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1. Introduction and Preliminaries

Let (X, d) be a metric space, 2X , P (X), Pb(X), Pcl(X) and Pb,cl(X) be the
collections of all subsets of X, all nonempty subsets of X, all nonempty bounded
subsets of X, all nonempty closed subsets of X and all nonempty closed bounded
subsets ofX, respectively. Let Y be nonempty set and T : X → P (Y ) be a multivalued
operator. A subset G(T ) = {(x, y) : y ∈ Tx} of X × Y is called a graph of T : X →
P (Y ). A multivalued operator T : X → P (Y ) is said to be closed if G(T ) is a closed
set in X ×Y. A point x in X is called a fixed point of T : X → P (Y ) if x ∈ Tx. A set
of all fixed points of T : X → P (Y ) is denoted by Fix(T ).

We will denote by D, ρ and H the gap, the excess and respectively the Pompeiu-
Hausdorff functional induced by the metric d (see [11], [12] for details). It is known
that if (X, d) is complete metric space, then (Pb,cl(X),H) is a complete metric space.
Also H is a generalized metric on Pcl(X).

The following result is well known.
Lemma 1.1. Let A,B ⊂ X and q > 1. Then, for every a ∈ A, there exists b ∈ B
such that d(a, b) ≤ qH(A,B).
Definition 1.2. A multivalued mapping T : X → P (X) is a multivalued weakly
Picard (briefly MWP) operator if for each x ∈ X and each y ∈ T (x), there exists a
sequence (xn)n∈N such that

(i) x0 = x, x1 = y,
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(ii) xn+1 ∈ T (xn) for all n ∈ N,
(iii) the sequence (xn)n∈N is convergent and its limit is a fixed point of T.

A sequence in above definition is called a sequence of successive approximations of
T starting from (x, y).
Definition 1.3. Let T : X → P (X) be a MWP operator. Define T∞ : G(T ) →
P (Fix(T )) as follows: T∞(x, y) = {z ∈ Fix(T ) : there exists a sequence of successive
approximations of T starting from (x, y) that converges to z}.
Definition 1.4. A multivalued operator T : X → P (X) is called a c-multivalued
weakly Picard ( c-MWP) operator if c > 0 and there exists a selection t∞ of T∞ such
that d(x, t∞(x, y)) ≤ cd(x, y), for all (x, y) ∈ G(T ).

The study of fixed points for multivalued contractions mappings using the Haus-
dorff metric was initiated by Nadler [12] and Markin [9]. Later, an interesting and
rich fixed point theory for such maps was developed which has found applications in
control theory, convex optimization, differential inclusion and economics. Klim and
Wardowski [6] obtained existence of fixed point for set-valued contractions in complete
metric spaces. Fixed points of multivalued operators also play an important role in the
theory of set-valued dynamic systems. Following Aubin and Siegel ( [1]), a set-valued
dynamic is a pair (X,T ), where system X is a metric space and T : X → P (X) is a
multivalued operator. Any sequence (xn)n∈N such that xn+1 ∈ Txn for each n ∈ N is
called a motion of the system T at x0 or a dynamic process of T starting from x0 . A
fixed point of a multivalued map T may be interpreted as rest-point of the dynamic
system while a strict fixed point for T can be regarded as an end-point of the system.
The study set-valued dynamic systems has received more attention in the last two
decades, see for example, [1], [10], [14], and references mentioned therein.

On the other hand, concept of completeness of metric spaces has interesting and
important applications in classical analysis ( see for example, [7], [8]) . Suzuki [13]
obtained a variant of Banach’s fixed point theorem that characterizes metric com-
pleteness by using different types of contractions. Subsequently, many researchers in
metric fixed point theory obtained different generalizations of this result ( [5], [13]
and references therein).

Motivated by the work in [13] and [2], we introduce Suzuki type multivalued op-
erator and obtain some fixed point results for such mappings. Results obtained in
this paper extend or generalize many comparable results in contemporary literature.
Our results can also be viewed as Suzuki type extension of Kannan, Chatterjea, Zam-
firescu, and Ciric type contraction for multivalued operators (see for example, [3],
[11], [4] and some references therein).

