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Abstract. In this paper, applying the method of integral guiding functions, we consider a multipa-
rameter global bifurcation problem for periodic solutions of first order operator-differential inclusions

whose multivalued parts are not necessarily convex-valued. It is shown how the abstract result can

be applied to study the global structure of periodic solutions of a feedback control system with a
two-dimensional parameter.
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[16] L. Górniewicz, W. Kryszewski, Bifurcation invariants for acyclic mappings, Rep. Math. Phys.,

31(1992), 217-239.

[17] Ph. Hartman, Ordinary Differential Equations, Corrected reprint of the second edition (1982)
[Birkha”user, Boston, MA], Classics in Applied Mathematics, 38. Society for Industrial and

Applied Mathematics (SIAM), Philadelphia, 2002.

[18] S.T. Hu, Homotopy Theory, Academic Press, New York, 1959.
[19] D. M. Hyman, On decreasing sequences of compact absolute retracts, Fund Math., 64(1969),

91-97.

[20] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differ-
ential Inclusions in Banach Spaces, W. de Gruyter Series in Nonlinear Analysis and Applications

7, Walter de Gruyter, Berlin-New York 2001.
[21] W. Kryszewski, Homotopy properties of set-valued mappings, Univ. N. Copernicus Publishing,

Torun, 1997.

[22] W. Kryszewski, R. Skiba, A cohomoligical index of Fuller type for set-valued dynamical systems,
Nonlinear Anal., 75(2012), 684-716.

[23] A.D. Myshkis, Generalizations of the theorem on a fixed point of a dynamical system inside of

a closed trajectory, (in Russian) Mat. Sb., 34(1954), no. 3, 525-540.
[24] V. Obukhovskii, P. Zecca, N.V. Loi and S. Kornev, Method of Guiding Functions in Problems

of Nonlinear Analysis, Lecture Notes in Math. 2076, Springer-Velag, Berlin-Heidelberg, 2013.

[25] E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

Received: 19 April 2014; Accepted: May 11, 2014.


