x ∈ ∂U1,
F2(x), x ∈ X\Ū1.

Since Ū1 ⊂ A1, we have ∂U1 ⊂ A1, consequently, for any x ∈ ∂U1 it is true that
F1(x) ⊂ A1 ⊂ A2. From the fact that ρ(u, v1) < δ

3 , we have h(F (x), F1(x)) < δ
3 , it

follows that F1(x) ⊂ B(F (x), δ3 ). Therefore, for any x ∈ ∂U1, we assert that

T (x) = B

(
F (x),

δ

3

)
∩A2 6= ∅.

Combining the upper semicontinuous property of F1 and F2, we obtain that T is also
an upper semicontinuous correspondence on X. Additionally, it is obvious that for
any x ∈ X, T (x) is compact and convex, and for any x ∈ A2, we have T (x) ⊂ A2.
Let v = (T,A2). Then v ∈M ′.

Using the correspondence T , we construct a special correspondence G on X such
that

G(x) = α(x)T (x) + β(x)F2(x),

where

α(x) = d(x, Ū2)/(d(x, Ū1) + d(x, Ū2)),

β(x) = d(x, Ū1)/(d(x, Ū1) + d(x, Ū2)).

Clearly, α(x) and β(x) are nonnegative and continuous at each x ∈ X with
α(x) + β(x) = 1. It can be routinely checked that G is an upper semicontinuous cor-
respondence with compact and convex values. Note that G(x) ⊂ A2 for each x ∈ A2

because T (x), F2(x) ⊂ A2 and A2 is convex. Therefore, we have v′ = (G,A2) ∈M ′.
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Next, we investigate ρ(v′, u2), that is, the distance of u2 and v′. By Lemma 2.2,
for each x ∈ X, we have

h(G(x), F2(x)) = h(α(x)T (x) + β(x)F2(x), F2(x)) ≤ h(T (x), F2(x)).

Hence, if x ∈ U1,

h(T (x), F2(x)) = h(F1(x), F2(x)) ≤ h(F1(x), F (x)) + h(F (x), F2(x)) <
2δ

3
;

if x ∈ X\Ū1, then

h(T (x), F2(x)) = h(F2(x), F2(x)) ≡ 0;

and if x ∈ ∂U1, then

h(T (x), F2(x)) = h

(
B

(
F (x),

δ

3

)
∩A2, F2(x)

)
.

Since ρ(u, v2) < δ
3 , we have

h(F (x), F2(x)) <
δ

3
,

consequently, F2(x) ⊂ B(F (x), δ3 ). Then we have

h(T (x), F2(x)) ≤ δ

3
,∀x ∈ ∂U1.

Therefore, we assert that h(T (x), F2(x)) < 2δ
3 for each x ∈ X. It follows that

sup
x∈X

h(G(x), F2(x)) <
2δ

3
.

Then it holds that

ρ(v′, u2) = sup
x∈X

h(G(x), F2(x)) + h(A2, A2) <
2δ

3
.

Therefore, we have

ρ(v′, u) ≤ ρ(v′, u2) + ρ(u2, u) <
2δ

3
+
δ

3
= δ.

Thus, S′(v′) ∩ (U1 ∪ U2) 6= ∅.
However, for each x ∈ U1, we know that G(x) = T (x) = F1(x). Since

S′(v1) ∩ U1 = ∅,

there must have x 6∈ F1(x) because it is impossible that x 6∈ A1 noting that U1 ⊂ A1.
That is, x 6∈ S′(v′). On the other hand, if x ∈ U2, similarly, since S′(v2) ∩ U2 = ∅, it
should be that x 6∈ A2 or x ∈ A2 but x 6∈ F2(x). Observing that U2 ⊂ A1 ⊂ A2, it
holds that x 6∈ F2(x). Hence, we have x 6∈ S′(v′) because G(x) = F2(x). Therefore,
there is a contradiction with the fact that S′(v′) ∩ (U1 ∪ U2) 6= ∅. Then, m(u) is
definitely connected. �
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Remark 3.3. Noting that the connectedness of essential sets of fixed points in
[3, 5, 14] only considers the perturbation of correspondences, Theorem 3.5 shows
the connectedness of a minimal essential set (in the relative interior of A for each
u = (F,A) ∈ M) with respect to M ′ which considers the dual perturbations of cor-
respondences and domains. However, it is still a problem for study in the future
whether each minimal essential set of fixed points with respect to M is connected.