2. Main Results

2.1. Suzuki type (θ, L)- weak multivalued operator. We introduce Suzuki type
(θ, L)-weak multivalued operator.

Definition 2.2. Let µ : [0, 1) → ( 1
2 , 1] be a function defined by µ(a) =

1
1 + a

.

A multivalued mapping T : X → Pb,cl(X) is called Suzuki type (θ, L)-weak multival-
ued operator if a ∈ [0, 1), there exists two constants θ ∈ (0, 1) and L ≥ 0 such that
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for x, y ∈ X

µ(a)D(x, Tx) ≤ d(x, y) ⇒ H(Tx, Ty) ≤ θd(x, y) + LD(y, Tx). (2.1)

Due to symmetric of d and H, one obtains the dual of (2.1) as follows: for x, y ∈ X

µ(a)D(x, Tx) ≤ d(x, y) ⇒ H(Tx, Ty) ≤ θd(x, y) + LD(x, Ty). (2.2)

First we show that any Suzuki type (θ, L)-weak multivalued operator is a MWP
operator.

Theorem 2.3. Let µ : [0, 1) → ( 1
2 , 1] be a function defined by µ(a) =

1
1 + a

. Let

(X, d) be a complete metric space and T : X → Pb,cl(X) Suzuki type (θ, L)-weak
multivalued operator. Then there exists z ∈ X such that z ∈ Tz.
Proof. Let θ1 be a real number such that 0 ≤ θ < θ1 < 1 and u0 ∈ X. Choose
u1 ∈ Tu0. Clearly, if u1 = u0, then proof is finished. Suppose that u1 6= u0. If we

take h =
1√
θ1
, then there exists u2 ∈ Tu1 such that d(u1, u2) ≤

1√
θ1
H(Tu0, Tu1).

Again if u2 = u1, the proof is finished and so we assume u2 6= u1. Since µ(a) ≤ 1, we
have

(1 + a)−1D(u0, Tu0) ≤ (1 + a)−1d(u0, u1) ≤ d(u0, u1).
Hence

d(u1, u2) ≤
1√
θ1
H(Tu0, Tu1) ≤

√
θ1d(u0, u1) +

L√
θ1
LD(u1, Tu0) =

√
θ1d(u0, u1).

That is, there exists u2 ∈ Tu1 such that

d(u1, u2) ≤
√
θ1d(u0, u1). (2.3)

Thus, we have a sequence {un} in X such that un ∈ Tun−1 and

d(un, un+1) ≤
√
θ1d(un−1, un) ≤ (

√
θ1)2d(un−2, un−1) ≤ ... ≤ (

√
θ1)nd(u0, u1).

As
∞∑

n=1

d(un, un+1) ≤
∞∑

n=1

(
√
θ1)nd(u0, u1) <∞,

so {un} is a Cauchy sequence. Since X is complete, there exists z ∈ X such that
un → z. Next we show that

D(z, Tx) ≤ θd(z, x) for all x ∈ X − {z}. (2.4)

Since un → z, there exists n0 ∈ N such that d(z, un) ≤ 1
3d(z, x) for all n ∈ N with

n ≥ n0. So we have

µ(a)D(un, Tun) ≤ D(un, Tun) ≤ d(un, un+1) ≤
2
3
d(z, x)

= d(z, x)− 1
3
d(z, x) ≤ d(x, z)− d(un, z) = d(un, x).

Hence D(un+1, Tx) ≤ H(Tun, Tx) ≤ θd(un, x)+LD(x, Tun). Taking limit as n→∞,
we obtain D(z, Tx) ≤ θd(z, x) for all x ∈ X − {z}. We next show that

H(Tx, Tz) ≤ θd(x, z) + LD(z, Tx) for all x ∈ X. (2.5)
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If x = z then it holds obviously. Assume that x 6= z. Then for every n ∈ N, there

exists yn ∈ Tx such that d(z, yn) ≤ D(z, Tx) +
1
n
d(x, z). Note that, for n ∈ N, we

have

D(x, Tx) ≤ d(x, yn) ≤ d(x, z) + d(z, yn) ≤ d(x, z) +D(z, Tx) +
1
n
d(x, z)

≤ d(x, z) + ad(z, x) +
1
n
d(x, z) ≤

(
1 + a+

1
n

)
d(x, z).

