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1. Introduction

Mappings which are condensing w.r.t. the m.n.c. in a hyperspace, called hyper-
condensing further, were proposed by L. Górniewicz around 2000 as a possible way
to unify the topological degree theory for condensing maps with a version of the
degree theory for multifunctions which are compact in the hyperspace though may
have noncompact values (cf. [16, 15]). The problem of comparing an m.n.c. defined
for a suitable hyperspace of sets with an m.n.c. defined on a larger hyperspace was
and continues to be one of the main obstacles in achieving the full synthesis of the
subject.

It turned out that at least the theory of invariant sets and maximal attractors
of hyper-condensing maps can be build (cf. [23]). This raised hope for the full
generalization of the results from [2, 5] along the lines of [3], so that both classes of
maps: condensing and Nadler contractions with noncompact values, could be dealt
jointly. Condensing maps include only Nadler contractions with compact values (cf.
[5]). Therefore Nadler contractions with noncompact closed bounded values naturally
invite the notion of hyper-condensing multifunction. Our goal here is to establish the
precise relation between hyper-condensing and condensing multifunctions.
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2. Measures of noncompactness in hyperspaces

Let (X, d) be a complete metric space with distance d. The closure of A ⊂ X is
denoted by A. The open r-neighbourhood of A ⊂ X is

NrA = {x ∈ X : ∃a∈A d(x, a) < r};

being empty for A = ∅. The Hausdorff distance between two sets A,B ⊂ X is

h(A,B) = inf{r > 0 : B ⊂ NrA,A ⊂ NrB},

with the convention that inf ∅ =∞. Obviously h(A,B) = h(A,B), and h(∅, A) =∞
for A 6= ∅.

We designate the following families: P(X) – nonempty sets, F(X) – closed
nonempty sets, K(X) – compacta, and equip them with the Hausdorff distance. For
more informations about topologized collections of sets, called hyperspaces, the reader
can consult [11, 17].

A functional µ : P(X)∪{∅} → [0,∞] will be called the measure of noncompactness
(m.n.c. for short) in the space X provided the following axioms hold:

(µ-0) µ(∅) = 0;
(µ-1) µ(A) = µ(A);
(µ-2) (limit-regularity) µ({xm : m ≥ n}) −→

n→∞
0⇒ {xm : m ≥ 1} — precompact;

(µ-3) (quasimonotonicity) ∃k>0 A ⊂ B ⇒ µ(A) ≤ k µ(B);

where A,B ⊂ X, xm ∈ X. One can replace limit-regularity by the standard, seem-
ingly stronger yet equivalent property:

(µ-2’) (regularity) µ(A) = 0⇒ A — precompact.

Moreover, from the above set of conditions one can deduce the Kuratowski intersection
theorem (e.g., [24], cf. [20, 13]).

Theorem 2.1. If An ⊃ An+1, n = 1, 2, . . ., is a descending sequence of closed sets
such that µ(An)→ 0 when n→∞, then the intersection A =

⋂∞
n=1An is a compact

set and An −→
n→∞

A w.r.t. the Hausdorff distance.

Unlike in this work, in many applications (e.g., [8, 4]) one requires

(µ-4) (ultra-additivity) µ(A ∪B) = max{µ(A), µ(B)}.
(Note that an ultra-additive m.n.c. is monotone). This explains the use of the term
‘measure’ for a functional µ in agreement with the Choquet tradition of non-additive
monotone measures (see [25] and the references therein).

The minimalistic system of axioms (µ-0)–(µ-3) is enough for studying invariant sets
in dynamical systems (e.g., [24, 22, 3, 27]) though it is not appropriate for studying
fixed points (because it lacks the Darbo formula, cf. [1, Definition 1.2.1,Theorem
1.1.5], [29, Definition 3.60, Theorem 3.61], [8, Theorems 2.4, 3.6]). The examples of
m.n.c.’s, usually excluded from considerations and allowed here, provide the relative
and inner Hausdorff m.n.c. and the diameter of a set. More on m.n.c.’s can be found
in standard references [1, 8, 9].

