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1. Introduction

Many problems arising from diverse areas of natural science, when modeled from
a mathematical point of view, involve the study of solutions of nonlinear differential
equations or inclusions of the respective forms,

Bu+Au = u, u ∈M, (1)

or
u ∈ Bu+G(u), u ∈M, (2)

where G is a multivalued map and M is a closed convex subset of a Banach space
X. In particular, many integral equations and inclusions can be formulated in terms
of (1) or (2); see, for example [21]. In 1958, Krasnosel’skii [19] established that the
equation(1) has a solution in M where A and B satisfy:

(i) Ax+By ∈M for all x, y ∈M.

(ii) A is continuous on M and A(M) is a compact set in X.
(iii) B is a k−contraction on X.

That result combined the Banach contraction principle and Schauder’s fixed point
theorem. The existence of fixed points for the sum of two operators has attracted
tremendous interest, and their applications are frequent in nonlinear analysis. Many
improvements of Krasnosel’skii’s theorem have been established in the literature in

85
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the course of time by modifying the above assumptions; see, for example [2, 3, 4, 7,
8, 9, 10, 11, 12, 20].

Fixed point theory for multivalued mappings is an important topic of set-valued
analysis. Several well-known fixed point theorems of single-valued mappings such
as Banach’s and Schauder’s have been extended to multivalued mappings in Banach
spaces; see [1, 14].

Recently, a multivalued analogue of Krasnosel’skii’s fixed point theorem was ob-
tained by Boriceanu [5], Graef et al [15] and [16].

Very recently, several authors extended the classical Krasnoselskii fixed point theo-
rem [3, 9, 11, 12]. Our goal in this work is to give some single and multivalued version
of a Krasnoselskii type fixed point theorem and application to partial differential
inclusion.

2. Preliminaries

In this section, we recall from the literature some notations, definitions, and auxil-
iary results which will be used throughout this paper. Let (E, | · |) be a locally convex
space.

Denote by
P(E) = {Y ⊂ E : Y 6= ∅}, Pcl(E) = {Y ∈ P(E) : Y closed},
Pb(E) = {Y ∈ P(E) : Y bounded}, Pcv(E) = {Y ∈ P(E) : Y convex },
Pcp(E) = {Y ∈ P(E) : Y compact}, and
Pwk,cp(E) = {Y ∈ P(E) : Y weakly compact}.

Let X and Y be two locally convex spaces and G : X → Pcl(Y ) be a multi-valued
map. A single-valued map g : X → Y is said to be a selection of G and we write
g ⊂ G whenever g(x) ∈ G(x) for every x ∈ X.
G is called upper semi-continuous (u.s.c. for short) on X if for each x0 ∈ X the set

G(x0) is a nonempty, closed subset of X, and if for each open set N of Y containing
G(x0), there exists an open neighborhood M of x0 such that G(M) ⊆ Y. That is,
if the set G−1(V ) = {x ∈ X, G(x) ∩ V 6= ∅} is closed for any closed set V in Y .
Equivalently, G is u.s.c. if the set G+1(V ) = {x ∈ X, G(x) ⊂ V } is open for any
open set V in Y .

Assume now X and Y are normed linear spaces. We consider as locally convex
topological Hausdorff spaces with their weak topologies σ(X,X∗) and σ(Y, Y ∗), re-
spectively.

The multifunction F : X → P(Y ) is weakly-weakly upper semicontinuous (w. −
w.u.s.c) on X if for every weakly closed set M ⊆ Y the set F−(M) = {x ∈ X :
F (x) ∩M 6= ∅} is sequentially weakly closed in X. We say that F : X → P(Y ) is
weakly-strongly upper semicontinuous (w. − s.u.s.c) on X if for every weakly closed
set M ⊆ Y the set F−(M) is closed (with the norm topology) in X.
Theorem 2.1. [18] A multivalued map F : X → P(Y ) is w.−w.u.s.c (or w.−s.u.s.c)
on X if for every sequence {xn} of X weakly converging (converging in the norm
topology of X resp.) to x and every sequence {yn} of Y with yn ∈ F (x) for n ∈ N,
there exists a subsequence of {yn} weakly converging to any y ∈ F (x). If furthermore,
there is a weakly compact set C ⊂ Y such that F (x) ⊂ C for x ∈ X, then the above
conditions are also necessary for F to be w.− w.u.s.c. on X.
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Theorem 2.2. [18] Let X be a Banach space and M a weakly compact convex subset
of X. Suppose that F : M → Pwk,cl,cv(M) is a w. − w.u.s.c. multivalued operator,
then there exists x ∈M such that x ∈ F (x).
Theorem 2.3. [18] Let X be a Banach space and M a weakly compact convex subset
of X. Suppose that F : M →M is a weakly continuous, then there exists x ∈M such
that x ∈ F (x).

