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Abstract. In this paper we investigate the Ulam-Hyers stability of several integral equations with

singularity. First we give some results concerning the Ulam-Hyers stability of integral equations with

weak singularities. Our approach is also suitable for studying some fractional differential equations.

In order to emphasize this aspect we prove that some conditions (5) in S. Abbas, M. Benchohra, Ulam-

Hyers stability for the Darboux problem for partial fractional differential and integro-differential

equations via Picard operators published in Results Math. 65(2014), 67-79 (respectively condition

(3.1) from S. Abbas, M. Benchohra, A. Petruşel, Ulam stability for partial fractional differential

inclusions via Picard operators theory, Electron. J. Qual. Theory Differ. Equ., 2014, No. 51,

1-13) can be omitted without losing the validity of the obtained results. In the second part we

establish some generalized Ulam-Hyers-Rassias stability results for the Bessel equation and related

equations. Our approach is based on fixed point methods and the obtained results are more general

than those established by Byungbae Kim and Soon-Mo Jung in Bessel’s differential equation and its

Hyers-Ulam stability appeared in J. Inequal. Appl., Volume 2007.
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1. Introduction

The history of Ulam-Hyers (and of many generalized Ulam-Hyers type) stability

started in 1940, when S.M. Ulam posed the question of stability of group homeomor-

phisms ([28]):
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Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0

does there exists a δ > 0 such that if a function h : G1 → G2 satisfies the inequality

d(h(xy), h(x)h(y)) < δ, ∀x, y ∈ G1,

then there exists a homomorphism H : G1 → G2 with

d(h(x), H(x)) < ε, ∀x ∈ G1?

One year later D.H. Hyers solved the problem under the assumption that G1 and

G2 are Banach spaces ([17]). He proved that each solution of the inequality

||f(x+ y)− f(x)− f(y)|| ≤ ε, ∀x, y ∈ G1,

can be approximated by an exact solution, an additive function. In this case, the

Cauchy additive functional equation, f(x + y) = f(x) + f(y), is said to have the

Ulam-Hyers stability.

Since then the initial question was generalized to a wide range of equations and

several important results were obtained (for functional equations see [21], for oper-

atorial equations see [24]). In the last decade the problem of Ulam-Hyers stability

for various types of equations (such as functional, differential, operatorial, fractional

differential, integral, partial differential equations, etc.) was studied in many recent

papers (see for example [13], [25], [24], [2], [8], [9]). For differential and integral equa-

tions mainly three different approaches were used: direct calculations ([5]), power

series method ([22], [19], [20]), fixed point method ([24], [25], [2], [9]). Each method

has its advantages and disadvantages and in most cases the same results can be proved

using several methods (see for example [13] and the references therein). The main

purpose of this paper is to prove the Ulam-Hyers stability of weakly singular integral

equations using fixed point methods (in terms of weakly Picard operator theory) and

to study the stability of some singular integral equations which arose from the study

of special functions. Due to the fact that several fractional differential equations can

be reduced to weakly singular integral equations, our results have implications also

in terms of fractional differential equations.

2. Ulam Hyers stability of weakly singular integral equations

We recall the following definitions:

Definition 2.1 ([24]) Let (X, d) be a metric space and A : X → X be an operator.

By definition, the fixed point equation

x = A(x) (2.1)

is said to be generalized Ulam-Hyers stable if there exists a ψ : R+ → R+ increasing,

continuous in 0, with ψ(0) = 0, such that for each ε > 0 and for each solution y∗ of

the inequality

d(y,A(y)) ≤ ε,
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there exists a solution x∗ of the equation (2.1) such that

d(y∗, x∗) ≤ ψ(ε).

If ψ(t) = cA · t, for each t ∈ R+, the equation (2.1) is called Ulam-Hyers stable.

Definition 2.2 (adapted from [24]) Let (K, d) be a metric space,

X = {x : K → K|x is continuous}

the set of continuous functions defined on K and A : X → X be an operator. The

fixed point equation

x = A(x) (2.2)

(which is equivalent to x(t) = A(x)(t), for all t ∈ K) is said to be generalized Ulam-

Hyers-Rassias stable if there exists a cA > 0 such that for each solution y∗ of the

inequality

d(y(t), A(y)(t)) ≤ ϕ(t), ∀t ∈ K
there exists a solution x∗ of the equation (2.1) such that

d(y∗(t), x∗(t)) ≤ cAϕ(t), ∀t ∈ K.