Accidentally we shall make use of the following compactness criterion in the hy-
perspace (F(X), h).
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Theorem 2.2 (Blaschke-Zarankiewicz, [17] Chapter 1 Theorem 1.34, [11] Theorem
3.2.4). Let C ⊂ X be a nonempty compact and Cn, n ≥ 1, a sequence of closed
nonempty sets such that

∀ε>0 ∃n0
∀n≥n0

Cn ⊂ NεC.

Then Cn has a subsequence convergent in the sense of the Hausdorff distance.

Proof. Standard formulation of the theorem says that any sequence of sets which lies
in compact C admits a convergent subsequence.

Given any D ⊂ NεC we can find nearby its closed copy D̃ ⊂ C, h(D̃,D) ≤ ε.
By assumption there exists indexing kn such that Ckn

⊂ N 1
n
C. Thus copy sequence

C̃kn
⊂ C, ε = 1

kn
, admits a convergent subsequence C̃kln

due to the standard for-
mulation of our theorem. Hence Ckln

forms a convergent subsequence of Cn, as

h(Ckln
, C̃kln

) ≤ 1
kln

. �

Remark 2.3. Associating Zarankiewicz’s name with the above theorem might be
justified by combination of Theorems 5.2.12, 5.2.6 and Corollary 5.1.11 in [11].

Remark 2.4. One can view also the above theorem as the generalization of a known
fact that a sequence of points attracted (in the sense of distance) to a compact set
admits a convergent subsequence.

Similarly as the family of nonempty closed sets (F(X), h) constitutes the hyper-
space of (X, d), we can form a collection of closed (w.r.t. h) families (F(F(X)), H)
endowed with its respective Hausdorff distance H based on h.

Note the following convenient

Lemma 2.5 (on closing unions, [23] Lemmas 2, 3). Let A ⊂ P(X), B ⊂ F(X). Then

(a)
⋃
A =

⋃
A],

(b)
⋃
B =

⋃
B h

,

where A] = {A : A ∈ A}, and B h
stands for the closure of B w.r.t. h.

In the same fashion we also consider m.n.c.’s in F(X), ν : P(F(X))∪{∅} → [0,∞].
To every m.n.c. µ in X there corresponds in a canonical way an m.n.c. µ] in F(X).

Theorem 2.6. If µ : P(X) ∪ {∅} → [0,∞] is an m.n.c. in X, then µ] : P(F(X)) ∪
{∅} → [0,∞] defined via

∀A⊂F(X) µ](A) = µ(
⋃
A)

constitutes an m.n.c. in F(X). Moreover, if µ is ultra-additive, then so is µ].

Proof. Obviously µ] satisfies (µ-0) because
⋃
∅ = ∅ and (µ-1) because of Lemma 2.5.

If A ⊂ B ⊂ F(X), then

µ](A) = µ(
⋃
A) ≤ k · µ(

⋃
B) = k · µ](B),

since
⋃
A ⊂

⋃
B, which establishes (µ-3) for µ].

Ultra-additivity condition (µ-4) is preserved thanks to the evident set-algebraic
identity

⋃
(A ∪ B) = (

⋃
A) ∪ (

⋃
B).
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The verification of (µ-2) goes as follows. Fix a sequence of sets An ∈ F(X) with

µ]({Am : m ≥ n}) −→
n→∞

0.

Hence from the definition of µ] and (µ-1) for µ

µ(
⋃

m≥n

Am) −→
n→∞

0.

Now we are in position to apply the Kuratowski intersection theorem (which is valid
for µ by assumptions) and infer that⋃

m≥n

Am → A =
⋂
n≥1

⋃
m≥n

Am

with respect to h and A is nonempty compact. In consequence A attracts An:

∀ε>0 ∃n0 ∀n≥n0 An ⊂
⋃

m≥n

Am ⊂ NεA.