3. Expansive Krasnosel’skii-type fixed point theorem

In this section, we will provide some expansive Krasnosel’skii-type fixed point theo-
rem. Our result extends some results presented in [22].
Definition 3.1. Let (X, d) be a metric space and M be a subset of X. The mapping
B : M → X is said to be expansive, if there exists a constant k > 1 such that

d(B(x), B(y)) ≥ kd(x, y) for all x, y ∈M.

Now, we present some auxiliary results of this subsection.
Theorem 3.1. [22] Let X be a complete metric space and M be a closed subset of
X. Assume B : M → X is expansive and M ⊆ B(M). Then there exists a unique
point x ∈M such that x = B(x).
Lemma 3.1. Let B : X → X be a map such that Bn(n−power)is an expansive for
some n ∈ N. Assume further that there exist a closed subset M of X such that M is
contained in B(M). Then there exists a unique fixed point of B.
Proof. Since Bn is expansive map and M ⊆ Bn(M). From theorem 3 there exists
unique fixed point of Bn. Let x ∈ M be a fixed point of Bn. Using the fact that Bn

is expansive map, then there exist k > 1 such that

d(Bn(x), Bn(y)) ≥ kd(x, y) for all x, y ∈M.

Hence

d(x,B(x)) = d(Bn(x), Bn+1(x)) ≥ kd(x,B(x))⇒ d(x,B(x)) = 0.

Then B has a unique fixed point in M.
Lemma 3.2. [22]Let X be a linear normed space and M ⊆ X. Assume the mapping
B : M → X is expansive with constant k > 1. Then the inverse of I − B : M →
(I −B)(M) exists and

|(I −B)−1(x)− (I −B)−1(y)| ≤ 1

k − 1
|x− y|, x, y ∈ (I −B)(M).

Theorem 3.2. Let (X, |·|) be a Banach space and M be a nonempty weakly compact
convex subset of X. Assume that A : M → X is weakly continuous and B ∈ L(X)
satisfy

(H1) ‖Bp‖ > 1 for some p ∈ N,
(H2) for each x, y ∈M such that

x = B(x) +A(y)⇒ x ∈M.

Then there exists y ∈M such that y = By +A(y).
Proof. Let y ∈M. Let Fy : M → X be a operator defined by

Fy(x) = B(x) +A(y), x ∈M.
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From theorem 3.1 there exist unique x(y) ∈M such that

x(y) = B(x(y)) +A(y).

By (H1), we can prove that I−B is invertible and (I−B)−1 = (I−Bp)−1
∑k=p−1

k=0 Bk.
This operator is well defined and (I − B)−1 ∈ L(X). Moreover, (I − B)−1 is weakly
continuous (see, Theorem 3.10 [6]). Let us define N : M →M by

y → N(y) = (I −B)−1A(y).

Let x ∈M and h = (I −B)−1(A(x)). Then

h = (I −B)−1(A(x))⇒ h = B(h) +A(x),

and thus (H2) implies that h ∈ M. Let {yn : n ∈ N} ⊂ M be a sequence converging
weakly to y in M we show that N(yn) converge weakly to N(y).
Set xn = (I −B)−1A(yn), then (I −B)(xn) = A(yn), n ∈ N.

Since M is weakly compact, there exists a subsequence of {xn} converging weakly
for some x ∈M. Then (I−B)(xn) converges weakly to (I−B)(x). Hence there exists
a subsequence of yn converging weakly to (I − B)(x). Then N(yn) converge weakly
to N(y). Hence from Theorem 2.3, there exists y ∈M such that y = (I −B)−1A(y),
and we deduce that B +G has a fixed point in M.

Now we are ready to state our results of this part.
Theorem 3.3. Let X be a Banach space, M be a weakly compact convex subset
of X, A : M → X be an weakly continuous map and B ∈ L(X) be a linear con-
tinuous operator single-valued mapping. Assume that G and B satisfy the following
hypotheses:

(C1) ‖B‖ ≥ k > 1 is an expansive mapping.
(C2) for each x, y ∈ coA(M) such that

x = B(x) +A(y)⇒ x ∈ coA(M).

