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Abstract. In this paper, we prove the existence and multiplicity of (weak) solutions for the following

fractional boundary value problem:
− d
dt

(
p(t)

(
1
2 0D

−ζ
t (u′(t)) + 1

2 t
D−ζT (u′(t))

))
+r(t)

(
1
2 0D

−ζ
t (u′(t)) + 1

2 t
D−ζT (u′(t))

)
+ q(t)u(t) = f(t, u(t)), a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where 0D
−ζ
t and tD

−ζ
T are the left and right Riemann-Liouville fractional integrals of order 0 ≤ ζ < 1

respectively, L(t) :=
∫ t
0 (r(s)/p(s))ds, 0 < m ≤ e−L(t)p(t) ≤ M and q(t)− p(t) ≥ 0 where t ∈ [0, T ],

f ∈ C([0, T ]× R,R). Our approach is based on variational methods.

Key Words and Phrases: Variational methods, fractional differential equations, Palais-Smale

condition, Riemann-Liouville fractional integrals.
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1. Introduction

The aim of this paper is to establish the existence of infinitely many solutions for
the following fractional boundary value problem
− d
dt

(
p(t)

(
1
2 0D

−ζ
t (u′(t)) + 1

2 tD
−ζ
T (u′(t))

))
+r(t)

(
1
2 0D

−ζ
t (u′(t)) + 1

2 tD
−ζ
T (u′(t))

)
+ q(t)u(t) = f(t, u(t)), a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

(1.1)

where 0D
−ζ
t and tD

−ζ
T are the left and right Riemann-Liouville fractional integrals of

order 0 ≤ ζ < 1 respectively, L(t) :=
∫ t

0
(r(s)/p(s))ds, 0 < m ≤ e−L(t)p(t) ≤ M and

q(t)− p(t) ≥ 0 where t ∈ [0, T ], f ∈ C([0, T ]× R,R).
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Fractional differential equations have been of great interest recently. This is be-
cause of both the intensive development of the theory of fractional calculus itself and
the applications of such constructions in various scientific fields such as physics, me-
chanics, chemistry, engineering, etc. For details, see [3, 7, 10, 12, 13, 15, 17, 18, 20,
21] and the references therein.

For a thorough account on the subject, we refer to [1, 2, 4, 6, 8, 9, 22, 23] and the
references therein.

In particular, if ζ = 0 then problem (1.1) reduces to the standard second order
boundary value problem of the following form{

(p(t)u′(t)) + r(t)u′(t) + q(t)u(t) = f(t, u(t)), a.e. t ∈ [0, T ],

u(0) = u(T ) = 0.
(1.2)

In the recent years, the existence and multiplicity of solutions for the similar second
order boundary value problem (1.2) in the cases p(t) 6= 1 and p(t) ≡ 1 without or
with impulses have been extensively studied via variational methods in many papers
(e.g. [5, 16, 24, 25]).

In this paper we use critical point theory and variational methods to investigate
the multiple solutions of (1.1).

The paper is organized as follows. In Section 2, we give preliminary facts and
provide some basic properties which are needed later. Section 3 is devoted to our
results on existence and multiplicity of solutions.

2. Preliminaries and reminder about fractional calculus

In this section, we present some preliminaries and lemmas that are useful to the
proof to the main results. For the convenience of the reader, we also present here the
necessary definitions from fractional calculus theory. We refer the reader to [8, 11,
17] or other texts on basic fractional calculus.

Definition 2.1. (Left and Right Riemann-Liouville Fractional Integrals [11, 17]).
Let f be a function defined on [a, b]. The left and right Riemann-Liouville fractional

integrals of order γ for function f denoted by aD
−γ
t f(t) and tD

−γ
b f(t), respectively,

are defined by

aD
−γ
t f(t) =

1

Γ(γ)

∫ t

a

(t− s)γ−1f(s)ds, t ∈ [a, b], γ > 0,

tD
−γ
b f(t) =

1

Γ(γ)

∫ b

t

(s− t)γ−1f(s)ds, t ∈ [a, b], γ > 0,

provided the right-hand sides are pointwise defined on [a, b], where Γ > 0 is the Gamma
function.
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Definition 2.2. For n ∈ N, if γ = n, Definition 2.1 coincides with nth integrals of
the form [11, 17]

aD
−n
t f(t) =

1

(n− 1)!