In view of the Blaschke-Zarankiewicz criterion we obtain that {An : n ≥ 1} is pre-
compact in (F(X), h). �

Remark 2.7. If µ is the Hausdorff m.n.c. in X, then the corresponding µ] is the
relative Hausdorff m.n.c. in (F(X), h) with centers in K(X) ⊂ F(X) ([23] Lemma 4).

Remark 2.8. Any µ] in F(X) induced by m.n.c. µ in X has kernel ([9]) consisting
of precompact sets. Indeed for A ⊂ F(X), if µ(

⋃
A) = µ](A) = 0, then A ⊂

⋃
A is

precompact for every A ∈ A, because µ is quasi-monotone and regular. This among
others means that not every m.n.c. in F(X) can be canonically generated from some
m.n.c. in X; for instance the Hausdorff m.n.c. in (F(X), h) cannot be obtained from
any m.n.c. in X. Also, excluding trivial µ ≡ 0, there always exists A ⊂ X such that
µ]({A}) = µ(A) > 0, which means that the canonically induced m.n.c. µ] is singular.

In view of the definition of µ] we comment upon the case when m.n.c. assumes
the value of infinity. If µ](A) <∞, then µ(A) <∞ for all A ∈ A. If µ(A) <∞, then
µ]({A}) < ∞. These implications readily follow from the definition of µ] due to the
quasi-monotonicity condition. The consistency of the proof of Theorem 3.4 relies on
the careful consideration of infinities.

3. Relation between condensing and hyper-condensing multifunctions

A correspondence ϕ : X → P(X) shall be called the multifunction (with nonempty
values), e.g., [17, 11, 4]. Single-valued map f : X → X is simply regarded to be a
multifunction {f} : X → P(X), {f}(x) = {f(x)} ⊂ X, x ∈ X.

Following [16, 15] we define two kinds of the image:

• ϕ(A) =
⋃

a∈A ϕ(a) for A ⊂ X,

• ϕ](A) = {ϕ(A) : A ∈ A} for A ⊂ F(X).



MULTIFUNCTIONS CONDENSING IN THE HYPERSPACE 347

This shall allow us to deal with multifunctions possessing noncompact values.
The Barnsley-Hutchinson operator F : F(X) → F(X) associated with ϕ is given

by F (A) = ϕ(A) for A ∈ F(X), e.g., [21, 2, 24].
Now we introduce the key notions for this work (cf. [3, 23, 24]). A multifunction

ϕ : X → P(X) is

• condensing w.r.t. the m.n.c. µ in X (shortly µ-condensing), if for all A ⊂ X
with µ(A) <∞ holds

µ(ϕ(A) )

{
< µ(A), µ(A) > 0,
= 0, µ(A) = 0,

• strongly condensing w.r.t. the m.n.c. µ in X (shortly strongly µ-condensing),
if it is µ-condensing and additionally limn→∞ µ(Fn(A)) = 0 for all A ⊂ X
with µ(A) <∞, where Fn stands for the n-fold composition of F ,
• hyper-condensing w.r.t. the m.n.c. ν in F(X) (shortly ν-hyper-condensing),

if for all A ⊂ F(X) with ν(A) <∞ holds

ν(ϕ](A) )

{
< ν(A), ν(A) > 0,
= 0, ν(A) = 0,

• strongly hyper-condensing w.r.t. the m.n.c. ν in F(X) (shortly strongly
ν-hyper-condensing), if it is ν-hyper-condensing and limn→∞ ν((ϕ])n(A)) =
0 for all A ⊂ F(X) with ν(A) < ∞, where (ϕ])n stands for the n-fold
composition of ϕ].

Remark 3.1. In the case µ is nonsingular, i.e., µ(A ∪ {x}) = µ(A) for all A ⊂ X
and x ∈ X, a µ-condensing multifunction necessarily has precompact values.

Remark 3.2. Any map condensing w.r.t. either the Hausdorff or Kuratowski m.n.c.
is automatically strongly condensing. This is a delicate result established in [1]
(Lemma 1.6.11) and rewritten for multifunctions in [3] (Lemma 5). Such a prop-
erty was found to be useful in dynamics in [27, 3, 23, 19].