Definition 2.3 ([24]) A : X → X is weakly Picard operator if the sequence of

successive approximations, An(x), converges for all x ∈ X and the limit (which may

be depend on x) is a fixed point of T .

Definition 2.4 ([24]) A weakly Picard operator A : X → X is said to be ψ-weakly

Picard operator if

d(x,A∞(x)) ≤ ψ(d(x,A(x))), for all x ∈ X,

for a ψ : R+ → R+ increasing function which is continuous in 0 and ψ(0) = 0. In the

case when ψ(t) = ct, for all t ≥ 0 and a fixed c > 0, we say that A is c-weakly Picard

operator.

Theorem 2.5 ([24]) Let (X, d) be a metric space. If A : X → X is a ψ-weakly Picard

operator, then the fixed point equation u = Au is generalized Ulam-Hyers stable.

Moreover if A is c-weakly Picard, then the fixed point equation u = Au is Ulam-Hyers

stable.

Definition 2.6 The equation

u(x) = f(x) +

x∫
a

K1(x, s)g(s, u(s))ds, (2.3)

with f ∈ C[a, b], g ∈ C([a, b] × R) is called weakly singular if there exist H1 ∈
C ([a, b]× [a, b]) and α ∈ (0, 1) such that

K1(x, s) =
H1(x, s)

|x− s|α
, ∀x, s ∈ [a, b] with x 6= s.

In this case we also say that the kernel K1 is weakly singular.
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Definition 2.7 The equation

u(x, y) = f(x, y) +

x∫
a

y∫
a

K2(x, y, s, t)g(s, t, u(s, t))dsdt, (2.4)

with f ∈ C([a, b] × [a, b]), g ∈ C([a, b] × [a, b] × R) is called weakly singular if there

exist H2 ∈ C
(
[a, b]4

)
and α1, α2 ∈ (0, 1) such that

K2(x, y, s, t) =
H2(x, y, s, t)

|x− s|α1 |y − t|α2
, ∀x, y, s, t ∈ [a, b] with x 6= s and y 6= t.

In this case we also say that the kernel K2 is weakly singular.

The connection between Caputo type fractional differential equations and weakly

singular integral equations was used by several authors ([4], [12], [2], [3]) to obtain

existence, uniqueness and Ulam-Hyers type stability, but most of the above cited

authors use an extra condition to guarantee the validity of their results (condition

(10) in [4], condition 3.3 in [12], condition (5) in [2], condition (3.1) in [3]). In what

follows we would like to emphasize that these conditions can be omitted without losing

the validity of the established results. First we will prove the Ulam-Hyers stability

of linear weakly singular integral equations by using the properties of the iterated

kernels (Theorem 2.8 and Theorem 2.10). After this we will prove an Ulam-Hyers

type stability result for the nonlinear case (Theorem 2.12) and at the end of this

section we will prove a similar result for weakly singular Fredholm-Volterra equations

(Theorem 2.15).

Theorem 2.8 If f ∈ C[a, b] and the equation

u(x) = f(x) +

x∫
a

K(x, s)u(s)ds (2.5)

is weakly singular, then it is also Ulam-Hyers stable.

Proof. For the operator A : C([a, b])→ C([a, b]),

A(u)(x) = f(x) +

x∫
a

K(x, s)u(s)ds

there exists n ∈ N \ {0} such that Â = An is a contraction relative to a Bielecki norm

(see [7]). Theorem 2.5 implies that the equation u = Â(u) is Ulam-Hyers stable. The

contractivity of Â also implies that both of the equations u = Â(u) and u = A(u)

have a unique solution in C[a, b] and moreover the above equations have a common

solution.