∫ t

a

(t− s)n−1f(s)ds, t ∈ [a, b], n ∈ N,

tD
−n
b f(t) =

1

(n− 1)!

∫ b

t

(s− t)n−1f(s)ds, t ∈ [a, b], n ∈ N.

Definition 2.3. (Left and Right Riemann-Liouville Fractional Derivatives [11, 17]).
Let f be a function defined on [a, b]. The left and right Riemann-Liouville fractional
derivatives of order γ for function f denoted by aD

γ
t f(t) and tD

γ
b f(t), respectively,

are defined by

aD
γ
t f(t) =

dn

dtn
aD

γ−n
t f(t) =

1

Γ(n− γ)

dn

dtn

(∫ t

a

(t− s)n−γ−1f(s)ds
)
,

tD
γ
b f(t) = (−1)n

dn

dtn
tD

γ−n
b f(t) =

(−1)n

Γ(n− γ)

dn

dtn

(∫ b

t

(s− t)n−γ−1f(s)ds
)
,

where t ∈ [a, b], n− 1 ≤ γ < n and n ∈ N. In particular, if 0 ≤ γ < 1, then

aD
γ
t f(t) =

d

dt
aD

γ−1
t f(t) =

1

Γ(1− γ)

d

dt

(∫ t

a

(t− s)−γf(s)ds
)
, t ∈ [a, b], (2.1)

tD
γ
b f(t) = − d

dt
tD

γ−1
b f(t) = − 1

Γ(1− γ)

d

dt

(∫ b

t

(s− t)−γf(s)ds
)
, t ∈ [a, b]. (2.2)

Remark 2.1. If f ∈ C([a, b],RN ), it is obvious that Riemann-Liouville frac-
tional integral of order γ > 0 exists on [a, b]. On the other hand, following (see
[11], Lemma 2.2, pp. 73), we know that the Riemann-Liouville fractional deriv-
ative of order γ ∈ [n − 1, n) exists a.e. on [a, b] if f ∈ ACn([a, b],RN ), where
Ck([a, b],RN )(k = 0, 1, . . .) denotes the set of mappings having k times continu-
ously differentiable on [a, b], AC([a, b],RN ) is the space of functions which are ab-
solutely continuous on [a, b] and ACk([a, b],RN )(k = 0, 1, . . .) is the space of func-
tions f such that f ∈ Ck−1([a, b],RN ) and fk−1 ∈ AC([a, b],RN ). In particular,
AC([a, b],RN ) = AC1([a, b],RN ). The left and right Caputo fractional derivatives
are defined via the above Riemann-Liouville fractional derivatives (see [11], pp. 91).
In particular, they are defined for the function belonging to the space of absolutely
continuous functions.

Definition 2.4. (Left and Right Caputo Fractional Derivatives [11]). Let γ ≥ 0 and
n ∈ N.
(i) If γ ∈ (n−1, n) and f ∈ ACn([a, b],RN ), then the left and right Caputo fractional
derivatives of order γ for function f denoted by c

aD
γ
t f(t) and c

tD
γ
b f(t), respectively,

exist almost everywhere on [a, b]. c
aD

γ
t f(t) and c

tD
γ
b f(t) are represented by

c
aD

γ
t f(t) = aD

γ−n
t f (n)(t) =

1

Γ(n− γ)

(∫ t

a

(t− s)n−γ−1f (n)(s)ds
)
,

c
tD

γ
b f(t) = (−1)ntD

γ−n
b f (n)(t) =

(−1)n

Γ(n− γ)

(∫ b

t

(s− t)n−γ−1f (n)(s)ds
)
,
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respectively, where t ∈ [a, b]. In particular, if 0 < γ < 1, then

c
aD

γ
t f(t) = aD

γ−1
t f ′(t) =

1

Γ(1− γ)

(∫ t

a

(t− s)−γf ′(s)ds
)
, t ∈ [a, b], (2.3)

c
tD

γ
b f(t) = −tDγ−1

b f ′(t) = − 1

Γ(1− γ)

(∫ b

t

(s− t)−γf ′(s)ds
)
, t ∈ [a, b]. (2.4)

(ii) If γ = n− 1 and f ∈ ACn([a, b],RN ), then c
aD

n−1
t f(t) and c

tD
n−1
b f(t) are repre-

sented by

c
aD

n−1
t f(t) = f (n−1)(t), t ∈ [a, b],

c
tD

n−1
b f(t) = (−1)(n−1)f (n−1)(t), t ∈ [a, b].