Hence we obtain 1
1+aD(x, Tx) ≤ d(x, z). Therefore the claim follows. Finally, we have

D(z, Tz) ≤ d(z, un+1) +D(un+1, T z) ≤ d(z, un+1) +H(Tun, T z)
≤ d(z, un+1) + θd(un, z) + LD(z, un+1) (2.6)

Taking limit as n → ∞ in (2.6) and employing the fact that un+1 ∈ Tun, we have
D(z, un+1) → 0. Therefore D(z, Tz) = 0 implies that z ∈ Tz as Tz is closed.
Example 2.4. Let [0, 1] be the unit interval with the usual norm and let T : [0, 1] →
CB([0, 1]) be Suzuki type (θ, L)-weak multivalued operator given by

Tx =
{ {

1
2

}
, x ∈ [0, 2

3 )
{1} , x ∈ [ 23 , 1]

T does not satisfy neither Ciric’s condition (see in [3]), nor Banach, Kannan, Chat-
terjea and Zamfirescu contractive conditions but T satisfies the contraction condi-
tion (2.1). Indeed, contractive condition (3.10), too. Indeed, for x, y ∈ [0, 2

3 ) or
x, y ∈ [ 23 , 1], (2.1) is obvious. For x ∈ [0, 2

3 ), y ∈ [ 23 , 1] or y ∈ [0, 2
3 ), x ∈ [ 23 , 1] we have

H(Tx, Ty) = 1
2 and D(x, Ty) = 1

6 , in the first case, and D(x, Ty) = 1
3 , in the second

case, which shows that it suffices to take L = 3 in order to ensure that (2.1) holds for
all x, y ∈ [0, 1].

Definition 2.5. Let µ : [0, 1) → ( 1
2 , 1] be a function defined by µ(a) =

1
1 + a

. Let

(X, d) be a complete metric space and T : X → X Suzuki type (θ, L)-weak contraction
if

µ(a)d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ θd(x, y) + Ld(y, Tx) (2.7)
which is θ ∈ (0, 1) and L ≥ 0. Due to symmetric of d, one obtains the dual of (2.7) as
follows: for x, y ∈ X

µ(a)d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ θd(x, y) + Ld(x, Ty) (2.8)

From above Theorem 2.3, we can have following conclusion.

Corollary 2.6. Let µ : [0, 1) → ( 1
2 , 1] be a function defined by µ(a) =

1
1 + a

. Let

(X, d) be a complete metric space and T : X → X Suzuki type (θ, L)-weak contraction.
Then there exists z ∈ X such that z ∈ Tz.
Example 2.7. Let µ : [0, 1) → ( 1

2 , 1] be a function defined by µ(a) =
1

1 + a
, [0, 1]

be the unit interval with the usual norm and let T : [0, 1] → [0, 1] be the identity
map, i.e., Tx = x, for all x ∈ [0, 1]. Then T does not satisfy the Ciric’s contractive
condition (see in [3]), since M(x, y) = |x− y| and |x− y| > h |x− y|; for all x 6= y
and 0 < h < 1, but T satisfies condition (2.7) with θ ∈ (0, 1) arbitrary and L ≥ 1− θ.



WEAK CONTRACTIVE OPERATORS 307

Indeed condition (2.7) is equivalent to |x− y| ≤ θ |x− y| + L |y − x| , which is true
for all x, y ∈ [0, 1].
Theorem 2.8. Let (X, d) be a complete metric space and Ti : X → Pcl(X) Suzuki-
type (θi, Li)- weak multivalued operators, for i ∈ {1, 2}. If there exists λ > 0 such that
H(T1(x), T2(x)) ≤ λ, for all x ∈ X. Then:

(a) Fix(Ti) ∈ Pcl(X), i ∈ {1, 2};

(b) T1 and T2 are MWP operators and H(Fix(T1), F ix(T2)) ≤
λ

1−max{θ1, θ2}
.