4. An application

The results in Section 3 can be applied to the stability analysis of Nash equilibria.
Here, let us recall some notions in relation to noncooperative game theory. Let I =
{1, 2, · · · , n} be the set of players. For each i ∈ I, Xi be a compact and convex subset
of a Euclidean space Ei. Let Ai = Xi denotes the i player’s strategy set, fi be the i
player’s utility function with concave property. Then A = ×i∈IAi is a compact and
convex subset of the space E = ×i∈IEi. For each profile of strategy x ∈ A, the set

βi(x) = {xi ∈ Ai : fi(xi, x−i) = maxzi∈Ai
fi(zi, x−i)}

is the i player’s best response set for x. Let β(x) = ×i∈Iβi(x), then β defines a
correspondence on A with nonempty, compact and convex values. It is known that
the best response correspondence β is upper semicontinuous on A.

Straightforwardly, by Theorem 3.4, we have the following result in concerning the
perturbation of the best response and strategic set for a noncooperative game.

Theorem 4.1. For each u = (β,A), there exists a minimal essential set of S(u) with
respect to M ′ .

The following example shows a minimal essential set with respect to the perturba-
tion of strategies and payoffs for a game.

Example 4.1. Let I = {1, 2}, S be the payoff matrix of a finite game such that

S =

L
U (1, 2)

R
(−1,−1)

D (0, 2) (2, 2).

Let A = [0, 1]× [0, 1]. For any (x, y) ∈ A, x (y) denotes the strategy (probability)
of play 1 (2) for choosing U (L). Let β(x, y) = (β1(y), β2(x)) ∈ A denotes the best
response of (x, y) ∈ A for the game, where β1 and β2 indicate the best response of
player 1 and 2 respectively.

Then for this game we know that there exist two connected components of Nash
equilibria, and they are

C1 = {(x, y) ∈ A : (x, y) ∈ 0× [0,
3

4
]}

and

C2 = {(x, y) ∈ A : (x, y) = (1, 1)}.
For any small enough ε > 0, firstly, we restrict the strategy in

[1− ε, 1− ε]× [1− ε, 1− ε] ⊂ intA.
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Secondly, we define the perturbation of the best response βε = (βε1, β
ε
2) as follows:

βε1(y) =

 1− ε, 3
4 < y < 1− ε,

[ε, 1− ε], y = 3
4 ,

ε, ε < y < 3
4 ,

and

βε2(x) = 1− ε, x > ε.

Clearly, we can check that the unique Nash equilibrium is (1− ε, 1− ε) for the game
under the perturbation, which is near the point (1, 1). Strictly, in this game, the
point (1, 1) ∈ A is an essential solution and a minimal essential set also with respect
to Definition 3.2.

Follow Theorem 3.5, we can obtain the following connectedness of a minimal es-
sential set of Nash equilibria.

Theorem 4.2. For each u = (β,A), if m(u) ⊂ intA is a minimal essential set of
S(u) with respect to M ′, then m(u) is connected.

Remark 4.1. Theorem 4.1 includes the corresponding result in [9] as a special case,
that is, each noncooperative game with finite strategies has at least a quasistable
set of Nash equilibria, where a quasistable set can resist the perturbation of the best
response for a finite game. There exist many games which their minimal essential sets
of Nash equilibria are included in the interior of strategic sets, e.g., Rock-Paper-Scissor
games.
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