Remark 3.3. Remark 2.8 ensures that the class of hyper-condensing multifunctions
is essentially larger than the class of condensing maps (see also the family of examples
below).

The class of µ-condensing correspondences, where µ is the Hausdorff m.n.c in X,
contains all compact multifunctions and Nadler multivalued weak contractions with
compact values (e.g., [3]). The class of ν-hyper-condensing correspondences, where ν
is the relative Hausdorff m.n.c. in F(X) with centers in K(X), contains two classes of
maps with closed bounded noncompact values: Nadler multivalued weak contractions
(cf. [2]) and DeBlasi-Myjak h-compact multifunctions (cf. [16, 15]), see [23].

We can prove now the main result of this article.

Theorem 3.4. A multifunction ϕ : X → P(X) is

(a) µ-condensing if and only if it is µ]-hyper-condensing,
(b) strongly µ-condensing if and only if it is strongly µ]-hyper-condensing.
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Proof. ad (a). Fix A ⊂ F(X). Using the definitions of µ] and ϕ] together with
Lemma 2.5 we have that

µ](ϕ](A)) = µ(
⋃
ϕ](A)) = µ(

⋃
A∈A

ϕ(A)) = µ(ϕ(
⋃
A)) = µ(ϕ(

⋃
A)).

Thus µ](ϕ](A)) < µ](A) iff µ(ϕ(
⋃
A)) < µ(

⋃
A). In particular, for every A ∈ F(X)

we can put A = {A} which obeys
⋃
A = A.

ad (b). Let ϕ be strongly µ]-hyper-condensing and A ∈ F(X). Then

µ(
⋃
{Fn(A)}) = µ]((ϕ])n({A}))→ 0,

because
⋃
{Fn(A)} = (ϕ])n({A}). This shows that ϕ is µ-condensing.

Reversely, let ϕ be µ-condensing and A ⊂ F(X). Observation

(ϕ])n(A) = {Fn(A) : A ∈ A}
yields that

⋃
(ϕ])n(A) ⊂ Fn(

⋃
A). Therefore

µ]((ϕ])n(A)) ≤ k · Fn(
⋃
A)→ 0

by the definition of µ] and quasi-monotonicity of µ. �

4. A class of examples of hyper-condensing multifunctions

As a complement to the previous section we provide here a general construction of
hyper-condensing maps in the case of a (infinite dimensional) Banach space X. This
can be viewed as a far analog of the Krasnoselskĭı “compact + contraction” map (see
also [6]).

We recall that

∀A⊂X β(A) = inf{r > 0 : A ⊂ NrS for some finite S ⊂ X}
is the Hausdorff m.n.c. in X and denote the respective Hausdorff m.n.c. in (F(X), h)
by βh. (Note that βh 6= β] are different m.n.c.’s according to Remark 2.7).

A multifunction ϕ : X → P(X) with closed bounded values is said to be

• a Nadler contraction with constant 0 < L < 1, if

∀x1,x2∈X h(ϕ(x1), ϕ(x2)) ≤ L · d(x1, x2),

• an h-compact map, if

{ϕ(x) : x ∈ X} ⊂ F(X)

is precompact in the hyperspace (F(X), h) (i.e., w.r.t. the Hausdorff metric).

An h-compact multifunction with compact values is necessarily compact ([16])
so only h-compact multifunctions with noncompact values are of interest here. For
Nadler contractions one can browse, e.g., [2]. Both kinds of multifunctions, h-compact
and Nadler contractions, are βh-hyper-condensing in the same manner as (weak)
Nadler contractions with compact values and compact maps are β-condensing ([3]).
Moreover, βh-hyper-condensing multifunctions are strongly βh-hyper-condensing.

The closed ball at x0 in X is

D(x0, r) = {x ∈ X : d(x, x0) ≤ r}.
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In infinite dimensional spaces closed balls are noncompact (“not nice” [11]) yet still
have reasonable properties which we employ below.