Consider ε > 0 a fixed number. If ũ is an approximate solution for the equation

u = Au, with ũ(t) = η(t) + A(ũ)(t), where |η(t)| ≤ ε for each t ∈ [a, b], then it is

also an approximate solution for the equation u = Â(u). This can be proved by a

straightforward calculation. Indeed ũ(t) = η(t) +A(ũ)(t) implies
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ũ(t) = η(t) +

n−1∑
j=1

t∫
a

K
(j)
1 (t, s)η(s)ds+An(ũ)(t),

where K
(j)
1 , 0 ≤ j ≤ n are the iterated kernels defined by

K
(0)
1 (x, s) ≡ 1, K

(1)
1 (x, s) = K1(x, s)

and

K
(j+1)
1 (x, s) =

x∫
s

K
(j)
1 (x, t)K1(t, s)dt for x, s ∈ [a, b] and j ≥ 1.

Hence

|ũ(t)−An(ũ)(t)| ≤ ε
n−1∑
j=0

t∫
a

K
(j)
1 (t, s)ds = c1 · ε,

where c1 ∈ R. This inequality implies that

dτ (ũ, Â(ũ)) = max
t∈[a,b]

e−τ(t−a)|ũ(t)−An(ũ)(t)| ≤ c1 · ε

and from the Ulam-Hyers stability of the equation u = Â(u) there exist a constant

c2 > 0 such that dτ (ũ, u) ≤ c2 · c1 · ε, where u is the unique solution of the equation

u = A(u). This concludes the proof.

Remark 2.9 For a = 0 the previous theorem implies the existence, uniqueness of the

solution and the Ulam-Hyers stability of the fractional differential equation{
Dq(y − Tm−1[y])(x)=y(x)

y(k)(0) = y
(k)
0 , 0 ≤ k ≤ m− 1

where Tm−1 is the Taylor polynomial of order (m − 1) centered at the origin. The

existence and uniqueness of the solution for this equation (and also for a nonlinear

version of it) was studied in [14] by using the Mittag-Leffler function.

Theorem 2.10 If f ∈ C([a, b]× [a, b]), and the equation

u(x, y) = f(x, y) +

x∫
a

y∫
a

K2(x, y, s, t)u(s, t)dsdt (2.6)

is weakly singular, then it is also Ulam-Hyers stable.

Proof. We define the iterated kernels in a similar manner: K
(0)
2 ≡ 1,K

(1)
2 = K2 and

K
(j+1)
2 (x, y, s, t) =

x∫
s

y∫
t

K
(j)
2 (x, y, q, r)K2(q, r, s, t)dqdr for j ≥ 1.
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By a straightforward computation we can prove the following properties of the iterated

kernels: If

|K2(x, y, s, t)| ≤ P2

|x− s|α1 |y − t|α2
, ∀x, y, s, t ∈ [a, b] with x 6= s and y 6= t.

and

|K(j)
2 (x, y, s, t)| ≤ P2

|x− s|α′
1 |y − t|α′

2

, ∀x, y, s, t ∈ [a, b] with x 6= s and y 6= t.

then

• for α1 + α′1 > 1 and α2 + α′2 > 1 K
(j+1)
2 is also weakly singular with

|K(j+1)
2 (x, y, s, t)| ≤ P3

|x− s|α1+α′
1−1|y − t|α2+α′

2−1
, ∀x, y, s, t ∈ [a, b], x 6= s, y 6= t;

• for α1 + α′1 ≤ 1 and α2 + α′2 ≤ 1 K
(j+1)
2 is continuous and satisfies

|K(j+1)
2 (x, y, s, t)| ≤ P4(x− s)1−α1−α′

1(y − t)1−α2−α′
2 ,∀x, y, s, t ∈ [a, b];

• for α1 + α′1 > 1 and α2 + α′2 ≤ 1 K
(j+1)
2 is continuous in y, t, has a weak

singularity in x, s and satisfies the inequality

|K(j+1)
2 (x, y, s, t)| ≤ P5(y − t)1−α2−α′

2

(x− s)α1+α′
1−1

,∀x, y, s, t ∈ [a, b], x 6= s;

• for α1 + α′1 ≤ 1 and α2 + α′2 > 1 K
(j+1)
2 is continuous in x, s, has a weak

singularity in y, t and satisfies the inequality

|K(j+1)
2 (x, y, s, t)| ≤ P6(x− s)1−α1−α′

1

(y − t)α2+α′
2−1

,∀x, y, s, t ∈ [a, b], y 6= t;

where P3, P4, P5, P6 are some real numbers. These properties and the fact that

α1, α2 ∈ (0, 1) guarantees the existence of a number n such that the nth iterate

of the operator A2 : C([a, b]× [a, b])→ C([a, b]× [a, b]) defined by

A2(u)(x, y) = f(x, y) +

x∫
a

y∫
a

K2(x, y, s, t)u(s, t)dsdt

is a contraction with respect to a Bielecki norm (being a regular Volterra operator).

