A MULTIPARAMETER GLOBAL BIFURCATION THEOREM WITH APPLICATION TO A FEEDBACK CONTROL SYSTEM

NGUYEN VAN LOI∗1,2, VALERI OBUKHOVSKII∗∗, JEN-CHIH YAO∗∗∗

Abstract. In this paper, applying the method of integral guiding functions, we consider a multiparameter global bifurcation problem for periodic solutions of first order operator-differential inclusions whose multivalued parts are not necessarily convex-valued. It is shown how the abstract result can be applied to study the global structure of periodic solutions of a feedback control system with a two-dimensional parameter.

Key Words and Phrases: Global bifurcation, guiding function, operator-differential inclusion, periodic solution, fixed point.

2010 Mathematics Subject Classification: 34C23, 34C25, 34A60, 47H04, 47H10.

Acknowledgment. The work on the paper was carried out during Dr. Nguyen Van Loi’s and Professor V. Obukhovskii’s visit to the Department of Applied Mathematics, National Sun Yat-Sen University, and the Center of Fundamental Science, Kaohsiung Medical University, Kaohsiung, Taiwan, in 2014. They would like to express their gratitude to the members of the Department of Applied Mathematics and the Center of Fundamental Science for their kind hospitality. The work of the second author is supported by NNS-RFBR grant 14-01-92004 and RFBR grant 14-01-00468.

References


Received: 19 April 2014; Accepted: May 11, 2014.