In particular, caD
0
t f(t) = c

tD
0
bf(t) = f(t), t ∈ [a, b].

The first result yields the semigroup property of the Riemann-Liouville fractional
integral operators.

Lemma 2.1. (See [11]). The left and right Riemann-Liouville fractional integral
operators have the property of a semigroup, i.e.

aD
−γ1
t (aD

−γ2
t f(t)) = aD

−γ1−γ2
t f(t),

tD
−γ1
b (tD

−γ2
b f(t)) = tD

−γ1−γ2
b f(t), ∀ γ1, γ2 > 0,

in any point t ∈ [a, b] for continuous function f and for almost every point in [a, b] if
the function f ∈ L1([a, b],RN ).

Let us recall that for any fixed t ∈ [0, T ] and 1 ≤ r <∞,

||u||Lr([0,t]) =
(∫ t

0

|u(ξ)|rdξ
) 1
r

, ||u||Lr =
(∫ T

0

|u(ξ)|rdξ
) 1
r

,

and

||u||∞ = max
t∈[0,T ]

|u(t)|.

Lemma 2.2. (See [8]). Let 0 < α ≤ 1 and 1 ≤ r < ∞. For any f ∈ Lr([a, b],RN ),
we have

||0D−αξ f ||Lr([0,t]) ≤
tα

Γ(α+ 1)
||f ||Lr([0,t]), for ξ ∈ [0, t], t ∈ [0, T ].

Now, by Lemma 2.2, for any h ∈ C∞0 ([0, T ],RN ) and 1 < r < ∞, we have
h ∈ Lr([0, T ],RN ) and c

0D
α
t h ∈ Lr([0, T ],RN ). Thus, one can construct a set of

space Eα,p0 , which depend on Lr-integrability of the Caputo fractional derivative of a
function.

Definition 2.5. Let 0 < α ≤ 1 and 1 < p <∞. The fractional derivative space Eα,p0

is defined by closure of C∞0 ([0, T ],RN ) with respect to the norm

||u||α,p =
(∫ T

0

|u(t)|pdt+

∫ T

0

|c0Dα
t u(t)|pdt

) 1
p

. (2.5)
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Remark 2.2. (i) It is obvious that the fractional derivative space Eα,p0 is the space of
functions u ∈ Lp([0, T ],RN ) having an α-order Caputo fractional derivative c

0D
α
t u ∈

Lp([0, T ],RN ) and u(0) = u(T ) = 0.
(ii) For any u ∈ Eα,p0 , noting the fact that u(0) = 0, we have c

0D
α
t u = 0D

α
t u, t ∈ [0, T ]

according to (2.3).

Lemma 2.3. ([8]). Let 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative space
Eα,p0 is a reflexive and separable Banach space.

The following lemma is well known, where we have employed the equivalent norm
in Eα,p0 (see [8]).

Lemma 2.4. ([8]). Let 0 < α ≤ 1 and 1 < p <∞. For all u ∈ Eα,p0 , we have

||u||Lp ≤
Tα

Γ(α+ 1)
||c0Dα

t u||Lp . (2.6)

Moreover, if α > 1
p and 1

p + 1
q = 1, then

||u||∞ ≤
Tα−

1
p

Γ(α)((α− 1)q + 1)
1
q

||c0Dα
t u||Lp . (2.7)

Now, we will establish a variational structure which enables us to reduce the exis-
tence of solutions of problem (1.1) to the one of finding critical points of corresponding

functional defined on the space Eα,20 with 1
2 < α ≤ 1. Let L(t) :=

∫ t
0
(r(s)/p(s))ds,

0 < m ≤ e−L(t)p(t) ≤M and q(t)− p(t) ≥ 0 where t ∈ [0, T ]. One can transform the
problem (1.1) into the following equivalent form:

− d
dt

(
e−L(t)p(t)

(
1
2 0D

−ζ
t (u′(t)) + 1

2 tD
−ζ
T (u′(t))

))
+ e−L(t)q(t)u(t)

= e−L(t)f(t, u(t)), a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

(2.8)

Then, by Lemma 2.1, for every u ∈ AC([0, T ],R), problem (2.8) transforms to
− d
dt

(
e−L(t)p(t)

(
1
2 0D

− ζ2
t

(
0D
− ζ2
t u′(t)

)
+ 1

2 tD
− ζ2
T

(
tD
− ζ2
T u′(t)