Moreover the sum
n−1∑
j=0

x∫
a

y∫
a

K
(j)
2 (x, y, s, t)dsdt

is bounded (because each integral that appears in this sum is bounded), hence the

previous proof can be repeated step by step for the operator A2.
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Remark 2.11 This theorem implies the Ulam-Hyers stability of the following Darboux

type problem for (Caputo type) fractional differential equation
CDr

θu(x, y) = u(x, y), x, y ∈ [a, b]

u(x, 0) = ϕ(x) x ∈ [a, b]

u(0, y) = ψ(y) y ∈ [a, b]

ϕ(0) = ψ(0)

where r = (r1, r2) ∈ (0, 1)×(0, 1), ϕ, ψ : [a, b]→ R are absolutely continuous functions.

A nonlinear version of this problem was studied in [2]. Our approach suggests that

the Ulam-Hyers stability (such as the existence and uniqueness of the solution) can be

obtained without additional assumptions on the Lipschitz constants. This aspect will

be completely clarified in the following theorem.

Theorem 2.12 If f ∈ C([a, b] × [a, b]), g ∈ C([a, b] × [a, b] × R) has the Lipschitz

property in the last variable and equation (2.4) is weakly singular, then it is also

Ulam-Hyers stable.

Proof. If we denote by L the Lipschitz constant of the function g, then for the integral

operator A3 : C([a, b]× [a, b])→ C([a, b]× [a, b]) defined by

A3(u)(x, y) = f(x, y) +

x∫
a

y∫
a

K2(x, y, s, t)g(s, t, u(s, t))dsdt

we have

|A3(u)(x, y)−A3(v)(x, y)| ≤ L
x∫
a

y∫
a

|K2(x, y, s, t)||u(s, t)− v(s, t)|dsdst

≤ L ·H∗
x∫
a

y∫
a

eτ(s−a)eτ(t−a)

|x− s|α1 |y − t|α2
e−τ(s−a)e−τ(t−a)|u(s, t)− v(s, t)|dsdst

≤ L ·H∗dτ (u, v)

x∫
a

y∫
a

eτ(s−a)eτ(t−a)

|x− s|α1 |y − t|α2
dsdst

≤ L ·H∗dτ (u, v)

 x∫
a

eτ(s−a)

|x− s|α1
ds

 y∫
a

eτ(t−a)

|y − t|α2
dt

 ,

where H∗ is the maximum of |H1(x, y, s, t)| for x, y, s, t ∈ [a, b]. If we apply Hölder’s

inequality for the last two integrals we obtain:

|A3(u)(x, y)−A3(v)(x, y)| ≤

≤ L ·H∗dτ (u, v)

(
(b− a)2−pα1−pα2

(1− pα1)(1− pα2)

)1/p
eτ(x−a)eτ(y−a)

(τq)
2
q

,
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where 1 < p < min
{

1
α1
, 1
α2

}
and 1

p + 1
q = 1. This inequality implies that there

exist τ > 0 such that A3 is a contraction with respect to the Bielecki metric dτ .

Due to Theorem 2.5 the fixed point equation u = A3(u) has a unique solution in

C([a, b] × [a, b]) and is Ulam-Hyers stable. This property implies the Ulam-Hyers

stability in the usual (pointwise) sense. If ε > 0 is a fixed constant and ũ is an

ε-solution for u = A3(u), then |ũ(x, y) − A3(ũ)(x, y)| ≤ ε for all x, y ∈ [a, b]. This

inequality implies that dτ (ũ, A3(ũ)) ≤ ε. From the Ulam-Hyers stability of the fixed

point equation in (C([a, b] × [a, b]), dτ ) we deduce the existence of a constant c > 0

(independent of ε) such that dτ (u, ũ) < c · ε, where u is the unique solution of the

equation u = A3(u). But this inequality implies |u(x, y) − ũ(x, y)| ≤ e2τ(b−a) · c · ε,
so we have the Ulam-Hyers stability of the integral equation in the usual (pointwise)

sense.