Proof. (a) From Theorem 2.3, Fix(Ti) 6= φ, i ∈ {1, 2}. Let us prove that the
fixed point set of Suzuki type (θ, L)-weak multivalued operator T is closed. let
{un} ∈ Fix(T ), n ∈ N such that un → u∗ as n → ∞. Since 0 = µ(a)D(un, Tun) ≤
µ(a)d(un, u

∗) ≤ d(un, u
∗), we have:

D(u∗, Tu∗) ≤ d(u∗, un) +D(un, Tu
∗) ≤ d(u∗, un) +H(Tun, Tu

∗)
≤ d(u∗, un) + θd(un, u

∗) + LD(u∗, Tun).

Taking limit as n→∞, we have u∗ ∈ Tu∗.
(b) From the proof of Theorem 2.3, it follows that Suzuki type (θ, L)-weak multi-

valued operator is MWP operator. Next we show that

H(Fix(T1), F ix(T2)) ≤
λ

1−max{θ1, θ2}
.

First approach. If q > 1, and u0 is arbitrary fixed point of T1, then there exists
u1 ∈ T2(u0) such that d(u0, u1) ≤ qH(T1u0, T2u1). Again, for u1 ∈ T2(u0), there
exists u2 ∈ T2(u1) such that d(u1, u2) ≤ qH(T2u0, T2u1). As µ(a)D(u0, T2u0) ≤
µ(a)d(u0, u1) ≤ d(u0, u1) so

d(u1, u2) ≤ qH(T2u0, T2u1) ≤ q [θ2d(u0, u1) + LD(u1, T2u0)] = qθ2d(u0, u1).

Continuing this process, we obtain a sequence of successive approximations for T2

such that
d(un, un+1) ≤ (qθ2)

n
d(u0, u1), for all n ∈ N.

It is straight forward to check that

d(un, un+p) ≤
(qθ2)

n

1− qθ2
d(u0, u1) for each n ∈ N and p ∈ N∗. (2.9)

Choosing 1 < q < min{ 1
θ1
,

1
θ2
} and taking limit as n → ∞, it follows that (un)n∈N

is Cauchy sequence in (X, d). Since X is complete metric space, un → u as n → ∞.
Now, we show that D(u, T2x) ≤ ad(u, x) for each x ∈ X. If x = u, then the claim
follows. Assume that x 6= u. As un → u as n → ∞, there exists n0 ∈ N such that
d(un, u) ≤ 1

3d(x, u) for each n ≥ n0. Now we have that

µ(a)D(un, T2un) ≤ D(un, T2un) ≤ d(un, un+1) ≤ d(un, u) + d(un+1, u)

≤ 2
3
d(u, x) ≤ d(u, x)− d(un, u) ≤ d(un, x).

Hence H(T2un, T2x) ≤ θ2d(un, x) + LD(x, T2un) for each n ≥ n0.
Thus, D(un+1, T2x) ≤ H(T2un, T2x) ≤ θ2d(un, x) + LD(x, T2un) for each n ≥ n0.
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Taking limit as n→∞, we obtain D(u, T2x) ≤ θ2d(u, x) for all x 6= u. Next we show
that

H(T2x, T2z) ≤ θ2d(x, z) + LD(z, T2x). (2.10)

If x = z then it obviously holds. Assume that x 6= z. Then for every n ∈ N, there
exists yn ∈ T2x such that d(z, yn) ≤ D(z, T2x) + 1

nd(x, z). So, for n ∈ N, we have

D(x, T2x) ≤ d(x, yn) ≤ d(x, z) +D(z, T2x) +
1
n
d(x, z)

≤ d(x, z) + ad(z, x) +
1
n
d(x, z) ≤

(
1 + a+

1
n

)
d(x, z).