)))
+e−L(t)q(t)u(t) = e−L(t)f(t, u(t)),

u(0) = u(T ) = 0,

(2.9)

for almost every t ∈ [0, T ], where ζ ∈ [0, 1).
Furthermore, in view of Definition 2.4, it is obvious that u ∈ AC([0, T ],R) is a

solution of problem (2.9) if and only if u is a solution of the following problem
− d
dt

(
e−L(t)p(t)

(
1
2 0D

α−1
t (c0D

α
t u(t))− 1

2 tD
α−1
T (ctD

α
Tu(t))

))
+e−L(t)q(t)u(t) = e−L(t)f(t, u(t)),

u(0) = u(T ) = 0,

(2.10)

for almost every t ∈ [0, T ], where α = 1 − ζ
2 ∈ ( 1

2 , 1]. Therefore, we seek a solution
u of problem (2.10) which, of course, corresponds to the solutions u of problem (1.1)
provided that u ∈ AC([0, T ],R).
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Let us denote by

Dα(u(t)) =
(
e−L(t)p(t)

(1

2
0D

α−1
t (c0D

α
t u(t))− 1

2
tD

α−1
T (ctD

α
Tu(t)))

))
. (2.11)

We are now in a position to give a definition of the solution of problem (2.10).

Definition 2.6. A function u ∈ AC([0, T ],R) is called a solution of problem (2.10)
if
(i) Dα(u(t)) is differentiable for almost every t ∈ [0, T ], and
(ii) u satisfies (2.10).

In the proof of our main results, we first present an important definition and some
lemmas.

Definition 2.7. An operator A : X → X∗ is of type (S)+ if, for any sequence {un}
in X, un ⇀ u and lim supn→+∞〈A(un), un − u〉 ≤ 0 imply un → u.

Lemma 2.5. (Mountain Pass Theorem in [14]). Let ϕ ∈ C1(X,R). Assume that
there exist u0, u1 ∈ X and a bounded neighborhood Ω of u0 such that u1 is not in Ω
and inf

v∈∂Ω
ϕ(v) > max{ϕ(u0), ϕ(u1)}. Then there exists a critical point u of ϕ, i.e.,

ϕ′(u) = 0, with ϕ(u) > max{ϕ(u0), ϕ(u1)}.
Note that if either u0 or u1 is a critical point of ϕ then we obtain the existence of

at least two critical points for ϕ.

Lemma 2.6. (Theorem 38.A in [26]). For the functional F : M ⊆ X → R with M
not empty, minu∈M F (u) = a has a solution in case the following hold:

(i) X is a real reflexive Banach space;
(ii) M is bounded and weak sequentially closed;
(iii) F is weak sequentially lower semi-continuous on M , i.e., by definition, for

each sequence {uk} in M such that uk ⇀ u as k →∞, we have F (u) ≤ lim inf
k→∞

F (uk).

Lemma 2.7. (Theorem 9.12 in [19]). Let E be an infinite dimensional real Banach
space and u ∈ C1(E,R) be even, satisfying the Palais-smale condition and ϕ(0) = 0.
If E = V ⊕X, where V is finite dimensional, and ϕ satisfies the following conditions:

(i) There exist constants ρ, σ > 0 such that ϕ|∂Bρ⋂X ≥ σ;
(ii) For each finite dimensional subspace V1 ⊂ E, there is an R = R(V1) such that

ϕ(u) ≤ 0 for every u ∈ V1 with ||u|| > R.
Then ϕ has an unbounded sequence of critical values.

In what follows, we will treat problem (2.10) in the Hilbert space Eα = Eα,20 with
the corresponding norm

||u|| =
(∫ T

0

e−L(t)p(t)
(
|c0Dα

t u(t)|2 + |u(t)|2
)
dt
) 1

2

. (2.12)

Also, we define ||u||α = ||u||α,2 which we defined in (2.5).
The following estimate is useful for our further discussion.
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Observe that

m

∫ T

0

|c0Dα
t u(t)|2dt ≤

∫ T

0

e−L(t)p(t)|c0Dα
t u(t)|2dt

≤M
∫ T

0

|c0Dα
t u(t)|2dt, (2.13)

so,

||u||L2 ≤ Tα

Γ(α+ 1)
||c0Dα

t u||L2 =
Tα

Γ(α+ 1)

(∫ T

0

|c0Dα
t u(t)|2dt

) 1
2

≤ Tα√
mΓ(α+ 1)

(∫ T

0

e−L(t)p(t)|c0Dα
t u(t)|2dt

) 1
2

. (2.14)

Thus, for p = 2, 1
2 < α ≤ 1, by (2.7), (2.13) and by inequality x1/p ≤ (x + y)1/p

for all x, y ≥ 0, we have

||u||∞ ≤
√

2T
2α−1

2

√
mΓ(α)(α+ 1)

1
2

||u||. (2.15)

The following estimate is useful for our further discussion.