Remark 2.13 Theorem 2.12 implies the Ulam-Hyers stability for the nonlinear frac-

tional differential Darboux problem
CDr

θu(x, y) = g(x, y, u(x, y)), x, y ∈ [a, b]

u(x, 0) = ϕ(x) x ∈ [a, b]

u(0, y) = ψ(y) y ∈ [a, b]

ϕ(0) = ψ(0)

where r = (r1, r2) ∈ (0, 1)×(0, 1), ϕ, ψ : [a, b]→ R are absolutely continuous functions

and g has the Lipschitz property with respect to the last variable. This result shows

that condition (5) from Theorem 3.1. in [2] can be omitted without losing the Ulam-

Hyers stability of the equation. The same observation applies to condition 3.3 in [12],

condition (10) in [4], condition (3.1) in [3].

Definition 2.14 The equation

u(x, y) = f(x, y) +

x∫
a

y∫
a

K1(x, y, s, t)g1(x, y, s, t, u(s, t))dsdt+

+

b∫
a

b∫
a

K2(x, y, s, t)g2(x, y, s, t, u(s, t))dsdt, (2.7)

with f ∈ C([a, b] × [a, b]) is called weakly singular if one of the kernels K1 and K2

is weakly singular and the other is continuous or if both kernels are weakly singular.

Suppose

Ki(x, y, s, t) =
Hi(x, y, s, t)

|x− s|α1i |y − t|α2i
, ∀x, y, s, t ∈ [a, b] with x 6= s and y 6= t

for i ∈ {1, 2} and H∗i is the maximum of Hi(x, y, s, t) when x, y, s, t ∈ [a, b].

Theorem 2.15 If f ∈ C([a, b]× [a, b]), g1, g2 ∈ C
(
[a, b]4 × R

)
are Lipschitz functions

with respect to the last variable (L1 and L2 are the corresponding Lipschitz constants)

and the condition (∗) is satisfied, then equation (2.7) is Ulam-Hyers stable.
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Condition (∗): There exist τ > 0 such that the matrix[
A B

Ae2τ(b−a) B

]
is convergent to zero, where

A = L1 ·H∗1 ·
(

(b− a)2−pα11−pα21

(1− pα11)(1− pα21)

)1/p
1

(τq)
2
q

B = L2 ·H∗2 ·
2α12+α22(b− a)2−α12−α22

(1− α12)(1− α22)
.

Condition (∗) is fulfilled if H∗2 = 0, so for the Volterra case we do not need any

additional condition. If H∗1 = 0 we obtain the usual additional condition on the

Lipschitz constant for Fredholm equations.

Proof. Using the same technique as in the proof of Theorem 2.12 for the operator

A4 : C([a, b]× [a, b])→ C([a, b]× [a, b]) defined by

A4(u)(x, y) =f(x, y) +

x∫
a

y∫
a

K1(x, y, s, t)g1(x, y, s, t, u(s, t))dsdt+

+

b∫
a

b∫
a

K2(x, y, s, t)g2(x, y, s, t, u(s, t))dsdt (2.8)

we obtain

dτ (A4u,A4v) ≤ A · dτ (u, v) +B · d(u, v) and

d(u, v) ≤ Ae2τ(b−a) · dτ (u, v) +B · d(u, v),

where d denotes the Chebyshev metric. By considering the vector valued metric

d : C([a, b]× [a, b])×C([a, b]× [a, b])→ R2, d(u, v) = (dτ (u, v), d(u, v))t we can apply

Perov’s fixed point theorem in the space X = (C([a, b]× [a, b]),d) for the operator A4.

Theorem 2.5 is valid also for generalized metric spaces (with vector valued metrics),

hence the considered equation is Ulam-Hyers stable.

The study of weakly singular Fredholm-Volterra mixed equations is crucial in the

study of fractional differential equations with nonlocal conditions. Our approach can

be used also to obtain a part of the results from [16].