Hence 1
1+aD(x, T2x) ≤ d(x, z) and the result follows. Finally, we obtain

D(u, T2u) ≤ d(u, un+1) +D(un+1, T2u) ≤ d(u, un+1) +H(T2un, T2u)
≤ d(u, un+1) + θ2d(un, u) + LD(u, T2un) (2.11)

Taking limit as n → ∞ in (2.11) and using the fact that un+1 ∈ T2un, we have
D(u, T2u) = 0 and u ∈ Fix(T2) as T2u is closed. From (2.9), letting p→∞ we obtain

d(un, u) ≤
(qθ2)n

1− qθ2
d(u0, u1), for each n ∈ N. Taking n = 0 we have

d(u0, u) ≤
1

1− qθ2
d(u0, u1) ≤

qλ

1− qθ2
.

Interchanging the roles of T1 and T2, for each u0 ∈ Fix (T2) there exists u ∈ Fix(T1)
such that

d(u0, u) ≤
1

1− qθ1
d(u0, u) ≤

qλ

1− qθ1
.

Hence

H(Fix(T1), F ix(T2)) ≤
qλ

1−max{qθ1, qθ2}
.

The conclusion follows when q → 1.
Second approach. Suppose that T : X → Pci(X) is an (θ, L)- weak multivalued
operator. We will show that T is a c-MWP operator with c := 1

1−a . Then, the
conclusion will follow from Theorem 3 (in [18]). Let q > 1, x ∈ X and y ∈ T (x) be a
arbitrary chosen. By a similar approach to (b1), we obtain a sequence of successive
approximations (un)n∈N and p ∈ N∗. Moreover, the sequence (un)n∈N is Cauchy and
its limit, denote by u := u(x, y), is a fixed point for T . Letting p → ∞ in the above
estimation we get

d(un, u) ≤
(qa)n

1− qa
d(u0, u1),

for each n ∈ N. For n := 0 we obtain that

d(x, u) ≤ 1
1− qa

d(x, y).

Letting q → 1 we obtain d(x, u) ≤ 1
1−ad(x, y). thus T is a 1

1−a -MWP operator.
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Example 2.9. Let [0, 1] be the unit interval with the usual metric and let T1, T2 :
[0, 1] → CL([0, 1]) be Suzuki type (θi, L)-weak multivalued operator for i = 1, 2 given
by T1(x) = B(0, 1

5x) = [0, 1
5 ], T2(x) = B(0, 2

5x) = [0, 2
5 ]. In this case,

H(T1(x), T2(x)) = max{ sup
y1∈T1x

{ inf
y2∈T2x

|y1 − y2|}, sup
y2∈T2x

{ inf
y1∈T1x

|y2 − y1|}}} =
2
7
< λ

Moreover Fix(T1) = [0, 1
5 ] ∈ CL([0, 1]), F ix(T2) = [0, 2

5 ] ∈ CL([0, 1]). For all x, y ∈
[0, 1], i = 1, 2, we can easily see that

1
1 + a

D(x, Tix) ≤ d(x, y) ⇒ H(Ti(x), Ti(y)) ≤ θid(x, y) + LD(x, Ty),

that is, T1, T2 are MWP operator and

H(Fix(T1), F ix(T2)) ≤
λ

1−max{θ1, θ2}
.

Therefore, all the conditions of Theorem 2.8 are satisfied.
The following is a local fixed point result for Suzuki type (θ, L)- weak multivalued

operator.
Theorem 2.10. Let (X, d) be a complete metric space, x0 ∈ X and r > 0. Suppose
that T : B(x0, r) → Pcl(X) is Suzuki type (θ, L)- weak multivalued operator and
D(x0, Tx0) < (1− θ)r. Then Fix(T ) 6= ∅.
Proof. Let 0 < s < r be such that B̃(x0, s) ⊂ B(x0, r) and D(x0, Tx0) < (1 − θ)s <
(1 − θ)r. If x1 ∈ Tx0 is such that d(x0, x1) < (1 − θ)s, then µ(a)D(x0, Tx0) ≤
µ(a)d(x0, x1) ≤ d(x0, x1). So,

D(x1, Tx1) ≤ H(Tx0, Tx1) ≤ θd(x0, x1) + LD(x1, Tx0) ≤ θd(x0, x1) < θ(1− θ)s.