Then the abstract equation x = B(x) +A(x) has a solution.

Proof. Let M̃ = coA(M) be weakly compact convex. Now we prove only that

N(M̃) ⊆ M̃, where N is defined in the proof of Theorem 3.2. Indeed, let x ∈ N(M̃).

Then there exists y ∈ M̃ such that

x = N(y).

Hence

x = (I −B)−1A(y)⇒ x ∈ coA(M).

Then

N(M̃) ⊆ M̃.

So, by Theorem 3.2, there exists x ∈ X which is fixed point of N.
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4. Krasnosel’skii-type fixed point theorem for w.− w.u.s.c.

In this section, we use Theorem 2 and Lemma 3 to obtain a multivalued version of
the Krasnosel’skii theorem presented by Xiang and Yuan [22].
Theorem 4.1.Let (X, | · |) be a Banach space and M be a nonempty weakly compact
convex subset of X. Assume that G : M → Pwcl,cv(X) is w.−w.u.s.c. and B ∈ L(X)
satisfy

(H1) ‖B‖ > 1
(H2) for each x, y ∈M such that

x ∈ B(x) +G(y)⇒ x ∈M.

Then there exists y ∈M such that y ∈ By +G(y).
Proof. Let y ∈M. Let Fy : M → P(X) be the multivalued operator defined by

Fy(x) = B(x) +G(y), x ∈M.

Since G(y) ∈ Pwk,cp,cv(X) and G is w − w − u.s.c.. Then Fy(x) ∈ Pwcp,cv(X).
By (H2) we have Fy(M) ⊆M. Now we show that Fy is w − w − u.s.c.
Let (xn, yn) ∈ Gr(Fy) = {(x, z) ∈M ×M : z ∈ Fy(x)} be a sequence such that

yn ∈ Fy(xn), xn ⇀ xand yn ⇀ y∗.

Thus there exists zn ∈ G(y) such that

yn = B(xn) + zn

Since B ∈ L(X), then B(xn) converge weakly to B(x)(see, Theorem 3.10 [6]). this
implies that zn ⇀ y∗ − B(x) ∈ G(y). Hence Fy has a weakly closed graph. By (H2)
and theorem 2.1, we deduced that Fy is w−w−u.s.c. From theorem 2.2, there exists
x(y) ∈M such that

x(y) ∈ B(x(y)) +G(y).

By (H1), we can prove that I − B is invertible and (I − B)−1 ∈ L(X). Moreover,
(I −B)−1 is weakly continuous (see, Theorem 3.10 [6]).
Let us define N : M → Pwcl,cv(M) by

y → N(y) = (I −B)−1G(y).

Since G(·) ∈ Pwcl,cv(X) and (I − B)−1 ∈ L(X), then N(·) ∈ Pwcl,cv(X). Now we
show that N(·) is w. − w.u.s.c. Let x ∈ M and h ∈ (I − B)−1(G(x)). Then there
exists y ∈ G(x) such that

x = (I −B)−1(y)⇒ x = Bx+ y ⊆ B(x) +G(y),

and thus (H2) implies that x ∈ M. Let {yn : n ∈ N} ⊂ M be a sequence converging
weakly to x in M and yn ∈ N(y), n ∈ N. Then there exists xn ∈ G(y) such that

(I −B)(yn) = xn, n ∈ N.
Since G is w.−w.u.s.c., there exists a subsequence of {xn} converging weakly for some
x ∈ G(y). Then (I−B)−1(xn) converges weakly to (I−B)−1(x) ∈ N(y). Hence there
exists a subsequence of yn converging weakly to (I −B)−1(x). By Theorem 2.1, N is
w.−w.u.s.c. Hence from Theorem 2.2, there exists y ∈M such that y ∈ (I−B)−1G(y),
and we deduce that B +G has a fixed point in M.
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Now, we can easily prove the next result.
Theorem 4.2. Let (X, | · |) be a Banach space and M be a nonempty weakly closed
bounded convex subset of X. Assume that G : M → Pwcl,cv(X) is w.−w.u.s.c., that
B satisfies (H1)- (H2), and the condition

(H3) G(M) is weakly relatively compact and for each x, y ∈ coG(M) such that

x ∈ B(x) +G(y)⇒ x ∈ coG(M).

Then the operator B +G has at least one fixed point.

Proof. Let M̃ = coG(M) be weakly compact convex. Now we prove only that

N(M̃) ⊆ M̃, where N is defined in the proof of Theorem 4.1. Indeed, let x ∈ N(M̃).