3. Ulam-Hyers stability of the Bessel equation

In this section we study the generalized Ulam-Hyers-Rassias stability of the mod-

ified Bessel equation on compact intervals of the form [0, T ], where T ∈ R. This ap-

proach can be used also for studying the Ulam-Hyers-Rassias stability of the Bessel,

spherical Bessel, modified spherical, generalized Bessel or generalized and normalized

Bessel equation. The main idea is to study the Ulam-Hyers stability of an equivalent

singular integral equation in a well chosen weighted Banach space.
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For the sake of completeness we recall the above mentioned equations and we give

the equivalent integral equation we work with.

Definition 3.1 ([10]) If p, b, c,K ∈ R the equation

x2y′′ + xy′ + (x2 − p2)y = 0 is called Bessel equation; (3.1)

x2y′′ + xy′ − (x2 + p2)y = 0 is called modified Bessel equation; (3.2)

x2y′′ + 2xy′ + (x2 − p(p+ 1))y = 0 is called spherical Bessel equation; (3.3)

x2y′′ + 2xy′ − (x2 + p(p+ 1))y = 0 is called modified spherical

Bessel equation; (3.4)

x2y′′ + bxy′ + (cx2 − p2 + (1− b)p)y = 0 is called generalized Bessel equation;

(3.5)

4x2y′′ + 4Kxy′ + cxy = 0 is called generalized and normalized

Bessel equation. (3.6)

In [22] the authors proved the following theorem:

Theorem 3.2 ([22]) Let y : (−ρ, ρ) → C be a given analytic function which can be

represented by a power-series expansion centered at x = 0. Suppose there exists a

constant ε > 0 such that

|x2y′′(x) + xy′(x) + (x2 − p2)y(x)| ≤ ε

for all x ∈ (−ρ, ρ) and for some positive nonintegral number p. Let ρ1 = min{1, ρ}.
Suppose, further, that

x2y′′(x) + xy′(x) + (x2 − p2)y(x) =

∞∑
m=0

amx
m

satisfies
∞∑
m=0

|amxm| ≤ K

∣∣∣∣∣
∞∑
m=0

amx
m

∣∣∣∣∣
for all x ∈ (−ρ, ρ) and for some constant K. Then there exists a Bessel function

yh : (−ρ, ρ) → C such that |y(x) − yh(x)| ≤ Cε, x ∈ (−ρ, ρ), where ρ0 < ρ1 is any

positive number and C is some constant which depends on ρ0.

This result gives a partial answer to the Ulam-Hyers stability problem of the Bessel

equation under highly restrictive conditions on the right hand side. Our aim is to

prove the generalized Ulam-Hyers-Rassias stability using less restrictive conditions.

For this we need the equivalent integral equations and some Ulam-Hyers type stability

properties of these equations.

Lemma 3.3 The above mentioned differential equations are equivalent to the following

integral equations:
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• y(x) = y(0)−
x∫

0

ln
x

s

s2 − p2

s
y(s)ds for equation (3.1)

• y(x) = y(0) +

x∫
0

ln
x

s

s2 + p2

s
y(s)ds for equation (3.2)

• y(x) = y(0) +

x∫
0

(
1

x
− 1

s

)
(s2 − p(p+ 1))y(s)ds for equation (3.3)

• y(x) = y(0)−
x∫

0

(
1

x
− 1

s

)
(s2 + p(p+ 1))y(s)ds for equation (3.4)

• y(x) = y(0) −
x∫

0

x1−b − s1−b

1− b
· cs

2 − p2 + (1− b)p
s2−b y(s)ds for equation (3.5)

and b 6= 1 and y(x) = y(0)−
x∫

0

ln
x

s

cs2 − p2

s
y(s)ds if b = 1;

• y(x) = y(0) − c

4

x∫
0

x1−K − s1−K

1−K
· sK−1y(s)ds for equation (3.6) and K 6= 1

and y(x) = y(0)− c

4

x∫
0

ln
x

s
y(s)ds if K = 1.

For the sake of simplicity we perform the calculations for the modified Bessel

equation and at the end we give a more general result for all the equations (3.1)-(3.6).

For a fixed constant α > 1 consider the set

Xα = {u ∈ C([0, T ])|∃M > 0 such that |u(x)− u(0)| ≤M · xα}.