Thus there exists x2 ∈ Tx1 such that d(x1, x2) < θ(1 − θ)s. Also, we have x2 ∈
B(x0, s) because d(x0, x2) ≤ d(x0, x1)+d(x1, x2) < (1−θ)s+θ(1−θ)s = (1−θ2)s < s.

In this way, we obtain inductively a sequence (xn)n∈N satisfying the following
properties:

(i) xn ∈ B(x0, s); for each n ∈ N;
(ii) xn+1 ∈ Txn, for all n ∈ N;
(iii) d(xn, xn+1) ≤ θn(1− θ)s for each n ∈ N.
From (iii) the sequence (xn)n∈N is Cauchy and hence, it converges to a certain

u ∈ B(x0, r). Following similar arguments to those given in Theorem 2.8, we obtain
u ∈ Fix(T ).

Now we present following homotopy result which extends several comparable results
in the existing literature.
Theorem 2.11. Let (X, d) be a complete metric space and U an open subset of X.
Let G : U× [0, 1] → P (X) be a multivalued operator such that the following conditions
are satisfied:

(i) x /∈ G(x, t), for each x ∈ ∂U and each t ∈ [0, 1];
(ii) G(., t) : U → P (X) is a Suzuki type (θ, L)-weak multivalued operator for each

t ∈ [0, 1];
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(iii) there exists a continuous increasing function ψ : [0, 1] → R such that

H(G(x, t), G(x, s)) ≤ |ψ(t)− ψ(s)| for all t, s ∈ [0, 1] and each x ∈ U ;

(iv) G : U × [0, 1] → P (X) is closed.
Then G(., 0) has a fixed point if and only if G(., 1) has a fixed point.

Proof. Suppose that G(., 0) has a fixed point z. From (a), z ∈ U . Define

∆ = {(t, x) ∈ [0, 1]× U | x ∈ G(x, t)}.

Clearly ∆ 6= ∅, as (0, z) ∈ ∆. Define a partial order on ∆ as follows:

(t, x) ≤ (s, y) if and only if t ≤ s and d(x, y) ≤ 2
1− θ

[ψ(s)− ψ(t)].

Let M be a totally ordered subset of ∆ and t∗ := sup{t | (t, x) ∈ M}. Consider a
sequence (tn, xn)n∈N ⊂ M such that (tn, xn) ≤ (tn+1, xn+1) and tn → t∗ as n → ∞.
Then

d(xm, xn) ≤ 2
1− θ

[ψ(tm)− ψ(tn)], for each m,n ∈ N, m > n.

Taking limit as m,n → ∞, we obtain d(xm, xn) → 0. Thus (xn)n∈N is Cauchy
sequence which converges to (say) x∗ in X. As xn ∈ G(xn, tn), n ∈ N and G is closed,
so x∗ ∈ G(x∗, t∗). Also, from (a) we have x∗ ∈ U . Hence (t∗, x∗) ∈ ∆. Since M is
totally ordered, therefore (t, x) ≤ (t∗, x∗), for each (t, x) ∈ M. That is, (t∗, x∗) is an
upper bound of M . By Zorn’s Lemma ∆ admits a maximal element (t0, x0) ∈ ∆.
We claim that t0 = 1. Suppose that t0 < 1. Choose r > 0 and t ∈ (t0, 1] such that
B(x0, r) ⊂ U and r = 2

1−θ [ψ(t)− ψ(t0)]. Note that

D(x0, G(x0, t)) ≤ D(x0, G(x0, t0)) +H(G(x0, t0), G(x0, t))

≤ [ψ(t)− ψ(t0)] =
(1− θ)r

2
< (1− θ)r.

Thus G(., t) : B(x0, r) → Pcl(X) satisfies, for all t ∈ [0, 1], the assumptions of
Theorem 2.1. Hence, for all t ∈ [0, 1], there exists x ∈ B(x0, r) such that x ∈ G(x, t)
which implies that (t, x) ∈ ∆. Now d(x0, x) ≤ r = 2

1−θ [ψ(t) − ψ(t0)], gives that
(t0, x0) < (t, x), a contraction to the maximality of (t0, x0). Conversely if G(., 1) has
a fixed point, then by a similar approach we obtain that G(., 0) has a fixed point.