Lemma 2.8. ([8]). If 1
2 < α ≤ 1, then for every u ∈ Eα, we have

| cos(πα)|||u||2α ≤ −
∫ T

0

(c0D
α
t u(t), ctD

α
Tu(t))dt ≤ 1

| cos(πα)|
||u||2α. (2.16)

Then, according to Lemma 2.8, (2.13) and similar to Proof of Proposition 4.1 in
[8], we can get

Remark 2.3. If 1
2 < α ≤ 1, then for every u ∈ Eα, we have

| cos(πα)|||u||2 ≤ −
∫ T

0

e−L(t)p(t)(c0D
α
t u(t), ctD

α
Tu(t))dt+

∫ T

0

e−L(t)p(t)(u(t), u(t))dt

≤ max

{
M

m| cos(πα)|
, 1

}
||u||2. (2.17)

3. Main result

We mean by a (weak) solution of problem (2.10) which, of course, corresponds to
the solution of problem (1.1), any u ∈ Eα such that∫ T

0

e−L(t)
[
− 1

2
p(t)

(
(c0D

α
t u(t), ctD

α
T v(t)) + (ctD

α
Tu(t), c0D

α
t v(t))

)
+ p(t)(u(t), v(t))

+(q(t)− p(t))(u(t), v(t))− f(t, u(t))v(t)
]
dt = 0,

for every v ∈ Eα.
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Let J : Eα → R be defined by

J(u) =

∫ T

0

e−L(t)
[1

2
p(t)

(
− (c0D

α
t u(t), ctD

α
Tu(t)) + p(t)|u(t)|2

)
+

1

2
(q(t)− p(t))|u(t)|2 − F (t, u(t))

]
dt, for all u ∈ Eα, (3.1)

where F (t, u) =
∫ u

0
f(t, ξ)dξ. Clearly J is continuously differentiable on Eα, and for

every u, v ∈ Eα, we have

〈J ′(u), v〉 =

∫ T

0

e−L(t)
[
− 1

2
p(t)

(
(c0D

α
t u(t), ctD

α
T v(t)) + (ctD

α
Tu(t), c0D

α
t v(t))

)
+ p(t)(u(t), v(t)) + (q(t)− p(t))(u(t), v(t))− f(t, u(t))v(t)

]
dt. (3.2)

Thus, a critical point of J(u), defined by (3.1), gives us a weak solution of problem
(2.10) which, of course, corresponds to the solution of problem (1.1).

Let

〈Au, v〉 : =

∫ T

0

e−L(t)
[
− 1

2
p(t)

(
(c0D

α
t u(t), ctD

α
T v(t)) + (ctD

α
Tu(t), c0D

α
t v(t))

)
+ p(t)(u(t), v(t)) + (q(t)− p(t))(u(t), v(t))

]
dt.

Lemma 3.1. There exist constants γ2 > γ1 > 0 such that

γ1||u||2 ≤ 〈Au, u〉 ≤ γ2||u||2, u ∈ Eα. (3.3)

Proof. By (2.17) we have

〈Au, u〉 =

∫ T

0

e−L(t)
[
− p(t)

(
(c0D

α
t u(t), ctD

α
Tu(t))

)
+p(t)|u(t)|2+(q(t)− p(t))|u(t)|2

]
dt

≥
∫ T

0

e−L(t)
[
− p(t)

(
(c0D

α
t u(t), ctD

α
Tu(t))

)
+ p(t)|u(t)|2

]
dt ≥ | cos(πα)|||u||2.