Lemma 3.4 On the set

Ha := {u ∈ Xα|u(0) = a}
the functional dα : Ha ×Ha → R defined by

dα(u, v) = min{M ∈ R||u(x)− v(x)| ≤Mxα, ∀x ∈ [0, T ]}

is a metric.

Proof. Observe that the set

M = {M ∈ R||u(x)− v(x)| ≤Mxα, ∀x ∈ [0, T ]}

is nonempty because u, v ∈ Ha and if M ∈ M for some M ∈ R, then [M,∞) ⊂ M.

Morever due to the continuity of u, v ∈ Ha the set M is closed, hence dα is well

defined. It is clear that dα(u, v) ≥ 0 for all u, v ∈ Ha and dα(u, v) = 0 implies u = v.

Moreover if M1 = dα(u, v) and M2 = dα(v, w) then from the inequalities

|u(x)− v(x)| ≤M1 · xα and
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|v(x)− w(x)| ≤M2 · xα

we obtain

|u(x)− w(x)| ≤ |u(x)− v(x)|+ |v(x)− w(x)| ≤ (M1 +M2)xα.

This inequality implies that dα(u,w) ≤M1 +M2, hence dα is a metric.

Lemma 3.5 The space (Ha, dα) is a complete metric space and if a sequence (un)n≥0

converges in Ha, then it converges uniformly in C[0, T ].

Proof. Observe that dα(u, v) < ε implies |u(x) − v(x)| < ε · Tα, hence the second

assertion is true. Due to this property if (un)n≥0 is a Cauchy sequence in (Ha, dα),

then it is also a Cauchy sequence in (C([0, T ]), d), so there exist a function u∗ ∈
C([0, T ]) such that un → u∗ uniformly on [0, T ]. Since un(0) = a, for all n ≥ 0, we

obtain u∗(0) = a. (un)n≥0 being a Cauchy sequence in (Ha, dα) for all ε > 0 there

exists n(ε) ∈ N such that

|un+p(x)− un(x)| ≤ εxα, for all x ∈ [0, T ] and n ≥ n(ε), p ∈ N.

If p→∞ we obtain

|u∗(x)− un(x)| ≤ εxα, for all x ∈ [0, T ] and n ≥ n(ε), (3.7)

so for a sufficiently large, but fixed n we have

|u∗(x)− u∗(0)| ≤ |u∗(x)− un(x)|+ |un(x)− a| ≤ εxα +Mn · xα.

This inequality implies u∗ ∈ Ha while (3.7) implies un → u∗ in Ha, so (Ha, dα) is a

complete metric space.

Theorem 3.6 If a function ỹ ∈ Xα, with α ≥ max{1,
√
T 2 + p2} satisfies the

inequality

|x2ỹ′′ + xỹ′ − (x2 + p2)ỹ| ≤ c2xα, for all x ∈ [0, T ], (3.8)

where T > 0, and p ∈ R, then there exist a constant c and a solution y of the modified

Bessel equation (3.2) with the property

|ỹ(x)− y(x)| ≤ c2
α2 − T 2 − p2

xα,∀x ∈ [0, T ].

Proof. If x2ỹ′′ + xỹ′ − (x2 + p2)ỹ = h(x), then ỹ is a solution of the integral equation

y(x) = y(0) +

x∫
0

ln
x

s

s2 + p2

s
y(s)ds+

x∫
0

ln
x

s

h(s)

s
ds.

Consider the integral operator A : Xα → Xα

A(y)(x) = y(0) +

x∫
0

ln
x

s

s2 + p2

s
y(s)ds.
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For this operator we have

|A(u)(x)−A(v)(x)| ≤ (T 2 + p2)

x∫
0

ln
x

s

|u(s)− v(s)|
s

ds ≤M(T 2 + p2)

x∫
0

ln
x

s
sα−1ds,

where M = dα(u, v). But
x∫
0

ln x
s s
α−1ds = xα

α2 , so we obtain the inequality

dα(A(u), A(v)) ≤ T 2 + p2

α2
dα(u, v).