Then there exists y ∈ M̃ such that

x ∈ N(y).

Hence
x = (I −B)−1z, z ∈ G(y)⇒ x ∈ coG(M).

Then
N(M̃) ⊆ M̃.

So, by Theorem 4.1, there exists x ∈ X which is fixed point of N.

5. Application

In this section, we present some applications of above results. The first one is
devoted to a Dirichlet problem with multivalued nonlinearities.

Let Ω ⊂ Rm, m ≥ 3, be a bounded domain with C1,1 boundary. Consider the
following nonlinear multivalued Dirichlet problem:{

−(1 + λ)∆u− λu ∈ F (x, u(x)), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

(3)

where λ > 1 and F : Ω×Rm → Pwk,cpcv(R) is a w−w−u.s.c. Carathédory multivalued
map.
Definition 5.1. A function u : Ω→ R is said to be solution of (3) if u ∈ W 2,2(Ω) ∩
W 1,2

0 (Ω) and there exists f ∈ SF,u such that

−(1 + λ)∆u− λu = f(x), a.e. x ∈ Ω,

and u satisfies the boundary condition.
Lemma 5.1. [13] We define φ : E = W 2,2(Ω) ∩W 1,2

0 (Ω) → L2(Ω) by φ(u) = −∆u
then φ is one to one from E to L2(Ω).
Theorem 5.2. Assume that there exists R > 0 such that

SF (B(0, R)) ⊆ B(0, R), B(0, R) ⊂ L2(Ω),

where
SF (u) = {f ∈ L2(Ω) : f(x) ∈ F (x, u(x)) a.e. x ∈ Ω} 6= ∅.

Then problem (3) has at least one solutions.
Proof. Let M = {u ∈ L2(Ω) : ‖u‖2 ≤ R} and define G : M → P(L2(Ω)) by

G(u) = φ−1(SF (u))
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and B : L2(Ω)→ L2(Ω) by

B(u) = λ(φ−1(u)− u).

For the proof it is enough to show that B +G has fixed point.

Step 1. Let u ∈ E then 〈u,−∆u〉 = −
∫

Ω
u(x)∆u(x)dx =

∫
Ω
|∇u(x)|2dx ≥ 0, then

φ−1 is dissipative. Hence

‖u‖2 ≤ ‖u− φ−1(u)‖2 ⇒ λ‖u‖2 ≤ ‖B(u)‖2.
Step 2. SF weakly closed graph. Let {un}n∈N, {fn}n∈N ⊂ L2(Ω) are two sequence,

un ⇀ u and fn ⇀ f such that fn ∈ SF (un), n ∈ N. From proposition 3.9
[17], we deduce that

f(x) ∈ co− w − lim{fn(x) : n ∈ N}.
Since F (., .) ∈ Pwcp,cv(R) and w − w − u.s..c., then

f(x) ∈ co− w − lim{fn(x) : n ∈ N} ⊆ F (x, u(x)) a.e.x ∈ Ω.

Mazur’s Lemma and implies the existence of αn
i ≥ 0, i = n, . . . , k(n)

such that
∑k(n)

i=1 αn
i = 1 and the sequence of convex combinations gn(·) =∑k(n)

i=1 αn
i fi(·), n ∈ N such that

‖fn − f‖2 → 0, as n→∞.
It is clear that M is weakly compact. Hence the set SF (M) weakly compact.
Therefore SF is w − w − u.s.c.

Step 3. Let u, v ∈M then there exists f ∈ SF (v) such that

−(λ+ 1)∆u+ λu = f(x), a.e. x ∈ Ω.

Then

(λ+ 1)〈u,−∆u〉+ λ2〈u, u〉 = 〈v, f〉

(λ+ 1)

∫
Ω

|∇u(x)|2dx+ λ2‖u‖22 = 〈v, f〉.

Thus

λ2‖u‖22 ≤ ‖v‖2‖f‖2 ⇒ ‖u‖2 ≤ R⇒ u ∈M.

Finally by using Theorem 4.1, we conclude that B + G has a fixed point in
M.
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[12] J. Garcia-Falset, O. Muñiz-Pérez, O. Fixed point theory for 1-set weakly contractive and pseu-

docontractive mappings, Appl. Math. Comput., 219(2013), no. 12, 6843-6855.
[13] D. Gilbarg, T.S. Trundiger, Elliptic Partial Differential Equations of Second Order, Springer,

Berlin, 1983.
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