On the other hand, since p(t), q(t) are continuous in [0, T ], then there exists a constant
c0 > 0 such that q(t)− p(t) < c0. Thus by (2.15) and (2.17), one can get

〈Au, u〉 =

∫ T

0

e−L(t)
[
−p(t)

(
(c0D

α
t u(t), ctD

α
Tu(t))

)
+p(t)|u(t)|2 +(q(t)−p(t))|u(t)|2

]
dt

≤ max

{
M

m| cos(πα)|
, 1

}
||u||2 + c0||u||2 =

(
max

{
M

m| cos(πα)|
, 1

}
+ c0

)
||u||2. �

Lemma 3.2. The functional J defined by (3.1) is continuous and weakly lower semi-
continuous. Moreover, it satisfies the Palais-Smale condition, if the following condi-
tion holds:

(H1) for all u ∈ Eα, µF (t, u) ≤ uf(t, u), where µ > 2γ2
γ1

.

Proof. With continuity of f , it is well known that J and J ′ are continuous functionals
and J is differential functional. We claim that J is weakly lower semi-continuous. To
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this end, let un weakly convergent to u ∈ Eα. Then ||u|| ≤ lim infn→∞ ||un|| and
un → u uniformly in C([0, T ],R). Thus, when n→∞, we get∫ T

0

e−L(t)
[1

2
(q(t)− p(t))|un(t)|2 − F (t, un(t))

]
dt

→
∫ T

0

e−L(t)
[1

2
(q(t)− p(t))|u(t)|2 − F (t, u(t))

]
dt.

So, we conclude that J(u) ≤ lim infn→∞ J(un). Then, J is weakly lower semi-
continuous.

Now, we claim that J satisfies the Palais-Smale condition. To this end, let {J(un)}
be a bounded sequence such that limn→∞ J ′(un) = 0. We show that ||un|| is bounded.
By (3.2), one can get∫ T

0

e−L(t)p(t)f(t, un(t))un(t)dt =

∫ T

0

e−L(t)
[
− p(t)

(
(c0D

α
t un(t), ctD

α
Tun(t))

)
+ p(t)(un(t), un(t)) + (q(t)− p(t))(un(t), un(t))

]
dt

− 〈J ′(un), un〉. (3.4)

From (3.3), (3.4), Lemma 3.1 and the condition (H1), we have

J(un) ≥ γ1

2
||un||2 −

∫ T

0

e−L(t)F (t, un(t))dt

≥ γ1

2
||un||2 −

1

µ

∫ T

0

e−L(t)f(t, un(t))un(t)dt

≥
(
γ1

2
− γ2

µ

)
||un||2 +

1

µ
〈J ′(un), un〉

≥
(
γ1

2
− γ2

µ

)
||un||2 −

1

µ
||J ′(un)||||un||. (3.5)

Since J(un) is bounded, by (3.5) we get ||un|| is bounded.
Since Eα is a reflexive Banach space and so by passing to a subsequence (for

simplicity denoted gain by {un}) if necessary, by (2.17) of Lemma 2.4, we may assume
that {

un ⇀ u, weakly in Eα,

un → u, a.e. in C([0, T ],R).
(3.6)

Therefore

〈J ′(un), un − u〉 → 0 and

∫ T

0

f(t, un(t))(un(t)− u(t))dt→ 0,

so we get

εn||un − u|| ≥ 〈J ′(un), un − u〉 = 〈Aun, un − u〉 −
∫ T

0

f(t, un(t))(un(t)− u(t))dt
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with εn → 0. Thus lim supn→∞〈Aun, un − u〉 ≤ 0. By (3.6), it is easy to get
limn→∞〈Au, un − u〉 = 0. Therefore

lim sup
n→∞

〈Aun −Au, un − u〉 ≤ lim sup
n→∞

〈Aun, un − u〉 − lim inf
n→∞

〈Au, un − u〉 ≤ 0.

Since A is of type (S)+ (The proof is similar to Theorem 5.1 in [23] and is omitted),
so we obtain un → u in Ea. Then, J satisfies the Palais-Smale condition. �

For convenience an simplicity in the following discussion, we use the notations:

F 0(t, u) = lim sup
u→0

e−L(t)F (t, u)

|u|µ
, F∞(t, u) = lim inf

u→∞

e−L(t)F (t, u)

|u|µ
.

Theorem 3.1. Assume that 1
2 < α ≤ 1 and (H1) hold. Then the Problem (1.1) has

at least two solutions if the following condition hold:
(H2) There exist %, ξ > 0 such that F 0(t, u) ≤ % and F∞(t, u) ≥ ξ.