3. An Application

The existence and uniqueness of solutions of functional equations and system of
functional equations arising in dynamic programming have been studied by using
various fixed point theorems. (see [15, 16, 17])The aim of this subsection is to prove
the existence and the uniqueness of a solution for a class of functional equations by
using Corollary 2.1.

Throughout this subsection, we assume that X and Y are Banach spaces, A ⊂ X,
B ⊂ Y and R is the field of real numbers. Let ∆(A) denote the set of all bounded
real-valued functions on A . It is well-known that ∆(A) endowed with the metric

d∆(h, k) = sup
x∈A

|h(x)− k(x)| , h, k ∈ ∆(A)
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is complete metric space. Let A and B be the state and, respectively the decision
spaces. Then the problem of dynamic programming reduces to the problem of solving
the functional equation:

p(x) = sup
y∈B

H(x, y, p(τ(x, y)))

where τ : A×B → A represents the transformation of the process and p(x) represents
the optimal return function with initial functional equation:

p(x) = sup
y∈B

{g(x, y) +G(x, y, p(τ(x, y)))}, x ∈ A, (3.1)

where g : A×B → R and G : A×B ×R→ R are bounded functions.
Let F be defined by:

F (h(x)) = sup
y∈B

{g(x, y) +G(x, y, p(τ(x, y)))}, h ∈ ∆(A), x ∈ A.

Theorem 3.1. Assume that there exist θ ∈ [0, 1), r > θ such that for every (x, y) ∈
A×B, h, k ∈ ∆(A) and t ∈ A the inequality

|h(t)− F (h(t))| ≤ r |h(t)− k(t)| (3.2)

implies

|G(x, y, h(t))−G(x, y, k(t))| ≤ θ |h(t)− k(t)|+ L |h(t)− F (k(t))| (3.3)

Then the functional equation (3.1) has a bounded solution. Moreover, if r ≥ 1, then
the solution is unique.
Proof. It is obvious that F is selfmap of ∆(A). Let γ be an arbitrary positive real
number and h1, h2 ∈ ∆(A). Pick x ∈ A and choose y1, y2 ∈ B such that

F (h1(x)) < g(x, y1) +G(x, y1, h1(τ(x, y1)) + γ (3.4)

F (h2(x)) < g(x, y2) +G(x, y2, h2(τ(x, y2)) + γ (3.5)
From the definition of F we get

F (h1(x)) ≥ g(x, y2) +G(x, y2, h1(τ(x, y2)) (3.6)

F (h2(x)) ≥ g(x, y1) +G(x, y1, h2(τ(x, y1)) (3.7)
If the inequality (3.2) holds with h = h1 ,k = h2 , then from (3.4), (3.7) and (3.3) we
have

F (h1(x))− F (h2(x)) < G(x, y1, h1(τ(x, y1))−G(x, y1, h2(τ(x, y2)) + γ (3.8)
≤ θ |h1(t)− h2(t)|+ L |h1(t)− F (h2(t))|+ γ.

Similarly, from (3.5), (3.6) and (3.3) we have,

F (h2(x))− F (h1(x)) < θ |h1(t)− h2(t)|+ L |h1(t)− F (h2(t))|+ γ. (3.9)

Thus, from (3.8) and (3.9) we obtain that

F (h1(x))− F (h2(x)) ≤ θ |h1(t)− h2(t)|+ L |h1(t)− F (h2(t))|+ γ (3.10)

Since the inequalty (3.10) holds for any x ∈ A and γ > 0, we have that

d∆(h2, Fh1) ≤ θd∆(h1, h2)
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which implies
d∆(Fh1, Fh2) ≤ θd∆(h1, h2) + Ld∆(h1, Th2).

Hence, all condition of Corollary 2.6 are satisfied for the mapping F and therefore
the proof is finished.
Acknowledgement. Authors are grateful to the editor and referees for their valuable
suggestions and critical remarks for improving the presentation of this paper.
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