Due to the Banach contraction principle and to the assumptions on α, the operator

A is a contraction on Xα. This guarantees the existence and uniqueness of a solution

y ∈ Xα whith y(0) = ỹ(0). Moreover if z is the difference between the solutions y and

the approximate solution ỹ, then z satisfies the integral equation

z(x) =

x∫
0

ln
x

s

s2 + p2

s
z(s)ds+

x∫
0

ln
x

s

h(s)

s
ds.

Condition (3.8) guarantees that h ∈ H0, so the operator B : H0 → H0,

B(u)(x) =

x∫
0

ln
x

s

s2 + p2

s
u(s)ds+

x∫
0

ln
x

s

h(s)

s
ds

is well defined and it is a contraction, so there exist a unique function z∗ ∈ H0 with

z∗ = Bz∗. This unique function z∗ is in fact ỹ − y, so we have

dα(y, ỹ) ≤ 1

1− T 2+p2

α2

dα(ỹ, A(ỹ)).

This completes the proof.

The fixed point equation associated with the operator A is Ulam-Hyers stable in

(Ha, dα) and this property implies the generalized Ulam-Hyers-Rassias stability in the

usual sense. Using the same technique the following result can be proved:

Theorem 3.7 The Bessel type equations ( (3.1)-(3.6)) are generalized Ulam-Hyers-

Rassias stable on any compact interval [0, T ] in the following sense:

If for a function ỹ ∈ Ha we have

|L(ỹ)(x)| < c1x
α,

for some c1 ∈ R, all x ∈ [0, T ], and α > 1 satisfying the following condition:

• α2 > T 2 + p2 for equation (3.1) and (3.2);

• α(α+ 1) > T 2 + p(p+ 1) for equation (3.3) and (3.4);

• α(α− 1 + b) > cT 2 + p2 + |1− b|p for (3.5);

• (α+ 1)(α+ k) > cT/4 for (3.6),
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then there exist a solution y ∈ Ha of the corresponding integral equation L(y)(x) = 0

such that |ỹ(x)−y(x)| ≤ CL · c2 ·xα for all x ∈ [0, T ], where L denotes the differential

operator associated to one of the equations (3.1)-(3.6) and the constant CL depends

only on L.

A direct approach based on Gronwall type inequality is also possible if we can

prove separately the existence of the solution in the set H0 for the studied equation.

For (3.2) if ỹ is an approximated solution and y is a solution with the same initial

condition, the function z = |ỹ − y| satisfies

|z(x)| ≤ (T 2 + p2)

x∫
0

ln
x

s
· |z(s)|

s
ds+

x∫
0

ln
x

s
· |h(s)|

s
ds.

Now if |h(x)| ≤ c2xα, for all x ∈ [0, T ] and z ∈ H0, then from the initial estimation

|z(x)| ≤ c1xα, by successive iteration we obtain

|z(x)| ≤ cnxα,
where

cn+1 = cn

(
p2

α2
+

T 2

(α+ 1)2

)
+

c

α2
.

If α is sufficiently large ( p
2

α2 + T 2

(α+1)2 < 1), then we obtain

|z(x)| ≤ c2x
α

α2
(

1− p2

α2 − T 2

(α+1)2

) .
The same Ulam-Hyers constant can be obtained by using the reasoning from the

proof of Theorem 3.7 (if we do not use a majorant for the nonsingular part inside

the kernel of the integral). In this equality we can have also equality, so this Ulam-

Hyers constant is the best possible constant (for the modified Bessel equation and the

majorizing function xα). The best Ulam-Hyers constant can also be calculated for

the rest of the Bessel type equations.

From the inequality

u(x) ≤ c21

x∫
0

ln
x

s

u(s)

s
ds+

c2x
α

α2
, (3.9)

where c1, c2, α ∈ (0,∞) and α > max{1, c1}, we can not prove

u(x) ≤ c2x
α

α2 − c21
for x ∈ [0, T ]

in the general case of u ∈ C([0, T ]). By iterating the given inequality we can obtain

u(x) ≤ c2n1
(2n− 1)!

x∫
0

(
ln
x

s

)2n−1 u(s)

s
ds+ enx

α, (3.10)
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where en = c2
α2−c21

(
1−

(
c21
α2

)n)
, but an apriori bound for u is still required in order

to obtain an upper bound for u.
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