Proof. In order to apply Lemma 2.6 to our problem, let X := Eα and we apply this
Lemma to show that there exists T0 such that the functional J has a local minimum
u0 ∈ BT0

= {u ∈ Eα : ||u|| < T0}.
For every T0 > 0, since Eα is a Hilbert space, it is easy to deduce that BT0

is a bounded and weak sequentially closed. Lemma 3.2 has shown that J is weak
sequentially lower semi-continuous on BT0 . Besides, Eα is a reflexive Banach space,
so by Lemma 2.6 we can have this u0 such that J(u0) = minu∈BT0

J(u). Now we will

show that J(u0) < infu∈∂BT0 J(u) for some T0 = T1. Now, by (H2) we can choose
T1, ε > 0 satisfying

e−L(t)F (t, u) ≤ %|u|µ, for all ||u|| ≤ T1,

γ1

2
T 2

1 − %T

(
T1

√
2T

2α−1
2

√
mΓ(α)(α+ 1)

1
2

)µ
> ε.

For every u ∈ ∂BT1 , ||u|| = T1, by (2.15), we get

J(u) =

∫ T

0

e−L(t)
[1

2
p(t)

(
− (c0D

α
t u(t), ctD

α
Tu(t)) + p(t)|u(t)|2

)
+

1

2
(q(t)− p(t))|u(t)|2 − F (t, u(t))

]
dt

≥ γ1

2
||u||2 −

∫ T

0

e−L(t)F (t, u(t))dt ≥ γ1

2
||u||2 − %

∫ T

0

|u(t)|µdt

≥ γ1

2
||u||2 − %T ||u||µ∞ ≥

γ1

2
||u||2 − %T

( √
2T

2α−1
2

√
mΓ(α)(α+ 1)

1
2

)µ
||u||µ

≥ γ1

2
T 2

1 − %T

(
T1

√
2T

2α−1
2

√
mΓ(α)(α+ 1)

1
2

)µ
> ε.

Thus J(u) > ε for every u ∈ ∂BT1
. Moreover J(u0) ≤ J(0) = 0. Then J(u) > ε >

J(0) ≥ J(u0) for every u ∈ ∂BT1 . So J(u0) < infu∈∂BT1 J(u). Therefore, J has a
local minimum u0 ∈ BT1 .
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Next, we will show that there exists u1 with ||u1|| > T1 such that

J(u1) < inf
u∈∂BT1

J(u).

For the above T1, by (H2), we can choose a sufficiently large T2 such that For all
||u|| ≥ T2 > T1 satisfying e−L(t)F (t, u) ≥ ξ|u|µ.

Then, for every ||u|| ≥ T2 > T1 and k > 0, by (2.15), one can get

J(ku) =

∫ T

0

e−L(t)
[1

2
p(t)

(
− (c0D

α
t ku(t), ctD

α
T ku(t)) + p(t)|ku(t)|2

)
+

1

2
(q(t)− p(t))|ku(t)|2 − F (t, ku(t))

]
dt ≤ γ2

2
k2||u||2 −

∫ T

0

e−L(t)F (t, ku(t))dt

≤ γ1

2
k2||u||2 − ξ

∫ T

0

|ku(t)|µdt ≤ γ1

2
k2||u||2 − %kµ||u||µLµ → −∞

as k → +∞. Then there exists a sufficiently large k0 such that J(k0u) < 0. Thus, we
can choose u1 = k0u with ||u1|| ≥ T2 sufficiently large such that J(u1) < 0. Then we
have max{J(u0), J(u1)} < inf

u∈∂BT1
J(u). Also Lemma 3.2 has shown that J satisfies

Palais-smale condition. So, by Lemma 2.5 there exists a critical point u∗. Therefore,
u0 and u∗ are two critical points of J , and they are solutions of (2.10) which, of course,
corresponds to the solution of problem (1.1). �

Theorem 3.2. Assume that 1
2 < α ≤ 1, (H1) and (H2) hold. Moreover, f(t, u) is

odd about u. Then the problem (1.1) has infinitely many solutions.

Proof. Our aim is to apply Lemma 2.7 to our problem. Firstly, J is even, since f(t, u)
is odd about u. Moreover, by Lemma 3.2, we know that J ∈ C1(Eα,R), J(0) = 0,
and J satisfies the Palais-smale condition. In the same way as in Theorem 3.1, we
can easily verify that the conditions (i) and (ii) of Lemma 2.7 are satisfied. According
to Lemma 2.7, J possesses infinitely many critical points, i.e. the problem (2.10)
has infinitely many classical solutions which, of course, corresponds to the solution of
problem (1.1). �
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