Theorem 4.1. Let f : X → X be a compact map (i.e., f(X) ⊂ X is compact),
and r > 0. Then the multifunction ψ : X → F(X) ⊂ P(X) given for x ∈ X via
ψ(x) = D(f(x), r) is an h-compact multifunction with noncompact values.

Proof. It is enough to perform a simple check that for xi ∈ X, yi = f(xi), i = 1, 2,
the following inequality holds:

h(D(y1, r), D(y2, r)) ≤ d(y1, y2).

(This is the place which involves linear structure of X). �

Taking unions of multifunctions we can build new hyper-condensing maps from the
old ones.

Theorem 4.2. If ϕ,ψ : X → F(X) are βh-hyper-condensing, then their union ϕ∪ψ :
X → F(X), (ϕ ∪ ψ)(x) = ϕ(x) ∪ ψ(x), x ∈ X, is such.

Proof. Fix B, C ⊂ F(X) and denote

B∨C = {B ∪ C : B ∈ B, C ∈ C}.
It is not hard to see that

βh(B ∨ C) = max{βh(B), βh(C)}.
Indeed one simply exploits the standard inequality

h(B ∪ C, S1 ∪ S2) ≤ max{h(B,S1), h(C, S2)},
B, C, S1, S2 ⊂ X. Noting that

(ϕ ∪ ψ)](A) ⊂ ϕ](A) ∨ ψ](A)

for A ⊂ F(X), completes the verification of the statement. �

5. Possible applications

One could repeat here the results of [23] under suitable assumptions using general
m.n.c.’s defined axiomatically as in this paper. Therefore we can cover in a unified way
the existence of attractors for all classes of multifunctions considered in [2, 3, 23, 12, 5].
The price we pay is that we loose uniqueness of the invariant set/attractor entirely
connected to metric contractions. Recent research on projective iterated function
systems ([10, 30]) suggests that the uniqueness criterion should not be considered the
part of a good definition of the notion of attractor.

The original motivation of L. Górniewicz for introducing hyper-condensing multi-
functions was to build in an elementary way a topological degree for maps with convex
noncompact values along the lines of [16, 15]. However the reasonable relations be-
tween a concrete (say Hausdorff or Kuratowski) m.n.c. and their extensions on the
appropriate hyperspaces: closed bounded sets, convex closed bounded sets, absolute
retracts, turned out to be complicated (e.g., [23] Lemma 5). Homological approach to
the definition of the topological degree for maps with noncompact nonconvex values
was subject of the research conducted by A. Dawidowicz [14]. However, it seems that



350 KRZYSZTOF LEŚNIAK

this theory is not widely recognized and still awaits a more thorough investigations
with applications in mind, for instance in the theory of dissipative dynamical systems
on Banach spaces with noncompact attractors.

Question: Denote by Fc(X) the family of convex closed bounded subsets of the
Banach space X endowed with the Hausdorff distance h. Let J : Fc(X) → Fc(X),
I(C) = C for C ∈ Fc(X), stand for the identity operator. Does J admit a selection
j : Fc(X)→ X fulfilling the following condensity-like condition: β(j(C)) < βh(C) for
C ⊂ Fc(X) with 0 < βh(C) < ∞, and β(j(C)) = 0 when βh(C) = 0? (Symbols β, βh

are defined in the previous section). Observe that due to the known obstacles (e.g.,
[7, chapter 1 sections 7,8,9], cf. also [26, 31, 18, 28] for a panorama of recent results)
one cannot simply find a nonexpansive selection.

The existence of such a selection j ∈ J would allow us to repeat the elementary con-
struction of the topological degree given in [15], to cover a wide class of multifunctions
including fields of h-compact and condensing maps with convex values.
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[9] J. Banaś, K. Goebel, Measures of Noncompactness in Banach Spaces, M. Dekker, New York-

Basel, 1980.
[10] M.F. Barnsley, A. Vince, Real projective iterated function systems, J. Geom. Anal., 22(2012),

no. 4, 1137–1172.

[11] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer, 1993.
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